首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
At a large industrial facility, methyl tert‐butyl ether (MTBE) was released to the subsurface and dispersed into the light, non‐aqueous phase liquids (LNAPL), in the first aquifer, with the LNAPL serving as a continuous source of MTBE in groundwater. Compound‐specific isotope analysis was conducted on both MTBE and tert‐butyl alcohol (TBA) in groundwater samples collected in 2008, 2011, and 2013 from wells located along and off the center line of the MTBE plume. The study demonstrated the onset and progress of biodegradation of MTBE between 2008 and 2013. The TBA observed in 2008 appears to be derived only in part from MTBE transformation while a significant portion of TBA might be contributed directly from LNAPL sources. In 2011 to 2013, the dominant source of TBA in the mid‐gradient plume was MTBE transformation. A contribution of an offsite LNAPL source, in particular to the down‐gradient area of the plume, is possible but could not be unequivocally confirmed. The time series provided direct evidence for MTBE biodegradation, but also a valuable insight on the sources of TBA.  相似文献   

2.
The potential for trichloroethene (TCE) biodegradation in a fractured dolomite aquifer at a former chemical disposal site in Smithville, Ontario, Canada, is assessed using chemical analysis and TCE and cis‐DCE compound‐specific isotope analysis of carbon and chlorine collected over a 16‐month period. Groundwater redox conditions change from suboxic to much more reducing environments within and around the plume, indicating that oxidation of organic contaminants and degradation products is occurring at the study site. TCE and cis‐DCE were observed in 13 of 14 wells sampled. VC, ethene, and/or ethane were also observed in ten wells, indicating that partial/full dechlorination has occurred. Chlorine isotopic values (δ37Cl) range between 1.39 to 4.69‰ SMOC for TCE, and 3.57 to 13.86‰ SMOC for cis‐DCE. Carbon isotopic values range between ?28.9 and ?20.7‰ VPDB for TCE, and ?26.5 and ?11.8‰ VPDB for cis‐DCE. In most wells, isotopic values remained steady over the 15‐month study. Isotopic enrichment from TCE to cis‐DCE varied between 0 and 13‰ for carbon and 1 and 4‰ for chlorine. Calculated chlorine‐carbon isotopic enrichment ratios (?Cl/?C) were 0.18 for TCE and 0.69 for cis‐DCE. Combined, isotopic and chemical data indicate very little dechlorination is occurring near the source zone, but suggest bacterially mediated degradation is occurring closer to the edges of the plume.  相似文献   

3.
Generic indoor air:subslab soil gas attenuation factors (SSAFs) are important for rapid screening of potential vapor intrusion risks in buildings that overlie soil and groundwater contaminated with volatile chemicals. Insufficiently conservative SSAFs can allow high‐risk sites to be prematurely excluded from further investigation. Excessively conservative SSAFs can lead to costly, time‐consuming, and often inconclusive actions at an inordinate number of low‐risk sites. This paper reviews two of the most commonly used approaches to develop SSAFs: (1) comparison of paired, indoor air and subslab soil gas data in empirical databases and (2) comparison of estimated subslab vapor entry rates and indoor air exchange rates (IAERs). Potential error associated with databases includes interference from indoor and outdoor sources, reliance on data from basements, and seasonal variability. Heterogeneity in subsurface vapor plumes combined with uncertainty regarding vapor entry points calls into question the representativeness of limited subslab data and diminishes the technical defensibility of SSAFs extracted from databases. The use of reasonably conservative vapor entry rates and IAERs offers a more technically defensible approach for the development of generic SSAF values for screening. Consideration of seasonal variability in building leakage rates, air exchange rates, and interpolated vapor entry rates allows for the development of generic SSAFs at both local and regional scales. Limitations include applicability of the default IAERs and vapor entry rates to site‐specific vapor intrusion investigations and uncertainty regarding applicability of generic SSAFs to assess potential short‐term (e.g., intraday) variability of impacts to indoor air.  相似文献   

