首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An important operation parameter in the design of a pulsed air sparging (PAS) system is the pulse duration (PD). To study the effect of the PD on the remediation process, a series of laboratory experiments and numerical simulations were performed. The experimental apparatus was a cylindrical tank, packed with fine sand and partially filled by water contaminated with toluene. Toluene concentrations in water and in effluent air were measured over time during the application of PAS, which was applied with three different PD. Next, the T2VOC model, an extension of the TOUGH2 simulation program, was used to simulate the two-phase flow and transport processes for these cases. The simulation model was calibrated to the experimental results, and then run with a range of PD values. Results showed that there exists an optimal PD which yields the highest remediation efficiency. Next, it was shown that this PD may be obtained by performing a PAS pilot test and measuring the groundwater pressure response in a monitoring well. The characteristic time which describes the exponential decay of the pressure response was shown to provide an adequate estimate for the optimal PD. The estimation improved by taking a number of injection cycles.  相似文献   

2.
We present a contaminant treatment system (CTS) package for MODFLOW 6 that facilitates the simulation of pump-and-treat systems for groundwater remediation. Using the “nonintrusive” MODFLOW 6 application programming interface (API) capability, the CTS package can balance flows between extraction and injection wells within the outer flow solution loop and applies blended concentration/mass treatment efficiency within the outer transport solution loop. The former can be important when the requested extraction rate cannot be satisfied by the current simulated groundwater system conditions, while the latter can be important for simulating incomplete/imperfect treatment schemes. Furthermore, the CTS package allows users to temporally vary all aspects of a simulated CTS system, including the configuration and location of injection and extraction wells, and the CTS efficiency. This flexibility combined with the API-based implementation provide a generic and general CTS package that can be applied across the wide range of MODFLOW 6 simulation options and that evolves in step with MODFLOW 6 code modifications and advancements without needing to update the CTS package itself.  相似文献   

3.
Innovative remediation studies were conducted between 1994 and 2004 at sites contaminated by nonaqueous phase liquids (NAPLs) at Hill and Dover AFB, and included technologies that mobilize, solubilize, and volatilize NAPL: air sparging (AS), surfactant flushing, cosolvent flooding, and flushing with a complexing-sugar solution. The experiments proved that aggressive remedial efforts tailored to the contaminant can remove more than 90% of the NAPL-phase contaminant mass. Site-characterization methods were tested as part of these field efforts, including partitioning tracer tests, biotracer tests, and mass-flux measurements. A significant reduction in the groundwater contaminant mass flux was achieved despite incomplete removal of the source. The effectiveness of soil, groundwater, and tracer based characterization methods may be site and technology specific. Employing multiple methods can improve characterization. The studies elucidated the importance of small-scale heterogeneities on remediation effectiveness, and fomented research on enhanced-delivery methods. Most contaminant removal occurs in hydraulically accessible zones, and complete removal is limited by contaminant mass stored in inaccessible zones. These studies illustrated the importance of understanding the fluid dynamics and interfacial behavior of injected fluids on remediation design and implementation. The importance of understanding the dynamics of NAPL-mixture dissolution and removal was highlighted. The results from these studies helped researchers better understand what processes and scales are most important to include in mathematical models used for design and data analysis. Finally, the work at these sites emphasized the importance and feasibility of recycling and reusing chemical agents, and enabled the implementation and success of follow-on full-scale efforts.  相似文献   

4.
A new probabilistic remediation simulation package, PREMChlor, was used to simulate the effect of contaminant source and plume remediation at a site contaminated by trichloroethylene (TCE). First, the PREMChlor model was calibrated to the plume using a deterministic approach to represent the site conditions prior to remediation activities, which occurred in 1999. The calibrated model was then used in a probabilistic mode to conduct a simulation of the effects of field source and plume remediation activities during the period after 1999. This probabilistic simulation considers uncertainties in seven key parameters: the initial source mass and concentration, the relationship between source mass removal and source concentration, the effectiveness of the source remediation, the groundwater velocity, the background plume degradation rate, and the plume treatment effectiveness. The simulation results compare favorably with the observed data collected after 1999, and show the influence of the remediation efforts on the plume.  相似文献   

