首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new operational paradigm is presented for small‐scale aquifer storage and recovery systems (ASR) in saline aquifers. Regular ASR is often not feasible for small‐scale storage in saline aquifers because fresh water floats to the top of the aquifer where it is unrecoverable. In the new paradigm, fresh water storage is combined with salt water extraction from below the fresh water cone. The salt water extraction counteracts the buoyancy due to the density difference between fresh water and salt water, thus preventing the fresh water from floating up. The proposed approach is applied to assess the feasibility of ASR for the seasonal storage of fresh water produced by desalination plants in tourist resorts along the Egyptian Red Sea coast. In these situations, the continuous extraction of salt water can be used for desalination purposes. An analytical Dupuit solution is presented for the steady flow of salt water toward a well with a volume of fresh water floating on top of the cone of depression. The required salt water discharge for the storage of a given volume of fresh water can be computed with the analytical solution. Numerical modeling is applied to determine how the stored fresh water can be recovered. Three recovery approaches are examined. Fresh water recovery rates on the order of 70% are achievable when salt water is extracted in high volumes, subsurface impermeable barriers are constructed at a distance from the well, or several fresh water recovery drains are used. The effect of ambient flow and interruptions of salt water pumping on the recovery efficiency are reported.  相似文献   

2.
A new tracer experiment (referred to as MADE‐5) was conducted at the well‐known Macrodispersion Experiment (MADE) site to investigate the influence of small‐scale mass‐transfer and dispersion processes on well‐to‐well transport. The test was performed under dipole forced‐gradient flow conditions and concentrations were monitored in an extraction well and in two multilevel sampler (MLS) wells located at 6, 1.5, and 3.75 m from the source, respectively. The shape of the breakthrough curve (BTC) measured at the extraction well is strongly asymmetric showing a rapidly arriving peak and an extensive late‐time tail. The BTCs measured at seven different depths in the two MLSs are radically different from one another in terms of shape, arrival times, and magnitude of the concentration peaks. All of these characteristics indicate the presence of a complex network of preferential flow pathways controlling solute transport at the test site. Field‐experimental data were also used to evaluate two transport models: a stochastic advection‐dispersion model (ADM) based on conditional multivariate Gaussian realizations of the hydraulic conductivity field and a dual‐domain single‐rate (DDSR) mass‐transfer model based on a deterministic reconstruction of the aquifer heterogeneity. Unlike the stochastic ADM realizations, the DDSR accurately predicted the magnitude of the concentration peak and its arrival time (within a 1.5% error). For the multilevel BTCs between the injection and extraction wells, neither model reproduced the observed values, indicating that a high‐resolution characterization of the aquifer heterogeneity at the subdecimeter scale would be needed to fully capture 3D transport details.  相似文献   

3.
4.
Past studies of entrapped air dissolution have focused on one‐dimensional laboratory columns. Here the multidimensional nature of entrapped air dissolution was investigated using an indoor tank (180 × 240 × 600 cm3) simulating an unconfined sand aquifer with horizontal flow. Time domain reflectometry (TDR) probes directly measured entrapped air contents, while dissolved gas conditions were monitored with total dissolved gas pressure (PTDG) probes. Dissolution occurred as a diffuse wedge‐shaped front from the inlet downgradient, with preferential dissolution at depth. This pattern was mainly attributed to increased gas solubility, as shown by PTDG measurements. However, compression of entrapped air at greater depths, captured by TDR and leading to lower quasi‐saturated hydraulic conductivities and thus greater velocities, also played a small role. Linear propagation of the dissolution front downgradient was observed at each depth, with both TDR and PTDG, with increasing rates with depth (e.g, 4.1 to 5.7× slower at 15 cm vs. 165 cm depth). PTDG values revealed equilibrium with the entrapped gas initially, being higher at greater depth and fluctuating with the barometric pressure, before declining concurrently with entrapped air contents to the lower PTDG of the source water. The observed dissolution pattern has long‐term implications for a wide variety of groundwater management issues, from recharge to contaminant transport and remediation strategies, due to the persistence of entrapped air near the water table (potential timescale of years). This study also demonstrated the utility of PTDG probes for simple in situ measurements to detect entrapped air and monitor its dissolution.  相似文献   

