首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The HydraSleeve is a sampling device for collecting groundwater from the screened interval of a monitoring well without purging that uses a check valve to take in water over the first 3 to 5 feet of an upward pulling motion. If the check valve does not perform as expected, then the HydraSleeve has the potential to collect water from an incorrect depth interval, possibly above the screened interval of the well. We have evaluated volatile organic chemical (VOC) results from groundwater samples collected with the HydraSleeve sampler compared to other methods for sampling monitoring wells at three sites. At all three sites, lower VOC concentration results were observed for samples collected using the HydraSleeve. At two of these three sites, the low concentration sample results were most strongly associated with monitoring wells with more than 10 feet of water above the monitoring well‐screened interval. At the site with the largest dataset, the median bias for samples collected with HydraSleeve was ?20% (p < 0.001). At this site, a bias of ?26% (p < 0.001) was observed for the subset of monitoring wells with greater than 10 feet of water above the screened interval compared to a bias of ?7% (p = 0.21) for wells screened across the top of the water table. In addition to lower VOC concentrations, the monitoring records obtained using the HydraSleeve were more variable compared to monitoring records obtained using purge sampling methods, a characteristic that would make it more difficult to determine the long‐term concentration trend in the well.  相似文献   

2.
Quantifying the overall progress in remediation of contaminated groundwater has been a significant challenge. We utilized the GeoTracker database to evaluate the progress in groundwater remediation from 2001 to 2011 at over 12,000 sites in California with contaminated groundwater. This paper presents an analysis of analytical results from over 2.1 million groundwater samples representing at least $100 million in laboratory analytical costs. Overall, the evaluation of monitoring data shows a large decrease in groundwater concentrations of gasoline constituents. For benzene, half of the sites showed a decrease in concentration of 85% or more. For methyl tert‐butyl ether (MTBE), this decrease was 96% and for TBE, 87%. At remediation sites in California, the median source attenuation rate was 0.18/year for benzene and 0.36/year for MTBE, corresponding to half‐lives of 3.9 and 1.9 years, respectively. Attenuation rates were positive (i.e., decreasing concentration) for benzene at 76% of sites and for MTBE at 85% of sites. An evaluation of sites with active remediation technologies suggests differences in technology effectiveness. The median attenuation rates for benzene and MTBE are higher at sites with soil vapor extraction or air sparging compared with sites without these technologies. In contrast, there was little difference in attenuation rates at sites with or without soil excavation, dual phase extraction, or in situ enhanced biodegradation. The evaluation of remediation technologies, however, did not evaluate whether specific systems were well designed or implemented and did not control for potential differences in other site factors, such as soil type.  相似文献   

3.
“Random” variability in groundwater monitoring data sets reduces the ability to identify long‐term concentration trends. This, in turn, increases the time and cost required to evaluate the effectiveness of natural attenuation and other groundwater remedies. To better understand the factors influencing variability in groundwater monitoring results, we have analyzed three large groundwater monitoring data sets. For the three data sets, the long‐term trend in contaminant concentration in each well accounted for an average of 30% to 40% of the overall variation in contaminant concentration. Understanding the causes of the remaining variability would support the development of improved groundwater monitoring methods. All three data sets show large differences in the temporal monitoring records between individual wells (e.g., coefficient of variation for monitoring results from individual wells ranges from 0.08 to 4.6) indicating that well and aquifer factors are more important contributors to variability than sample collection and analysis factors. However, the depth to groundwater (R2 = 0.020) and distance between water level and screened interval (R2 = 0.049) accounted for only a portion of the differences in variability between wells and other aquifer characteristics evaluated and were not correlated with the observed variability in monitoring results. Unidentified factors were apparently much more important contributors to variability than these factors. The monitoring data sets exhibited two distinct timescales for variability: Time‐independent variability that was apparent even when wells were re‐sampled within a few days and a long‐term variability likely associated with the long‐term concentration trend. The observation of time‐independent variability suggests that frequent monitoring of contaminated monitoring wells serves primarily to characterize sources of variability unrelated to the long‐term trend of primary interest.  相似文献   