5.
A new in‐situ remediation concept termed a Horizontal Reactive Media Treatment Well (HRX Well®) is presented that utilizes horizontal wells filled with reactive media to passively treat contaminated groundwater in‐situ. The approach involves the use of large‐diameter directionally drilled horizontal wells filled with granular reactive media generally installed parallel to the direction of groundwater flow. The design leverages natural “flow‐focusing” behavior induced by the high in‐well hydraulic conductivity of the reactive media relative to the aquifer hydraulic conductivity to passively capture and treat proportionally large volumes of groundwater within the well. Clean groundwater then exits the horizontal well along its downgradient sections. Many different types of solid granular reactive media are already available (e.g., zero valent iron, activated carbon, ion exchange resins, zeolite, apatite, chitin); therefore, this concept could be used to address a wide range of contaminants. Three‐dimensional flow and transport simulations were completed to assess the general hydraulic performance, capture zones, residence times, effects of aquifer heterogeneity, and treatment effectiveness of the concept. The results demonstrate that capture and treatment widths of up to tens of feet can be achieved for many aquifer settings, and that reductions in downgradient concentrations and contaminant mass flux are nearly immediate. For a representative example, the predicted treatment zone width for the HRX Well is approximately 27 to 44 feet, and contaminant concentrations immediately downgradient of the HRX Well decreased an order of magnitude within 10 days. A series of laboratory‐scale physical tests (i.e., tank tests) were completed that further demonstrate the concept and confirm model prediction performance. For example, the breakthrough time, peak concentration and total mass recovery of methylene blue (reactive tracer) was about 2, 35, and 20 times (respectively) less than chloride (conservative tracer) at the outlet of the tank‐scale HRX Well.  相似文献   

6.
Vertical flow filters are containers filled with porous medium that are recharged from top and drained at the bottom, and are operated at partly saturated conditions. They have recently been suggested as treatment technology for groundwater containing volatile organic compounds (VOCs). Numerical reactive transport simulations were performed to investigate the relevance of different filter operation modes on biodegradation and/or volatilization of the contaminants and to evaluate the potential limitation of such remediation mean due to volatile emissions. On the basis of the data from a pilot‐scale vertical flow filter intermittently fed with domestic waste water, model predictions on the system’s performance for the treatment of contaminated groundwater were derived. These simulations considered the transport and aerobic degradation of ammonium and two VOCs, benzene and methyl tertiary butyl ether (MTBE). In addition, the advective‐diffusive gas‐phase transport of volatile compounds as well as oxygen was simulated. Model predictions addressed the influence of depth and frequency of the intermittent groundwater injection, degradation rate kinetics, and the composition of the filter material. Simulation results show that for unfavorable operation conditions significant VOC emissions have to be considered and that operation modes limiting VOC emissions may limit aerobic biodegradation. However, a suitable combination of injection depth and composition of the filter material does facilitate high biodegradation rates while only little VOC emissions take place. Using such optimized operation modes would allow using vertical flow filter systems as remediation technology suitable for groundwater contaminated with volatile compounds.  相似文献   

7.
The groundwater remediation field has been changing constantly since it first emerged in the 1970s. The remediation field has evolved from a dissolved‐phase centric conceptual model to a DNAPL‐dominated one, which is now being questioned due to a renewed appreciation of matrix diffusion effects on remediation. Detailed observations about contaminant transport have emerged from the remediation field, and challenge the validity of one of the mainstays of the groundwater solute transport modeling world: the concept of mechanical dispersion (Payne et al. 2008). We review and discuss how a new conceptual model of contaminant transport based on diffusion (the usurper) may topple the well‐established position of mechanical dispersion (the status quo) that is commonly used in almost every groundwater contaminant transport model, and evaluate the status of existing models and modeling studies that were conducted using advection‐dispersion models.  相似文献   