4.
Soil vapor extraction (SVE) is effective for removing volatile organic compound (VOC) mass from the vadose zone and reducing the potential for vapor intrusion (VI) into overlying and surrounding buildings. However, the relationship between residual mass in the subsurface and VI is complex. Through a series of alternating extraction (SVE on) and rebound (SVE off) periods, this field study explored the relationship and aspects of SVE applicable to VI mitigation in a commercial/light-industrial setting. The primary objective was to determine if SVE could provide VI mitigation over a wide area encompassing multiple buildings, city streets, and subsurface utilities and eliminate the need for individual subslab depressurization systems. We determined that SVE effectively mitigates offsite VI by intercepting or diluting contaminant vapors that would otherwise enter buildings through foundation slabs. Data indicate a measurable (5 Pa) influence of SVE on subslab/indoor pressure differential may occur but is not essential for effective VI mitigation. Indoor air quality improvements were evident in buildings 100 to 200 feet away from SVE including those without a measurable reversal of differential pressure across the slab or substantial reductions in subslab VOC concentration. These cases also demonstrated mitigation effects across a four-lane avenue with subsurface utilities. These findings suggest that SVE affects distant VI entry points with little observable impact on differential pressures and without relying on subslab VOC concentration reductions.  相似文献   

5.
The United States Environmental Protection Agency (USEPA) is finalizing its vapor intrusion guidelines. One of the important issues related to vapor intrusion is background concentrations of volatile organic compounds (VOCs) in indoor air, typically attributed to consumer products and building materials. Background concentrations can exist even in the absence of vapor intrusion and are an important consideration when conducting site assessments. In addition, the development of accurate conceptual models that depict pathways for vapor entry into buildings is important during vapor intrusion site assessments. Sewer gas, either as a contributor to background concentrations or as part of the site conceptual model, is not routinely evaluated during vapor intrusion site assessments. The research described herein identifies an instance where vapors emanating directly from a sanitary sewer pipe within a residence were determined to be a source of tetrachloroethylene (PCE) detected in indoor air. Concentrations of PCE in the bathroom range from 2.1 to 190 µg/m3 and exceed typical indoor air concentrations by orders of magnitude resulting in human health risk classified as an “Imminent Hazard” condition. The results suggest that infiltration of sewer gas resulted in PCE concentrations in indoor air that were nearly two orders of magnitude higher as compared to when infiltration of sewer gas was not known to be occurring. This previously understudied pathway whereby sewers serve as sources of PCE (and potentially other VOC) vapors is highlighted. Implications for vapor intrusion investigations are also discussed.  相似文献   

6.
In this study, we present a petroleum vapor intrusion (PVI) tool implemented in Microsoft® Excel® using Visual Basic for Applications and integrated within a graphical interface. The latter helps users easily visualize two‐dimensional soil gas concentration profiles and indoor concentrations as a function of site‐specific conditions such as source strength and depth, biodegradation reaction rate constant, soil characteristics and building features. This tool is based on a two‐dimensional explicit analytical model that combines steady‐state diffusion‐dominated vapor transport in a homogeneous soil with a piecewise first‐order aerobic biodegradation model, in which rate is limited by oxygen availability. As recommended in the recently released United States Environmental Protection Agency's final PVI guidance, a sensitivity analysis and a simplified Monte Carlo uncertainty analysis are also included in the spreadsheet.  相似文献   

7.
The occurrence of aerobic biodegradation in the vadose zone between a subsurface source and a building foundation can all-but eliminate the risks from methane and petroleum vapor intrusion (PVI). Understanding oxygen availability and the factors that affect it (e.g., building sizes and their distribution) are therefore critical. Uncovered ground surfaces allow oxygen access to the subsurface to actively biodegrade hydrocarbons (inclusive of methane). Buildings can reduce the net flux of oxygen into the subsurface and so reduce degradation rates. Here we determine when PVI and methane risk is negligible and/or extinguished; defined by when oxygen is present across the entire sub-slab region of existing or planned slab-on-ground buildings. We consider all building slab sizes, all depths to vapor sources and the effect of spacings between buildings on the availability of oxygen in the subsurface. The latter becomes critical where buildings are in close proximity or when increased building density is planned. Conservative assumptions enable simple, rapid and confident screening should sites and building designs comply to model assumptions. We do not model the aboveground “building” processes (e.g., air exchange), and assume the slab-on-ground seals the ground surface so that biodegradation of hydrocarbons is minimized under the built structure (i.e., the assessment remains conservative). Two graphs represent the entirety of the outcomes that allow simple screening of hydrocarbon vapors based only on the depth to the source of vapors below ground, the concentration of vapors within the source, the width of the slab-on-ground building, and the gap between buildings; all independent of soil type. Rectangular, square, and circular buildings are considered. Comparison with field sites and example applications are provided, along with a simple 8-step screening guide set in the context of existing guidance on PVI assessment.  相似文献   

