首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 567 毫秒
1.
We study the stability of axial orbits in analytical galactic potentials as a function of the energy of the orbit and the ellipticity of the potential. The problem is solved by an analytical method, the validity of which is not limited to small amplitudes. The lines of neutral stability divide the parameter space in regions corresponding to different organizations of the main families of orbits in the symmetry planes.  相似文献   

2.
In this paper we deal with the circular Sitnikov problem as a subsystem of the three-dimensional circular restricted three-body problem. It has a first analytical part where by using elliptic functions we give the analytical expressions for the solutions of the circular Sitnikov problem and for the period function of its family of periodic orbits. We also analyze the qualitative and quantitative behavior of the period function. In the second numerical part, we study the linear stability of the family of periodic orbits of the Sitnikov problem, and of the families of periodic orbits of the three-dimensional circular restricted three-body problem which bifurcate from them; and we follow these bifurcated families until they end in families of periodic orbits of the planar circular restricted three-body problem. We compare our results with the previous ones of other authors on this problem. Finally, the characteristic curves of some bifurcated families obtained for the mass parameter close to 1/2 are also described.  相似文献   

3.
We use the analytical method of Lindstedt to make an inventory of the regular families of periodic orbits and to obtain approximate analytical solutions in a three-dimensional harmonic oscillator with perturbing cubic terms. We compare these solutions to the results of numerical computations at a specific orbital resonance.  相似文献   

4.
We locate members of an important category of periodic orbits in the Newtonian four-body problem. These systems perform an interplay motion similar to that of the periodic three-body orbit discovered by Schubart. Such orbits, when stable, have been shown to be a key feature and influence on the dynamics of few-body systems. We consider the restricted case where the masses are collinear and are distributed symmetrically about their centre of mass. A family of orbits is generated from the known (three-dimensionally) unstable equal masses case by varying the mass ratio, whilst maintaining the symmetry. The stability of these orbits to perturbation is studied using linear stability analysis, analytical approximation of limiting cases and nonlinear simulation. We answer the natural question: are there any stable periodic orbits of this kind? Three ranges of the mass ratio are found to have stable orbits and three ranges have unstable orbits for three-dimensional motion. The systems closely resemble their three-body counterparts. Here the family of interplay orbits is simpler requiring just one parameter to characterise the mass ratio. Our results provide a further insight into three-body orbits studied previously.  相似文献   

5.
In our previous paper (hereafter, paper I) we presented analytical results on the non-planar motion of a planet around a binary star for the cases of the circular orbits of the components of the binary. We found that the orbital plane of the planet (the plane containing the “unperturbed” elliptical orbit of the planet), in addition to precessing about the angular momentum of the binary, undergoes simultaneously the precession within the orbital plane. We demonstrated that the analytically calculated frequency of this additional precession is not the same as the frequency of the precession of the orbital plane about the angular momentum of the binary, though the frequencies of both precessions are of the same order of magnitude. In the present paper we extend the analytical results from paper I by relaxing the assumption that the binary is circular – by allowing for a relatively small eccentricity ε of the stars orbits in the binary. We obtain an additional, ε-dependent term in the effective potential for the motion of the planet. By analytical calculations we demonstrate that in the particular case of the planar geometry (where the planetary orbit is in the plane of the stars orbits), it leads to an additional contribution to the frequency of the precession of the planetary orbit. We show that this additional, ε-dependent contribution to the precession frequency of the planetary orbit can reach the same order of magnitude as the primary, ε-independent contribution to the precession frequency. Besides, we also obtain analytical results for another type of the non-planar configuration corresponding to the linear oscillatory motion of the planet along the axis of the symmetry of the circular orbits of the stars. We show that as the absolute value of the energy increases, the period of the oscillations decreases.  相似文献   

6.
We consider the general spatial three body problem and study the dynamics of planetary systems consisting of a star and two planets which evolve into 2/1 mean motion resonance and into inclined orbits. Our study is focused on the periodic orbits of the system given in a suitable rotating frame. The stability of periodic orbits characterize the evolution of any planetary system with initial conditions in their vicinity. Stable periodic orbits are associated with long term regular evolution, while unstable periodic orbits are surrounded by regions of chaotic motion. We compute many families of symmetric periodic orbits by applying two schemes of analytical continuation. In the first scheme, we start from the 2/1 (or 1/2) resonant periodic orbits of the restricted problem and in the second scheme, we start from vertical critical periodic orbits of the general planar problem. Most of the periodic orbits are unstable, but many stable periodic orbits have been, also, found with mutual inclination up to 50?–60?, which may be related with the existence of real planetary systems.  相似文献   