8.
Air sparging is a relatively new technique for the remediation of ground water contaminated with petroleum hydrocarbons. In this technique, air is injected below the water table, beneath the contaminated soil. Remediation occurs by a combination of contaminant partitioning into the vapor phase and enhanced biodegradation. The air is usually removed by vacuum extraction in the vadose zone.
The efficiency of remediation from air sparging is a function of the air flow pattern, although the distribution of the injected air is still poorly understood. Cross-borehole resistivity surveys were performed at a former service station in Florence, Oregon, to address this unknown. The resistivity measurements were made using six wells, one of which was the sparge well. Data were collected over a two-week period during and after several air injections, or sparge events. Resistivity images were calculated between wells using an algorithm that assumes axially symmetric structures. The movement of the injected air through time was defined by regions of large increases in resistivity, greater than 100 percent from the background. During early sparge times, air moved outward and upward from the injection point as it ascended to the unsaturated zone. At later sparge times, the air flow reached a somewhat stable cone-shaped pattern radiating out and up from the injection point. Two days after sparging was discontinued, a residue of entrained air remained in the saturated zone, as indicated by a zone of 60 to 80 percent water saturation.  相似文献   

9.
Laboratory Study of Air Sparging: Air Flow Visualization   总被引:15,自引:0,他引:15  
Laboratory flow visualization experiments, using glass beads as the porous medium, were conducted to study air sparging, an innovative technology for subsurface contaminant remediation. The purpose of these experiments was to observe how air flows through saturated porous media and to obtain a basic understanding of air plume formation and medium heterogeneity effects. The experiments indicate that air flow occurring in discrete, stable channels is the most probable flow behavior in medium to fine grained water saturated porous media and that medium heterogeneity plays an important role in the development of air channels. Several simulated scales of heterogeneities, from pore to field, have been studied. The results suggest that air channel formation is sensitive to the various scales of heterogeneities. Site-specific hydrogeologic settings have to be carefully reviewed before air sparging is applied to remediate sites contaminated by volatile organic compounds.  相似文献   

10.
Hadley PW  Newell CJ 《Ground water》2012,50(5):669-678
Groundwater remediation technologies are designed, installed, and operated based on the conceptual models of contaminant hydrogeology that are accepted at that time. However, conceptual models of remediation can change as new research, new technologies, and new performance data become available. Over the past few years, results from multiple-site remediation performance studies have shown that achieving drinking water standards (i.e., Maximum Contaminant Levels, MCLs) at contaminated groundwater sites is very difficult. Recent groundwater research has shown that the process of matrix diffusion is one key constraint. New developments, such as mass discharge, orders of magnitude (OoMs), and SMART objectives are now being discussed more frequently by the groundwater remediation community. In this paper, the authors provide their perspectives on the existing "reach MCLs" approach that has historically guided groundwater remediation projects, and advocate a new approach built around the concepts of OoMs and mass discharge.  相似文献   

11.
Leachate-contaminated groundwater from historical municipal landfills, typically lacking engineered liners and leachate collection systems, poses a threat to nearby urban streams, particularly to benthic ecosystems. Effective monitoring and assessment of such sites requires understanding of the spatial patterns (i.e., two-dimensional footprint) of contaminated groundwater discharge and associated controlling factors. However, discharges from groundwater contaminated by modern wastewater can complicate site assessments. The objectives of this study were to (1) demonstrate the use of artificial sweeteners (AS): saccharin (SAC), cyclamate (CYC), acesulfame (ACE), and sucralose (SUC), to distinguish groundwater discharge areas influenced by historic landfill leachate (elevated SAC and sometimes CYC; low ACE and SUC concentrations) from those influenced by wastewater (high ACE and SUC concentrations), and (2) investigate contaminant discharge patterns for two gaining urban stream reaches adjacent historic landfills at base flows. Contaminant discharge patterns revealed by the AS were strongly controlled by hyporheic flow (low AS concentrations), particularly for the straight reach, and stream sinuosity, particularly for the meandering reach. These patterns were different and the contaminant footprint coverage (<25% of streambed area) much less than most past studies (typically >50% coverage), likely due to the homogeneous streambed-aquifer conditions and shallow, narrow landfill plume in this setting.  相似文献   