5.
Knowledge of river gain from or loss to a hydraulically connected water table aquifer is crucial in issues of water rights and also when attempting to optimize conjunctive use of surface and ground waters. Typically in groundwater models this exchange flow is related to a difference in head between the river and some point in the aquifer, through a “coefficient.” This coefficient has been defined differently as well as the location for the head in the aquifer. This paper proposes a new coefficient, analytically derived, and a specific location for the point where the aquifer head is used in the difference. The dimensionless part of the coefficient is referred to as the SAFE (stream‐aquifer flow exchange) dimensionless conductance. The paper investigates the factors that influence the value of this new conductance. Among these factors are (1) the wetted perimeter of the cross‐section, (2) the degree of penetration of the cross‐section, and (3) the shape of the cross‐section. The study shows that these factors just listed are indeed ordered in their respective level of importance. In addition the study verifies that the analytical correct value of the coefficient is matched by finite difference simulation only if the grid system is sufficiently fine. Thus the use of the analytical value of the coefficient is an accurate and efficient alternative to ad hoc estimates for the coefficient typically used in finite difference and finite element methods.  相似文献   

6.
The effluents of wastewater treatment plants in small sized communities of less than 2000 population equivalent (PE), which are discharged into sensitive receiving water environments, must receive “appropriate treatment” according to the EU Urban Wastewater Treatment Directive. Appropriate treatment depends on the quality objectives of the receiving waters as well as the relevant provisions of the member states. In this study, wastewater treatment options, such as vegetated land treatment (VLT), constructed wetlands (CW), and activated sludge treatment (AST), by which effluents are discharged to sensitive and less sensitive areas are evaluated by the life cycle assessment (LCA) approach. For this purpose, data related to energy usage, land requirement, raw material consumption, and released emissions from the life phases were collected with an inventory study and the environmental impacts were assessed by using SimaPro 7.1 LCA software. The results obtained from the assessments were compared with each other, which indicated that for small‐scale communities VLT and CW are the most environmentally friendly wastewater treatment option.  相似文献   

7.
8.
Large‐scale inversion methods have been recently developed and permitted now to considerably reduce the computation time and memory needed for inversions of models with a large amount of parameters and data. In this work, we have applied a deterministic geostatistical inversion algorithm to a hydraulic tomography investigation conducted in an experimental field site situated within an alluvial aquifer in Southern France. This application aims to achieve a 2‐D large‐scale modeling of the spatial transmissivity distribution of the site. The inversion algorithm uses a quasi‐Newton iterative process based on a Bayesian approach. We compared the results obtained by using three different methodologies for sensitivity analysis: an adjoint‐state method, a finite‐difference method, and a principal component geostatistical approach (PCGA). The PCGA is a large‐scale adapted method which was developed for inversions with a large number of parameters by using an approximation of the covariance matrix, and by avoiding the calculation of the full Jacobian sensitivity matrix. We reconstructed high‐resolution transmissivity fields (composed of up to 25,600 cells) which generated good correlations between the measured and computed hydraulic heads. In particular, we show that, by combining the PCGA inversion method and the hydraulic tomography method, we are able to substantially reduce the computation time of the inversions, while still producing high‐quality inversion results as those obtained from the other sensitivity analysis methodologies.  相似文献   

9.
Changes in effective stress due to water pressure variations modify the intrinsic hydrodynamic properties of aquifers and aquitards. Overexploited groundwater systems, such as basins with heavy pumping, are subject to nonrecoverable modifications. This results in loss of permeability, porosity, and specific storage due to system consolidation. This paper presents (1) the analytical development of model functions relating effective stress to hydrodynamic parameters for aquifers and aquitards constituted of unconsolidated granular sediments, and (2) a modeling approach for the analysis of aquifer systems affected by effective stress variations, taking into account the aforementioned dependency. The stress‐dependent functions were fit to laboratory data, and used in the suggested modeling approach. Based on only few unknowns, this approach is computationally simple, efficiently captures the hydromechanical processes that are active in regional aquifer systems under stress, and readily provides an estimate of their consolidation.  相似文献   