4.
Glaciers are major agents of erosion that increase sediment load to the downstream fluvial system. The Castle Creek Glacier, British Columbia, Canada, has retreated ~1.0 km in the past 70 years. Suspended sediment concentration (SSC) and streamflow (Q) were monitored independently at five sites within its pro‐glacial zone over a 60 day period from July to September 2011, representing part of the ablation season. Meteorological data were collected from two automatic weather stations proximal to the glacier. The time‐series were divided into hydrologic days and the shape and magnitude of the SSC response to hydro‐meteorological conditions (‘cold and wet’, ‘hot and dry’, ‘warm and damp’, and ‘storm’) were categorized using principal component analysis (PCA) and cluster analysis (CA). Suspended sediment load (SSL) was computed and summarized for the categories. The distribution of monitoring sites and results of the multivariate statistical analyses describe the temporal and spatial variability of suspended sediment flux and the relative importance of glacial and para‐glacial sediment sources in the pro‐glacial zone. During the 2011 study period, ~ 60% of the total SSL was derived from the glacial stream and sediment deposits proximal to the terminus of the glacier; during ‘storm’ events, that contribution dropped to ~40% as the contribution from diffuse and point sources of sediment throughout the pro‐glacial zone and within the meltwater channels increased. While ‘storm’ events accounted for just 3% of the study period, SSL was ~600% higher than the average over the monitoring period, and ~20% of the total SSL was generated in that time. Determining how hydro‐meteorological conditions and sediment sources control sediment fluxes will assist attempts to predict how pro‐glacial zones respond to future climate changes. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

5.
A field demonstration was performed at Edwards Air Force Base to assess bioaugmentation for treatment of a well‐characterized tetrachloroethene (PCE) dense nonaqueous phase liquid (DNAPL) source area in fractured rock. Groundwater recirculation was employed to deliver remedial amendments, including bacteria, to facilitate reductive dechlorination and enhance DNAPL dissolution. An active treatment period of 9 months was followed by a 10‐month posttreatment rebound evaluation. Dechlorination daughter products were observed in both the shallow and deep fracture zones following treatment. In the shallow fracture zone, the calculated DNAPL mass removed was approximately equal to the DNAPL mass estimated using partitioning tracer testing, and no rebound in chlorinated ethenes or ethene was observed during the posttreatment period. A maximum DNAPL dissolution enhancement factor of 5 was observed in the shallow fracture zone. In the deep fracture zone, only approximately 45% of the DNAPL mass—as estimated via partitioning tracer testing—was removed and rebound in the total molar chlorinated ethenes + ethene was observed. The difference in behavior between the shallow and deep fracture zones was attributed to DNAPL architecture and the fracture flow field.  相似文献   

6.
The 2010-2011 wet season was one of extreme weather for the State of Queensland, Australia. Major rivers adjacent to the Great Barrier Reef (GBR) were discharging at rates 1.5 to >3 times higher than their long term median. Exposure to photosystem II herbicides has been routinely monitored over a period of up to 5 years at 12 inshore GBR sites. The influence of this wet season on exposure to photosystem II herbicides was examined in the context of this long-term monitoring record and during flood plume events in specific regions. Median exposures expressed as diuron equivalent concentration were an average factor of 2.3 times higher but mostly not significantly different (p<0.05) to the median for the long-term monitoring record. The herbicides metolachlor and tebuthiuron were frequently detected in flood plume waters at concentrations that reached or exceeded relevant water quality guidelines (by up to 4.5 times).  相似文献   