12.
Permeable reactive barriers (PRBs) are a popular technology for passive contaminant remediation in aquifers through installation of reactive materials in the pathway of a plume. Of fundamental importance are the degree of remediation inside the reactor (residence time) and the portion of groundwater intercepted by a PRB (capture width). Based on a two-dimensional conformal mapping approach (previously used in related work), the latter is studied in the present work for drain-and-gate (DG) PRBs, which may possess a collector and a distributor drain (“full” configuration) or a collector drain only (“simple” configuration). Inherent assumptions are a homogeneous unbounded aquifer with a uniform far field, in which highly permeable drains establish constant head boundaries. Solutions for aquifer flow fields in terms of the complex potential are derived, illustrated, and analyzed for doubly symmetric DG configurations and arbitrary reactor hydraulic resistance as well as ambient groundwater flow direction. A series of practitioner-friendly charts for capture width is given to assist in PRB design and optimization without requiring complex mathematics. DG PRBs are identified as more susceptible to flow divergence around the reactor than configurations using impermeable side structures (e.g., funnel-and-gate), and deployment of impermeable walls on drains is seen to mitigate this problem under certain circumstances.  相似文献   

13.
Air sparging was evaluated for remediation of tetrachloroethylene (PCE) present as dense nonaqueous phase liquid (DNAPL) in aquifers. A two-dimensional laboratory tank with a transparent front wall allowed for visual observation of DNAPL mobilization. A DNAPL zone 50 cm high was created, with a PCE pool accumulating on an aquitard. Detailed process control and analysis yielded accurate mass balances and insight into the mass-transfer limitations during air sparging. Initial PCE recovery rates were high, corresponding to fast removal of residual DNAPL within the zone influenced directly by air channels. The vadose zone DNAPL was removed within a few days, and the recovery in the extracted soil vapors decreased to low values. Increasing the sparge rate and pulsing the air injection led to improved mass recovery, as the pulsing induced water circulation and increased the DNAPL dissolution rate. Dissolved PCE concentrations both within and outside the zone of air channels were affected by the pulsing. Inside the sparge zone, aqueous concentrations decreased rapidly, matching the declining effluent PCE flux. Outside the sparge zone, PCE concentrations increased because highly contaminated water was pushed away from the air injection point. This overall circulation of water may lead to limited spreading of the contaminant, but accelerated the time-weighted average mass removal by 40% to 600%, depending on the aggressiveness of the pulsing. For field applications, pulsing with a daily or diurnal cycling time may increase the average mass removal rate, thus reducing the treatment time and saving in the order of 40% to 80% of the energy cost used to run the blowers. However, air sparging will always fail to remove DNAPL pools located below the sparge point because the air will rise upward from the top of a screen, unless very localized geological layers force the air to migrate horizontally. Unrecognized presence of DNAPL at chlorinated solvent sites residual and pools could potentially hamper success of air sparging cleanups, since the presence of small DNAPL pools, ganglia or droplets can greatly extend the treatment time.  相似文献   

14.
1,4‐Dioxane is totally miscible in water, sequestering in vadose pore water that can serve as a source of long‐term groundwater contamination. Although some 1,4‐dioxane is removed by conventional soil vapor extraction (SVE), remediation is typically inefficient. SVE efficiency is hindered by low Henry’s Law constants at ambient temperature and redistribution to vadose pore water if SVE wells pull 1,4‐dioxane vapors across previously clean soil. It was hypothesized that heated air injection and more focused SVE extraction (“Enhanced SVE” or XSVE) could increase the efficiency of 1,4‐dioxane vadose treatment, and this new process was tested at former McClellan Air Force Base, CA. The XSVE system had four peripheral heated air injection wells surrounding a 6.1 m × 6.1 m × 9.1 m deep treatment zone with a central vapor extraction well. After 14 months of operation, soil temperatures reached as high as ~90 °C near the injection wells and the treatment zone was flushed with ~20,000 pore volumes of injected air. Post‐treatment sampling results showed reductions of ~94% in 1,4‐dioxane and ~45% in soil moisture. Given the simplicity of the remediation system components and the promising demonstration test results, XSVE has the potential to be a cost‐effective remediation option for vadose zone soil containing 1,4‐dioxane.  相似文献   