10.
11.
12.
13.
We investigated a small‐scale laboratory model of a talus slope evolution. Five different size classes of basaltic rock were selected and marked with different colours. Homogenized mixtures of grains of different sizes were dropped from a fixed height onto a tilted experimental board covered with a loose granular layer. This was conducted in a series of regular sequences, and the resulting distribution on the board was studied after each sequence. At the beginning of the experiment, the grains developed a longitudinal gradation similar to natural talus slopes, where small grains settle at the top while the large ones roll down to the distal part. However, after a transient period dominated by single‐particle dynamics on the inert granular medium, the evolution proved to be more variable than expected. Due to the continuous shower of falling grains, the shear stress at the bottom of the upper granular layer increased. This resulted initially in a slow creep down slope that finally collapsed in large avalanches homogenizing the material. The slides occurred at the boundary between a weaker layer created by migration of small grains through the interstices, and marked by a vertical transition between small and large grains. We compare the experimental findings with observations from natural talus slopes, and suggest that similar experiments may be helpful in understanding the evolution of taluses. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

14.
This study focuses on assessing groundwater potability in a highly complex and heterogeneous fractured bedrock aquifer having variable overburden cover. Eight monitoring wells were installed in a privately serviced lakeside village, and groundwater was routinely sampled over a 2‐year timeframe for concentration analysis of nitrate, fecal indicator bacteria, stable isotopes, and a total of 41 pharmaceutical compounds. While pollutant concentrations remained low throughout the study, the presence of fecal indicator bacteria and pharmaceuticals was noted at least once (but not always consistently) in most sampling intervals. An interpretation based on the integration of chemical, bacterial, and site characterization datasets suggests that: (1) the fracture network is complex and heterogeneous with limited vertical connectivity; (2) existing pathways are sufficient for the quick and widespread migration of surface contaminants to depth; (3) anthropogenic contaminants from both septic systems and agriculture are likely sourced in the surrounding uplands where overburden is thin; and (4) fecal contamination, as observed over the long term, is ubiquitous at the village scale. Groundwater quality is continually changing in this hydrogeologic environment and the determination of potability on the larger scale is not likely to be adequately captured with infrequent domestic well sampling (i.e., voluntary annual sampling by homeowners).  相似文献   

15.
In the polder region of coastal Bangladesh, shallow groundwater is primarily brackish with unpredictable occurrence of freshwater pockets. Delta building processes, including the codeposition of fresh-to-saline porewater and sediments, have formed the shallow aquifer. Impermeable clay facies and the lack of a topographical gradient limit the flow of groundwater and its mixing with surface water so controls on spatial variability of salinity are not obvious. By characterizing groundwater-surface water (GW-SW) interactions, this study attempted to identify areas of potable groundwater for the polder communities. We used transects of piezometers, cores, electromagnetic induction, and water chemistry surveys to explore two sources of potential fresh groundwater: (1) tidal channel-aquifer exchange and (2) meteoric recharge. Fresh groundwater proved difficult to find due to heterogeneous subsurface lithology, asymmetrical tidal dynamics, extreme seasonal fluctuations in rainfall, and limited field data. Geophysical observations suggest substantial lateral variability in shallow subsurface conductivity profiles. Piezometers show varying degrees of tidal pressure attenuation away from the channels. Nevertheless, the active exchange of freshwater appears to be limited due to low permeability of banks and surface sediments. Results indicate that pockets of fresh groundwater cannot be identified using readily available hydrogeological methods, so alternative drinking water sources should be pursued. By better understanding the hydrogeology of the system, however, communities will be better equipped to redirect water management resources to more feasible and sustainable drinking water options.  相似文献   