7.
Recently amended European (EU) water policies call for an adequate monitoring of the chemical status of sediments and suspended matter (SM) in rivers. In this study, we focus on long‐term time series of particle‐bound hexachlorobenzene (HCB) and selected polychlorinated biphenyls (PCB‐138 and PCB‐153) that were monitored biweekly to monthly at eight stations in the River Rhine catchment. Our aims are (1) to detect trends in the concentration series HCB, PCB‐138 and PCB‐153, (2) to estimate the uncertainty of loads caused by SM collection techniques and load calculation procedures and (3) to detect trends in the subsequently calculated annual load series. HCB concentration in the SM for the period 1995–2008 significantly (p < 0·01) decreased at six of the eight monitoring stations. Decreasing PCB‐138 and PCB‐153 concentrations are significant at six of the eight and seven of the eight monitoring stations, respectively. A two‐way analysis of variance (ANOVA) that tested the effect of two collection techniques and four load calculation procedures on annual loads indicates homogeneity of the methods at four of the five monitoring stations. At Weil, only the loads of HCB, PCB‐138 and PCB‐153 are significantly affected by the collection technique. The trend analysis of an extended series (1985–2007) of annual HCB loads at Koblenz showed a significant decrease from about 110 kg year?1 to about 15–23 kg year?1; however, in the shorter period (1995–2007) only at two of the eight monitoring stations decreasing trends of annual contaminant load could be detected. We conclude that any of the tested load calculation procedures can be applied, as loads do no differ systematically. Although a high uncertainty in load estimation exists (e.g. maximum percentage error of E = [18·1, 122·5]% for HCB), the monitoring programme at the Rhine is adequate for analysing the long‐term chemical status of SM. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

8.
Given the importance of groundwater temperature to the biogeochemical health of aquatic ecosystems, a floodplain study was implemented to improve understanding of rural land use impacts on shallow groundwater (SGW) temperature. Study sites included a historic agricultural field (Ag) and bottomland hardwood forest (BHF), each with nine piezometers in an 80 × 80 m grid. Piezometers were equipped with pressure transducers to monitor SGW temperature and level at 30 min intervals during the 2011, 2012, 2013, and 2014 water years. The study is one of the first to utilize long‐term, continuous, automated, in situ monitoring to investigate rural land use impacts on shallow groundwater temperatures. Average SGW temperature during the study period was 11.1 and 11.2 °C at the Ag and BHF sites, respectively. However, temperature range at the Ag site was 72% greater than at the BHF site. Results indicate a greater responsiveness to seasonal climate fluctuations in Ag site SGW temperature related to absence of forest canopy. Patterns of intra‐site groundwater temperature differences at both study sites illustrate the influence of stream–aquifer thermal conduction and occasional baseflow reversals. Considering similar surface soil temperature amplitudes and low average groundwater flow values at both sites, results suggest that contrasting rates of plant water use, groundwater recharge, and subsurface hydraulic conductivity are likely mechanistic causes for the observed SGW temperature differences. Results highlight the long‐term impact of forest removal on subsurface hydrology and groundwater temperature regime. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

9.
Understanding the variability in monthly rainfall amounts is important for the management of water resources. We use entropy, a measure of variability, to quantify the rainfall variability in Australia. We define the entropy of stable rainfall (ESR) to measure the long‐term average rainfall variability across the months of the year. The stations in northern Australia observe substantially more variability in rainfall distributions and stations in southern Australia observe less variability in rainfall distribution across the months of the year. We also define the consistency index (CI) to compare the distribution of the monthly rainfall for a given year with the long‐term average monthly rainfall distribution. Higher value of the CI indicates the rainfall in the year is consistent with the overall long‐term average rainfall distribution. Areas close to the coastline in northern, southern and eastern Australia observe more consistent rainfall distribution in individual years with the long‐term average rainfall distribution. For the studied stations, we categorize the years into different potential water resource availability on the basis of annual rainfall amount and CI. For almost all Australian rainfall stations, El Niño years have a greater risk of having below median and relatively inconsistent rainfall distribution than La Niña years. The results may be helpful for developing area‐specific water usage strategies. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