8.
9.
An investigation at a major industrial facility in the Midwestern United States provides insights regarding the amount of attenuation of sub-surface vapors occurring at industrial buildings. The buildings at the facility were ranked in terms of vapor intrusion potential and testing began in October 2016 and is ongoing. Results have been evaluated for data collected at 718 unique locations across 77 buildings. A total of 1646 sample pairs (sub-slab and indoor air) have been collected and analyzed for 65 analytes, resulting in a total of 106,990 data pairs. As many as 49 sample pairs were collected within a given building during a single sampling event and up to 11 rounds of seasonal testing have been performed at selected buildings. Seasonal variability in sub-slab soil-gas concentrations was found to be negligible. Data analysis was performed to look for data trends across the entire data set and identify inter-building comparisons. This data evaluation focused on individual volatile organic compounds (e.g., tetrachloroethylene, trichloroethylene) present in the sub-slab soil gas at concentrations exceeding 1000 μg/m3. A total of 157 building-specific attenuation coefficients (α) were evaluated. This evaluation demonstrated that large industrial buildings have a much greater attenuation than that assumed for single-family residential buildings. All attenuation coefficient values were lower than 0.03, which is the standard regulatory default for non-residential buildings. The median value was 9.3E-05 and the 95% upper confidence limit was 2.7E-04. There is some evidence of lower attenuation under wintertime conditions. The data suggests that the default attenuation factor of 0.03 over-predicts indoor air impacts at this industrial facility by at least two orders of magnitude.  相似文献   

10.
Aerobic biodegradation can contribute significantly to the attenuation of petroleum hydrocarbons vapors in the unsaturated zone; however, most regulatory guidance for assessing potential human health risks via vapor intrusion to indoor air either neglect biodegradation in developing generic screening levels or allow for only one order of magnitude additional attenuation for aerobically degradable compounds, which may be overly conservative in some cases. This paper describes results from three-dimensional numerical model simulations of vapor intrusion for petroleum hydrocarbons to assess the influence of aerobic biodegradation on the attenuation factor for a variety of source concentrations and depths for residential buildings with basements and slab-on-grade construction. The simulations conducted in this study provide a framework for understanding the degree to which bioattenuation will occur under a variety of scenarios and provide insight into site conditions that will result in significant biodegradation. This improved understanding may be used to improve the conceptual model of contaminant transport, guide field data collection and interpretation, and estimate semi-site-specific attenuation factors for combinations of source concentrations, source depth, oxygen distribution, and building characteristics where site conditions reasonably match the scenarios simulated herein.  相似文献   

11.
This study presents a multiphase flow and multispecies reactive transport model for the simultaneous simulation of NAPL and groundwater flow, dissolution, and reactive transport with isotope fractionation, which can be used for better interpretation of NAPL-involved Compound Specific Isotope Analysis in 3D heterogeneous hydrogeologic systems. The model was verified for NAPL-aqueous phase equilibrium partitioning, aqueous phase multi-chain and multi-component reactive transport, and aqueous phase multi-component transport with isotope fractionation. Several illustrative examples are presented to investigate the effect of DNAPL spill rates, degradation rate constants, and enrichment factors on the temporal and spatial distribution of the isotope signatures of chlorinated aliphatic hydrocarbon groundwater plumes. The results clearly indicate that isotope signatures can be significantly different when considering multiphase flow within the source zone. A series of simulations indicate that degradation and isotope enrichment compete with dissolution to determine the isotope signatures in the source zone: isotope ratios remain the same as those of the source if dissolution dominates the reaction, while heavy isotopes are enriched in reactants along groundwater plume flow paths when degradation becomes dominant. It is also shown that NAPL composition can change from that of the injected source due to the partitioning of components between the aqueous and NAPL phases even when degradation is not allowed in NAPL phase. The three-dimensional simulation is presented to mechanistically illustrate the complexities in determining and interpreting the isotopic signatures with evolving DNAPL source architecture.  相似文献   