16.
This study aims to examine the efficiency of Opuntia ficus‐indica for removing organochlorine pesticides from surface waters. Adsorption properties such as size, dose, and time of O. ficus‐indica for aldrin, dieldrin, and dichlorodiphenyltrichloroethane (DDT) were studied through stirring and column methods. Because of their high affinity and swelling characteristics, dried O. ficus‐indica was studied in stirring while fresh unpeeled O. ficus‐indica was applied in both stirring and column experiments and proved to be well‐suited to column application. Before removing pesticides, the column was flashed with distilled water eliminate the turbidity and smell from fresh unpeeled cactus. The removal of pesticides increased with an increasing adsorbent dose and decreased with adsorbent particle sizes. The optimum adsorbent dose is 10 g for dried and 15 g for fresh unpeeled O. ficus‐indica. The experimental results show that O. ficus‐indica possesses strong adsorption ability for aldrin, dieldrin, and DDT, and the adsorption isotherm data obeyed the Freundlich model. The results of our small‐scale experiments suggest a strong potential to develop local small‐scale water treatment units that can be used at the level of individual households or local communities, using a widely available adsorbent.  相似文献   

17.
Geochemical evaluation of the sources and movement of saline groundwater in coastal aquifers can aid in the initial mapping of the subsurface when geological information is unavailable. Chloride concentrations of groundwater in a coastal aquifer near San Diego, California, range from about 57 to 39,400 mg/L. On the basis of relative proportions of major‐ions, the chemical composition is classified as Na‐Ca‐Cl‐SO4, Na‐Cl, or Na‐Ca‐Cl type water. δ2H and δ18O values range from ?47.7‰ to ?12.8‰ and from ?7.0‰ to ?1.2‰, respectively. The isotopically depleted groundwater occurs in the deeper part of the coastal aquifer, and the isotopically enriched groundwater occurs in zones of sea water intrusion. 87Sr/86Sr ratios range from about 0.7050 to 0.7090, and differ between shallower and deeper flow paths in the coastal aquifer. 3H and 14C analyses indicate that most of the groundwater was recharged many thousands of years ago. The analysis of multiple chemical and isotopic tracers indicates that the sources and movement of saline groundwater in the San Diego coastal aquifer are dominated by: (1) recharge of local precipitation in relatively shallow parts of the flow system; (2) regional flow of recharge of higher‐elevation precipitation along deep flow paths that freshen a previously saline aquifer; and (3) intrusion of sea water that entered the aquifer primarily during premodern times. Two northwest‐to‐southeast trending sections show the spatial distribution of the different geochemical groups and suggest the subsurface in the coastal aquifer can be separated into two predominant hydrostratigraphic layers.  相似文献   

18.
19.
Treated wastewater with high levels of ammonia has been injected, since March 1983 into the deep saline units of the Lower Floridan aquifer (LFA) from a treatment plant near the east coast of Miami-Dade County in southeastern Florida. Monitoring wells in the plant recorded ammonia concentrations above ambient levels at hydrogeologic units located about 1000 ft (304.8 m) above injection depths between 2500 and 2800 ft (762 and 853 m) below sea level. A solute-transport model was developed to assess the horizontal and vertical extent of the injected ammonia, with ammonia moving from the injected zone into the overlying units: the upper semiconfining unit, the uppermost permeable zone of the LFA, and the middle semiconfining units of the Avon Park Formation. Ammonia is assumed to be transported under the effects of local heterogeneity in a porous limestone aquifer with high-salinity ambient groundwater and via upward migration through quasi-vertical pathways. A flow model of the migration of the injected ammonia was calibrated with PEST using head, salinity, and ammonia concentration data measured from 1983 to 2013. Borehole geophysical data support the high permeability of the uppermost permeable zone in the LFA. Average simulated head, normalized salinity, and ammonia concentration residuals over all monitoring wells were −1.37 ft, 0.01, and −0.67 mg/L, respectively. Model results are consistent with undetectable ammonia concentrations in the Upper Floridan aquifer.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号