10.
This paper investigates the dynamics of soil armouring as a result of fluvial erosion for a non‐cohesive sandy gravel spoil from the Ranger Mine, Australia, and a cohesive silt loam spoil from the Northparkes Mine, Australia, using a model for hillslope soil armouring. These long term predictions concentrate on the temporal and spatial changes of the spoil grading and erosion over 100–200 years for the flat cap regions (1–2%) and steep batter edges (10–30%) typically encountered on waste rock dumps. The existence of a significant rock fragment fraction in the Ranger spoil means that it armours readily, while Northparkes does not. For Ranger the waste rock showed reductions in (1) cumulative erosion of up to 81% from that obtained by extrapolating the initial erosion rate out 100 years and (2) the erosion/year by more than 10‐fold. For Northparkes reductions were less marked, with the maximum reduction in erosion/year being 37% after 200 years. For Ranger the reductions were greatest and fastest for intermediate gradient hillslopes. For the steepest hillslopes the armouring decreased because the flow shear stresses were large enough to mobilize all material in the armour layer. Model uncertainty was assessed with probabilistic confidence limits demonstrating that these erodibility reductions were statistically significant. A commonly used hillslope erosion model (sediment flux = β1 discharge m1 slope n1) was fitted to these predictions. The erodibility, β1, and m1 decreased with time, which was consistent with our physical intuition about armouring. At Ranger the parameter m1 asymptoted to 1·5–1·6 while at Northparkes it asymptoted to 1·2–1·3. At Ranger transient spatial trends in armouring led to a short term (50–200 years in the future) reduction in n1, to below zero under certain circumstances, recovering to an asymptote of about 0·5–1. At Northparkes n1 asymptoted to about 0·6, with no negative transients predicted. The m1 and n1 parameters predicted for Ranger were shown to be consistent with field data from a 10‐year‐old armoured hillslope and consistent with published relationships between erodibility and rock content for natural hillslopes. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

11.
High‐resolution soil and groundwater monitoring was performed to assess the long‐term impacts of bioremediation using bioaugmentation with a dechlorinating microbial consortium (and sodium lactate as the electron donor) in a well‐characterized trichloroethene (TCE) dense nonaqueous phase liquid (DNAPL) source area. Monitoring was performed up to 3.7 years following active bioremediation using a high‐density monitoring network that included several discrete interval multi‐level sampling wells. Results showed that despite the absence of lactate, lactate fermentation transformation products, or hydrogen, biogeochemical conditions remained favorable for the reductive dechlorination of chlorinated ethenes. In locations where soil data showed that TCE DNAPL sources persisted, local contaminant rebound was observed in groundwater, whereas no rebound or continuous decreases in chlorinated ethenes were observed in locations where DNAPL sources were treated. While ethene levels measured 3.7 years after active treatment suggested relatively low (2 to 30%) dechlorination of the parent TCE and daughter products, carbon stable isotope analysis showed that the extent of complete dechlorination was much greater than indicated by ethene generation and that the estimated first‐order rate constant describing the complete dechlorination of TCE at 3.7 years following active bioremediation was approximately 3.6 y–1. Overall, results of this study suggest that biological processes may persist to treat TCE for years after cessation of active bioremediation, thereby serving as an important component of remedial treatment design and long‐term attenuation.  相似文献   

12.
At a low permeability clay till site contaminated with chlorinated ethenes (Gl. Kongevej, Denmark), enhanced reductive dechlorination (ERD) was applied by direct push injection of molasses and dechlorinating bacteria. The performance was investigated by long‐term groundwater monitoring, and after 4 years of remediation, the development of degradation in the clay till matrix was investigated by high‐resolution subsampling of intact cores. The formation of degradation products, the presence of specific degraders Dehalococcoides spp. with the vinyl chloride (VC) reductase gene vcrA, and the isotope fractionation of trichloroethene, cis‐dichloroethene (cis‐DCE), and VC showed that degradation of chlorinated ethenes occurred in the clay till matrix as well as in sand lenses, sand stringers, and fractures. Bioactive sections of up to 1.8 m had developed in the clay till matrix, but sections, where degradation was restricted to narrow zones around sand lenses and stringers, were also observed. After 4 years of remediation, an average mass reduction of 24% was estimated. Comparison of the results with model simulation scenarios indicate that a mass reduction of 85% can be obtained within approximately 50 years without further increase in the narrow reaction zones if no donor limitations occur at the site. Long‐term monitoring of the concentration of chlorinated ethenes in the underlying chalk aquifer revealed that the aquifer was affected by the more mobile degradation products cis‐DCE and VC generated during the remediation by ERD.  相似文献   