12.
Several regulatory agencies recommend screening petroleum vapor intrusion (PVI) sites based on vertical screening distance between a petroleum hydrocarbon source in soil or groundwater and a building foundation. U.S. Environmental Protection Agency (U.S. EPA) indicate the risk of PVI is minimal at buildings that are separated by more than 6 feet (1.8 m) from a dissolved-phase source and 15 feet (4.6 m) from a light nonaqueous phase liquid (LNAPL) source. This vertical screening distance method is not, however, recommended at sites with leaded gasoline sources containing ethylene dibromide (EDB) because of a lack of field data to document EDB attenuation in the vadose zone. To help address this gap, depth-discrete soil-gas samples were collected at a leaded gasoline release site in Sobieski, Minnesota (USA). The maximum concentration of EDB in groundwater (175 μg/L) at the site was high relative to those observed at other leaded gasoline release sites. Soil gas was analyzed for EDB using a modification of U.S. EPA Method TO-14A that achieved analytical detection limits below the U.S. EPA Vapor Intrusion Screening Level (VISL) for EDB based on a 10−6 cancer risk (<0.16 μg/m3). Concentrations of EDB in soil gas above LNAPL reached as high as 960 μg/m3 and decreased below the VISL within a source-separation distance of 7 feet. This result coupled with BioVapor model predictions of EDB concentrations indicate that vertical screening distances recommended by regulatory agencies at PVI sites are generally applicable for EDB over the range of anticipated source concentrations and soil types at most sites.  相似文献   

13.
This paper presents model simulation results of vapor intrusion into structures built atop sites contaminated with volatile or semivolatile chemicals of concern. A three-dimensional finite element model was used to investigate the importance of factors that could influence vapor intrusion when the site is characterized by nonhomogeneous soils. Model simulations were performed to examine how soil layers of differing properties alter soil-gas concentration profiles and vapor intrusion rates into structures. The results illustrate difference in soil-gas concentration profiles and vapor intrusion rates between homogeneous and layered soils. The findings support the need for site conceptual models to adequately represent a site's geology when conducting site characterizations, interpreting field data, and assessing the risk of vapor intrusion at a given site. For instance, in layered geologies, a lower permeability and diffusivity soil layer between the source and building often limits vapor intrusion rates, even if a higher permeability layer near the foundation permits increased soil-gas flow rates into the building. In addition, the presence of water-saturated clay layers can considerably influence soil-gas concentration profiles. Therefore, interpreting field data without accounting for clay layers in the site conceptual model could result in inaccurate risk calculations. Important considerations for developing more accurate conceptual site models are discussed in light of the findings.  相似文献   

14.
This article describes a simplified method to calculate a building-specific subslab to indoor air attenuation factor using data collected during pressure-field extension testing similar to industry standards for radon mitigation. It also describes a simplified method to calculate the radius of influence for a conventional suction point using a mass flux-balance model. The analysis is based on three simple measurements: (1) the extraction flow rate, (2) cross-slab applied vacuum at a radial distance of 3 feet, and (3) cross-slab applied vacuum at a radial distance of 10 feet. The intent is to provide a practitioner with a rapid and useful screening-level assessment of whether the benefits of reduced mitigation system costs warrant an investment in a more detailed mathematical analysis of the flow and vacuum data. In addition, this may also help a practitioner to make real-time decisions regarding placement of communication test points during pressure-field extension testing.  相似文献   