15.
Exposure from groundwater contamination to aquatic receptors residing in receiving surface water is dependent upon the rate of contaminated groundwater discharge. Characterization of groundwater fluxes is challenging, especially in coastal environments where tidal fluctuations result in transient groundwater flows towards these receptors. This can also be further complicated by the high spatial heterogeneity of subsurface deposits enhanced by anthropogenic influences such as the mixing of natural sediments and backfill materials, the presence of subsurface built structures such as sheet pile walls or even occurrence of other sources of contaminant discharge. In this study, the finite volume point dilution method (FVPDM) was successfully used to characterize highly transient groundwater flows and contaminant mass fluxes within a coastal groundwater flow system influenced by marked tides. FVPDM tests were undertaken continuously for more than 48 h at six groundwater monitoring wells, in order to evaluate groundwater flow dynamics during several tide cycles. Contaminant concentrations were measured simultaneously which allowed calculating contaminant mass fluxes. The study highlighted the importance of the aquifer heterogeneity, with groundwater fluxes ranging from 10−7 to 10−3 m/s. Groundwater flux monitoring enabled a significant refinement of the conceptual site model, including the fact that inversion of groundwater fluxes was not observed at high tide. Results indicated that contaminant mass fluxes were particularly higher at a specific monitoring well, by more than three orders of magnitude, than at other wells of the investigated aquifer. This study provided crucial information for optimizing further field investigations and risk mitigation measures.  相似文献   

16.
Vapor extraction (soil venting) has been demonstrated to be a successful and cost-effective remediation technology for removing VOCs from the vadose (unsaturated) zone. However, in many cases, seasonal water table fluctuations, drawdown associated with pump-and-treat remediation techniques, and spills involving dense, non-aqueous phase liquids (DNAPLS) create contaminated soil below the water table. Vapor extraction alone is not considered to be an optimal remediation technology to address this type of contamination.
An innovative approach to saturated zone remediation is the use of sparging (injection) wells to inject a hydrocarbon-free gaseous medium (typically air) into the saturated zone below the areas of contamination. The contaminants dissolved in the ground water and sorbed onto soil particles partition into the advective air phase, effectively simulating an in situ air-stripping system. The stripped contaminants are transported in the gas phase to the vadose zone, within the radius of influence of a vapor extraction and vapor treatment system.
In situ air sparging is a complex multifluid phase process, which has been applied successfully in Europe since the mid-1980s. To date, site-specific pilot tests have been used to design air-sparging systems. Research is currently underway to develop better engineering design methodologies for the process. Major design parameters to be considered include contaminant type, gas injection pressures and flow rates, site geology, bubble size, injection interval (areal and vertical) and the equipment specifications. Correct design and operation of this technology has been demonstrated to achieve ground water cleanup of VOC contamination to low part-per-billion levels.  相似文献   

17.
Pressure pulsing technology is an innovative method that has been developed with the aim of overcoming preferred flow paths associated with remediation techniques that rely on the injection of reagents. Numerical and field experiments were conducted to assess how pressure pulsing affects groundwater flow and solute transport during reagent injection. A series of field experiments were performed at two field sites where a monitoring network designed to capture the breakthrough of solutes delivered from an injection well was installed. Pressure pulsing and conventional injection methods were used at each site. One site was comprised of fine sand with low heterogeneity, while the other was moderately heterogeneous with discrete layers varying from fine sand to silt. The data suggest that breakthrough was more uniform for the pressure pulsing injections; however, this difference was minor and complicated by sorption of some of the tracers employed. The groundwater flow and solute transport modeling exercise simulated the rapid boundary pressure modulation that occurs in association with pressure pulsing. Two‐dimensional (2D) simulations revealed that repeated sudden onset of injection cessation produces brief periods of gradient reversal and the development of a mixing zone near the injection well. The spatial extents of this mixing zone were found to be highly dependent upon the hydraulic diffusivity of the medium, with medium heterogeneity and pulsing frequency playing secondary roles. Three‐dimensional (3D) numerical simulations were used to benchmark the observations from one of the field sites. The results from the modeling effort showed that solute breakthrough from a pressure pulsing injection is more dispersed relative to a conventional injection as a result of the mixing zone phenomenon; however, we were unable to directly observe this mixing zone using the instrumentation deployed at the two field sites.  相似文献   