13.
Floodplain stratigraphy is used as a new method for reconstructing ice jam flood histories of northern rivers. The method, based on reconstruction of the sedimentary record of vertically‐accreting floodplains, relies on stratigraphic logging and interpretation of floodplain sediments, which result from successive ice jam floods, and radiocarbon dating of inter‐flood organic material for chronology. In a case study along a reach of the Yukon River that straddles the Yukon–Alaska border, the method is used to develop a record of ice jam flooding for the last 2000 years. Detailed chronostratigraphic logs from three sites along the Yukon River indicates that the long‐term recurrence interval varies depending on location, but ranges from approximately once in 25 years to once in 38 years (or a probability of ca 3–4% in any given year). This is broadly similar to the 4·5% probability of recurrence calculated from archival and gauged data at Dawson City, Yukon Territory, for the period 1898–2006. Two of the three study locations, with sufficient chronology, suggest a decrease in flood frequency in the last several hundred years relative to the preceding period at each site, broadly corresponding to the Little Ice Age, suggesting climate exerts some control over long‐term ice jam flood frequency. This study demonstrates that the floodplain sedimentary record offers the potential to extend records of ice jam flooding in remote, ungauged northern rivers and provides a broader temporal context for assessing the frequency and variability of ice jam flooding. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

14.
Erosion rates surveyed using 230 erosion pins on 24 occasions over eight years (1994–2001) on forested stream banks, tributaries and forest ditches in the 0·89 km2 Nant Tanllwyth catchment, part of the Hafren Forest on Plynlimon, mid‐Wales, showed statistically significant increases of up to 40 mm a?1 in mean erosion rates during the two‐year period in which environmentally sensitive plot‐scale timber harvesting operations took place (1996–97). In the four years following timber harvesting mean erosion rates at all sites recovered to levels that were lower than before the harvesting operations began. This is attributed to increased light levels, following canopy removal, allowing vegetation to colonize exposed banks. There was a statistically significant relationship (p < 0·05) between mean erosion rate in 2000–01 (four years after harvesting) and percentage vegetation cover at erosion monitoring sites in the clearfelled (south tributaries) area though the same relationship did not hold for sites on the mainstream banks or for sites on the north (mature forest) ditch sites. The implications of natural vegetation colonization for management of such streams are discussed. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

15.
ZVI‐Clay is an emerging remediation approach that combines zero‐valent iron (ZVI)‐mediated degradation and in situ stabilization of chlorinated solvents. Through use of in situ soil mixing to deliver reagents, reagent‐contaminant contact issues associated with natural subsurface heterogeneity are overcome. This article describes implementation, treatment performance, and reaction kinetics during the first year after application of the ZVI‐Clay remediation approach at Marine Corps Base Camp Lejeune, North Carolina. Primary contaminants included trichloroethylene, 1,1,2,2‐tetrachloroethane, and related natural degradation products. For the field application, 22,900 m3 of soils were treated to an average depth of 7.6 m with 2% ZVI and 3% sodium bentonite (dry weight basis). Performance monitoring included analysis of soil and water samples. After 1 year, total concentrations of chlorinated volatile organic compounds (CVOCs) in soil samples were decreased by site‐wide average and median values of 97% and >99%, respectively. Total CVOC concentrations in groundwater were reduced by average and median values of 81% and >99%, respectively. In several of the soil and groundwater monitoring locations, reductions in total CVOC concentrations of greater than 99.9% were apparent. Further reduction in concentrations of chlorinated solvents is expected with time. Pre‐ and post‐mixing average hydraulic conductivity values were 1.7 × 10?5 and 5.2 × 10?8 m/s, respectively, indicating a reduction of about 2.5 orders of magnitude. By achieving simultaneous contaminant mass depletion and hydraulic conductivity reduction, contaminant flux reductions of several orders of magnitude are predicted.  相似文献   