15.
A value of 0.001 is recommended by the United States Environmental Protection Agency (USEPA) for its groundwater‐to‐indoor air Generic Attenuation Factor (GAFG), used in assessing potential vapor intrusion (VI) impacts to indoor air, given measured groundwater concentrations of volatile chemicals of concern (e.g., chlorinated solvents). The GAFG can, in turn, be used for developing groundwater screening levels for VI given target indoor air quality screening levels. In this study, we examine the validity and applicability of the GAFG both for predicting indoor air impacts and for determining groundwater screening levels. This is done using both analysis of published data and screening model calculations. Among the 774 total paired groundwater‐indoor air measurements in the USEPA's VI database (which were used by that agency to generate the GAFG) we found that there are 427 pairs for which a single groundwater measurement or interpolated value was applied to multiple buildings. In one case, up to 73 buildings were associated with a single interpolated groundwater value and in another case up to 15 buildings were associated with a single groundwater measurement (i.e., that the indoor air contaminant concentrations in all of the associated buildings were influenced by the concentration determined at a single point). In more than 70% of the cases (390 of 536 paired measurements in which horizontal building‐monitoring well distance was recorded) the monitoring wells were located more than 30 m (and one up to over 200 m) from the associated buildings. In a few cases, the measurements in the database even improbably implied that soil gas contaminant concentrations increased, rather than decreased, in an upward direction from a contaminant source to a foundation slab. Such observations indicate problematic source characterization within the data set used to generate the GAFG, and some indicate the possibility of a significant influence of a preferential contaminant pathway. While the inherent value of the USEPA database itself is not being questioned here, the above facts raise the very real possibility that the recommended groundwater attenuation factors are being influenced by variables or conditions that have not thus far been fully accounted for. In addition, the predicted groundwater attenuation factors often fall far beyond the upper limits of predictions from mathematical models of VI, ranging from screening models to detailed computational fluid dynamic models. All these models are based on the same fundamental conceptual site model, involving a vadose zone vapor transport pathway starting at an underlying uniform groundwater source and leading to the foundation of a building of concern. According to the analysis presented here, we believe that for scenarios for which such a “traditional” VI pathway is appropriate, 10?4 is a more appropriately conservative generic groundwater to indoor air attenuation factor than is the EPA‐recommended 10?3. This is based both on the statistical analysis of USEPA's VI database, as well as the traditional mathematical models of VI. This result has been validated by comparison with results from some well‐documented field studies.  相似文献   

16.
A new method for the extraction of chlorinated solvents (CSs) from porewater with dimethylacetamide (DMA) used as a solvent and the determination of δ13C by gas chromatography-isotope ratio mass spectrometry (GC-IRMS) with solid-phase microextraction (SPME) are presented. This method was used for the determination of δ13C of chloroethenes and chloromethanes. The extraction of the CSs from porewater with DMA led to a minimal loss of mass of solvent and chlorinated compounds. The accuracy of the method was verified with the analysis of the pure injected compounds using elemental analyzer—isotope ratio mass spectrometry (EA-IRMS). It has been effectively applied in a study area in saturated soil samples of a pollutant source zone of perchloroethylene (PCE) and trichloroethylene (TCE). The limit of quantification of the new method was 0.034 μg/g for PCE and TCE for 10–20 g of soil sample. This new method allows for compound-specific isotope analysis of CSs in porewater, which can be beneficial in sites where the identification of contamination sources and the behavior of the contaminants are not clear.  相似文献   

17.
Passive diffusive-adsorptive samplers are being considered for vapor intrusion (VI) pathway assessment, particularly where multi-week time-weighted average concentrations are desired. Recent studies have shown that passive samplers can produce accurate results under well-controlled steady concentration conditions, and field performance was also demonstrated at several sites. The objective of this study was to examine passive sampler performance in settings with time-varying indoor air concentrations, through a comparison of passive sampler results to concentrations determined by 24-h active sorbent tube sampling in a series of multi-week deployments. Sampling was performed in a well-instrumented residential building as well as industrial buildings, over periods of time ranging from 1 to 7 weeks. Strong linear correlations were noted between passive and active sampling concentration results for some passive samplers, with passive sampling results being similar to or lower than measured active sampling results by about 50% for those samplers in the residential study and about 25% higher in the industrial building study. Other samplers produced poor agreement. The conclusion from this study is that some passive samplers have great potential for use in multi-week indoor air quality monitoring. It was further determined that there is need for accepted procedures to validate and calibrate passive samplers for use in the field.  相似文献   