18.
Remediation of subsurface contamination requires an understanding of the contaminant (history, source location, plume extent and concentration, etc.), and, knowledge of the spatial distribution of hydraulic conductivity (K) that governs groundwater flow and solute transport. Many methods exist for characterizing K heterogeneity, but most if not all methods require the collection of a large number of small‐scale data and its interpolation. In this study, we conduct a hydraulic tomography survey at a highly heterogeneous glaciofluvial deposit at the North Campus Research Site (NCRS) located at the University of Waterloo, Waterloo, Ontario, Canada to sequentially interpret four pumping tests using the steady‐state form of the Sequential Successive Linear Estimator (SSLE) ( Yeh and Liu 2000 ). The resulting three‐dimensional (3D) K distribution (or K‐tomogram) is compared against: ( 1 ) K distributions obtained through the inverse modeling of individual pumping tests using SSLE, and ( 2 ) effective hydraulic conductivity (Keff) estimates obtained by automatically calibrating a groundwater flow model while treating the medium to be homogeneous. Such a Keff is often used for designing remediation operations, and thus is used as the basis for comparison with the K‐tomogram. Our results clearly show that hydraulic tomography is superior to the inversions of single pumping tests or Keff estimates. This is particularly significant for contaminated sites where an accurate representation of the flow field is critical for simulating contaminant transport and injection of chemical and biological agents used for active remediation of contaminant source zones and plumes.  相似文献   

19.
The groundwater community has widely recognized geological structure uncertainty as a major source of model structure uncertainty. Previous studies in aquifer remediation design, however, rarely discuss the impact of geological structure uncertainty. This study combines chance‐constrained (CC) programming with Bayesian model averaging (BMA) as a BMA‐CC framework to assess the impact of geological structure uncertainty in remediation design. To pursue this goal, the BMA‐CC method is compared with traditional CC programming that only considers model parameter uncertainty. The BMA‐CC method is employed to design a hydraulic barrier to protect public supply wells of the Government St. pump station from salt water intrusion in the “1500‐foot” sand and the “1700‐foot” sand of the Baton Rouge area, southeastern Louisiana. To address geological structure uncertainty, three groundwater models based on three different hydrostratigraphic architectures are developed. The results show that using traditional CC programming overestimates design reliability. The results also show that at least five additional connector wells are needed to achieve more than 90% design reliability level. The total amount of injected water from the connector wells is higher than the total pumpage of the protected public supply wells. While reducing the injection rate can be achieved by reducing the reliability level, the study finds that the hydraulic barrier design to protect the Government St. pump station may not be economically attractive.  相似文献   

20.
The National Research Council has estimated that over 126,000 contaminated groundwater sites are unlikely to achieve low ug/L clean‐up goals in the foreseeable future. At these sites, cost‐effective, long‐term monitoring schemes are needed in order to understand the long‐term changes in contaminant concentrations. Current monitoring optimization schemes rely on site‐specific evaluations to optimize groundwater monitoring frequency. However, when using linear regression to estimate the long‐term zero‐order or first‐order contaminant attenuation rate, the effect of monitoring frequency and monitoring duration on the accuracy and confidence for the estimated attenuation rate is not site‐specific. For a fixed number of monitoring events, doubling the time between monitoring events (e.g., changing from quarterly monitoring to semi‐annual monitoring) will double the accuracy of estimated attenuation rate. For a fixed monitoring frequency (e.g., semi‐annual monitoring), increasing the number of monitoring events by 60% will double the accuracy of the estimated attenuation rate. Combining these two factors, doubling the time between monitoring events (e.g., quarterly monitoring to semi‐annual monitoring) while decreasing the total number of monitoring events by 38% will result in no change in the accuracy of the estimated attenuation rate. However, the time required to collect this dataset will increase by 25%. Understanding that the trade‐off between monitoring frequency and monitoring duration is not site‐specific should simplify the process of optimizing groundwater monitoring frequency at contaminated groundwater sites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号