16.
In de‐glaciated areas, para‐glaciation (i.e. the conditioning of landscapes by prior glaciation) has often been considered a major predisposing factor in landslide occurrence; its consequences have been particularly well identified at a fine scale (especially on bedrock jointing). Hitherto, the relative impacts of para‐glaciation on hillslope dynamics at a regional scale had nevertheless not been quantified statistically. We examine Skagafjörður area (northern Iceland) where landslides are widespread (at least 108 were mapped in an area of c. 3000 km2). We compare the role of para‐glaciation (debuttressing, influence of post‐glacial rebound) with that of classic factors (topography, lithology, etc.) in landslide occurrence and location, using a spatial analysis based on a chi‐square test. On the one hand, the results highlight that landslides are over‐represented in areas where post‐glacial rebound was at its maximum, with a stronger concentration of landslides in the northern part of the fjord. On the other hand, the distribution of landslides did not show any clear relationship with the pattern of glacial debuttressing. Tschuprow coefficient highlights that the influence of post‐glacial rebound on landslide location is higher than the combined influence of slope gradient, curvature or geological structure. This result is supported by our initial evidence for the timing of landslides in the area: most landslides occurred during the first half of the Holocene, and a period of hillslope instability was initiated when the post‐glacial uplift was at its maximum. Finally, the mechanisms that link post‐glacial rebound and landsliding as well as the geomorphic impacts of landslides, are discussed. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

17.
The flux of fluvial carbon from the terrestrial biosphere to the world's oceans is known to be an important component of the global carbon cycle, but within this pathway, the flux and return of carbon to the river network via sewage effluent has not been quantified. In this study, monitoring data from 2000 to 2016 for the dissolved organic carbon (DOC) concentration, biochemical oxygen demand, and chemical oxygen demand of the final effluent of sewage treatment works from across England were examined to assess the amount of DOC contributing to national‐scale fluvial fluxes of carbon. The study shows that the median concentration of DOC in final effluent was 9.4 compared with 4.8 mg C/L for all surface waters for the United Kingdom over the study period and that the DOC in final effluent significantly declined over the study period from 11.0 to 6.4 mg C/L. Rivers receiving sewage effluent showed a significant, on average 19%, increase in DOC concentration downstream of sewage discharges. At the scale of the United Kingdom, the flux of DOC in final effluent was 31 ktonnes C/year with a per capita export of 0.55 kg C/year and compared with an average annual flux of DOC from the United Kingdom of 859 ktonnes C/year, that is, only 3.6% of national‐scale flux. The lability of this DOC was limited, with only 7.4% loss of final effluent DOC concentration over in‐stream residence times of up to 5 days. The direct decline in DOC concentration from sewage treatment works was not large enough on its own to explain the declines observed in DOC concentration in U.K. rivers at their tidal limit.  相似文献   