18.
Soil gas sampling for 1,4‐dioxane at elevated soil temperatures, such as those experienced during in‐situ thermal treatment, has the potential to yield low results due to condensation of water vapor in the ambient temperature sampling vessel and the partitioning of 1,4‐dioxane into that condensate. A simple vapor/condensate sampling apparatus was developed to collect both condensate and vapor samples to allow for determination of a reconstituted effective soil gas concentration for 1,4‐dioxane. Results using the vapor/condensate sampling apparatus during a heated air injection SVE field demonstration are presented, along with those of a comparable laboratory system. Substantial 1,4‐dioxane mass was found in the condensate in both the lab and field (as high as ~50% in field). As soil temperatures increased, less 1,4‐dioxane mass was detected in field condensate samples than expected based on laboratory experiments. Extraction well effluent sampling at the wellhead by direct vapor canister sampling provided erratic results (several biased low by a factor of 5 or more) compared to those of the vapor/condensate apparatus. Direct vapor canister sampling of extraction well effluent after the air‐water separator, however, provided results reasonably comparable (within 35%) to those using the vapor/condensate apparatus at the wellhead. Soil gas sampling at elevated temperatures using the vapor/condensate apparatus alleviates potential low sampling bias due to condensation.  相似文献   

19.
In this paper the influence of base isolation on the behaviour of a work of art has been analysed. To make things more realistic, the work of art has been modelled with a non‐symmetrical rigid body, sitting on a base that is connected to a visco‐elastic device, which represents the passive control system. To prevent the breaking of the isolation device, security stops have been introduced to limit the displacement of the oscillating base to a maximum safety value. All analyses have been carried out comparing the behaviour of the non‐isolated and the isolated non‐symmetric rigid body subject to impulsive and seismic excitations. The analysis is particularly focused on the effects of the eccentricity of the rigid body and on the presence of the security stops. Generally, base isolation improves the behaviour of the system while the presence of an eccentricity makes the performance of the system worse with respect to the symmetric rigid body. Moreover the security stops, although they preserve the isolator devices, cause a worsening in the performance of the systems. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

20.
Groundwater contamination associated with two former industrial facilities in Denver, Colorado, has led to concerns about vapor intrusion into residences adjacent to the facilities. 1,1,1-Trichloroethane (1,1,1-TCA), 1,1-dichloroethene (1,1-DCE), and trichloroethene (TCE) are the main contaminants of concern in groundwater, with trace levels of 1,2-dichloroethane (1,2-DCA) present at one of the sites. Indoor air monitoring programs have been ongoing at these two sites since 1998 and recent results have suggested that background, indoor source, 1,2-DCA has been increasing in the frequency of detection, and median and maximum concentration over the past several years. A lines of evidence evaluation was undertaken for both sites in order to document the predominance of indoor sources of 1,2-DCA. Evidence utilized included spatial evaluation of 1,2-DCA in indoor air; comparison of 1,2-DCA concentrations in mitigated and unmitigated homes; a phone survey to evaluate the potential for smoking to contribute to indoor air 1,2-DCA levels; evaluation of mitigation system effluent data; and an evaluation of volatile organic compound (VOC) ratios in groundwater and indoor air. The results of this evaluation indicated that smoking had no demonstrable influence on measured indoor air concentrations. In addition, it appears that consumer products have had a markedly increased influence on indoor air concentrations since 2005. Data from one of the industrial facilities at one of the sites also indicated that polyvinyl chloride (PVC) and vinyl composite floor adhesive used in a building remodel in 2005 apparently generated elevated levels of indoor 1,2-DCA and vinyl chloride, which have been sustained up to the present time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号