18.
We assess the relative merits of application of the most commonly used field methods (soil‐water balance (SWB), chloride mass balance (CMB) and soil moisture monitoring (NP)) to determine recharge rates in micro‐irrigated and non‐irrigated areas of a semi‐arid coastal orchard located in a relatively complex geological environment. Application of the CMB method to estimate recharge rates was difficult owing to the unusually high, variable soil‐water chloride concentrations. In addition, contrary to that expected, the chloride concentration distribution at depths below the root zone in the non‐irrigated soil profiles was greater than that in the irrigated profiles. The CMB method severely underestimated recharge rates in the non‐irrigated areas when compared with the other methods, although the CMB method estimated recharge rates for the irrigated areas, that were similar to those from the other methods, ranging from 42 to 141 mm/year. The SWB method, constructed for a 15‐year period, provided insight into the recharge process being driven by winter rains rather than summer irrigation and indicated an average rate of 75 mm/year and 164 mm/year for the 1984 – 98 and 1996 – 98 periods, respectively. Assuming similar soil‐water holding capacity, these recharge rates applied to both irrigated and non‐irrigated areas. Use of the long period of record was important because it encompassed both drought and heavy rainfall years. Successful application of the SWB method, however, required considerable additional field measurements of orchard ETc, soil‐water holding capacity and estimation of rainfall interception – runoff losses. Continuous soil moisture monitoring (NP) was necessary to identify both daily and seasonal seepage processes to corroborate the other recharge estimates. Measured recharge rates during the 1996 – 1998 period in both the orchards and non‐irrigated site averaged 180 mm/year. The pattern of soil profile drying during the summer irrigation season, followed by progressive wetting during the winter rainy season was observed in both irrigated and non‐irrigated soil profiles, confirming that groundwater recharge was rainfall driven and that micro‐irrigation did not ‘predispose’ the soil profile to excess rainfall recharge. The ability to make this recharge assessment, however, depended on making multiple field measurements associated with all three methods, suggesting that any one should not be used alone. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

19.
The assessment of surface water resources (SWRs) in the semi‐arid Yongding River Basin is vital as the basin has been in a continuous state of serious water shortage over the last 20 years. In this study, the first version of the geomorphology‐based hydrological model (GBHM) has been applied to the basin over a long period of time (1956–2000) as part of an SWR assessment. This was done by simulating the natural hydrological processes in the basin. The model was first evaluated at 18 stream gauges during the period from 1990 to 1992 to evaluate both the daily streamflows and the annual SWRs using the land use data for 1990. The model was further validated in 2000 with the annual SWRs at seven major stream gauges. Second, the verified model was used in a 45‐year simulation to estimate the annual SWRs for the basin from 1956 to 2000 using the 1990 land use data. An empirical correlation between the annual precipitation and the annual SWRs was developed for the basin. Spatial distribution of the long‐term mean runoff coefficients for all 177 sub‐basins was also achieved. Third, an additional 10‐year (1991–2000) simulation was performed with the 2000 land use data to investigate the impact of land use changes from 1990 to 2000 on the long‐term annual SWRs. The results suggest that the 10‐year land use changes have led to a decrease of 8·3 × 107 m3 (7·9% of total) for the 10‐year mean annual SWRs in the simulation. To our knowledge, this work is the first attempt to assess the long‐term SWRs and the impact of land use change in the semi‐arid Yongding River Basin using a semi‐distributed hillslope hydrological model. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

20.
We compare results of a new model for predicting the short term inter annual changes in chlorophyll-a (chl-a) in lakes after reductions in total phosphorus (TP) to predictions made by least squares regression models. In the new method, slopes of chl-a/TP graphs (both axes in mg · m–3) are depicted in frequency diagrams and used to extract information on the expected, short term chl-a/TP response. The short term response for nine shallow (< 10 m deep) and nutrient rich lakes to changes in TP was found to be: Chl-a = 0.49 · TP + 17.3, and for nine deep, P-limited lakes: Chl-a = 0.08 · TP + 3.5. If the TP-reduction is known to be greater than 10 mg · m–3, the expected slope increases to 0.58 for shallow lakes and to 0.26 for deep lakes. The slope, 0.58, is 8% lower than the slope for the long term response calculated by regression for the shallow lakes. For deep lakes the slope, 0.26, is 2 to 3 times higher than that calculated by regression, indicating that reductions in TP for deep lakes give greater effects than least squares regression equations suggest. We have also calculated the reduction in TP which will give about 80% probability that a reduction in chl-a will be observed next year. For shallow, P-limited lakes this reduction is about 30 mg · m–3 (5% of average initial in-lake TP concentration), and for deep lakes about 14 mg · m–3 (35% of average initial in-lake TP concentration).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号