7.
We consider the possibility of particles being injected at the interior of a reconnecting current sheet (RCS), and study their orbits by dynamical systems methods. As an example we consider orbits in a 3D Harris type RCS. We find that, despite the presence of a strong electric field, a 'mirror' trapping effect persists, to a certain extent, for orbits with appropriate initial conditions within the sheet. The mirror effect is stronger for electrons than for protons. In summary, three types of orbits are distinguished: (i) chaotic orbits leading to escape by stochastic acceleration, (ii) regular orbits leading to escape along the field lines of the reconnecting magnetic component, and (iii) mirror-type regular orbits that are trapped in the sheet, making mirror oscillations. Dynamically, the latter orbits lie on a set of invariant KAM tori that occupy a considerable amount of the phase space of the motion of the particles. We also observe the phenomenon of 'stickiness', namely chaotic orbits that remain trapped in the sheet for a considerable time. A trapping domain, related to the boundary of mirror motions in velocity space, is calculated analytically. Analytical formulae are derived for the kinetic energy gain in regular or chaotic escaping orbits. The analytical results are compared with numerical simulations.  相似文献   

8.
We have obtained an analytical solution to the equation of motion in the guiding center approximation for nonrelativistic charged particles in a reconnecting current sheet with a three-component magnetic field. Given the electric field attributable to magnetic reconnection, the solution describes stable and unstable three-dimensional particle orbits. We have found the domain of input parameters at which the motion is stable. A physical interpretation of the processes affecting the stability of the motion is given. Charge separation is shown to take place in the sheet during the motion: oppositely charged particles are localized mostly in different regions of the current sheet. A formula is derived for the particle energy in stable and unstable orbits. The results obtained by numerical and analytical methods are compared.  相似文献   

9.
10.
The planetary dynamics of 4/3, 3/2, 5/2, 3/1 and 4/1 mean motion resonances is studied by using the model of the general three body problem in a rotating frame and by determining families of periodic orbits for each resonance. Both planar and spatial cases are examined. In the spatial problem, families of periodic orbits are obtained after analytical continuation of vertical critical orbits. The linear stability of orbits is also examined. Concerning initial conditions nearby stable periodic orbits, we obtain long-term planetary stability, while unstable orbits are associated with chaotic evolution that destabilizes the planetary system. Stable periodic orbits are of particular importance in planetary dynamics, since they can host real planetary systems. We found stable orbits up to 60° of mutual planetary inclination, but in most families, the stability does not exceed 20°–30°, depending on the planetary mass ratio. Most of these orbits are very eccentric. Stable inclined circular orbits or orbits of low eccentricity were found in the 4/3 and 5/2 resonance, respectively.  相似文献   

11.
A systematic study is made of the long-period evolution of all distant satellite orbits in the system of Jupiter. We determine the extreme eccentricities and inclinations, as well as the circulation periods of the pericenter arguments and of the longitudes of the nodes. Moreover, we perform a comparative analysis of the research methods employed—analytical, numerical, and numerical—analytical methods.  相似文献   

12.
We consider a model that describes the evolution of distant satellite orbits and that refines the solution of the doubly averaged Hill problem. Generally speaking, such a refinement was performed previously by J. Kovalevsky and A.A. Orlov in terms of Zeipel’s method by constructing a solution of the third order with respect to the small parameter m, the ratio of the mean motions of the planet and the satellite. The analytical solution suggested here differs from the solutions obtained by these authors and is closest in form to the general solution of the doubly averaged problem (∼m 2). We have performed a qualitative analysis of the evolutionary equations and conditions for the intersection of satellite orbits with the surface of a spherical planet with a finite radius. Using the suggested solution, we have obtained improved analytical time dependences of the elements of evolving orbits for a number of distant satellites of giant planets compared to the solution of the doubly averaged Hill problem and, thus, achieved their better agreement with the results of our numerical integration of the rigorous equations of perturbed motion for satellites.  相似文献   

13.
Three methods are proposed in this paper to lessen the complexity in the derivation and the resulting expressions of second-order analytical solutions of artificial satellite orbits while retaining the advantages of analytical solutions. Of the three, the one combining the theories of elliptical perturbation and of intermediate orbits is noteworthy for its simplicity. It can also be used with advantage in first-order and third- or higher order solutions.  相似文献   

14.
This article studies the existence of periodic Keplerian orbits for visual double stars whose corresponding apparent orbits are to pass through three selected points. The analytical results provide the basis for a new method of calculating orbits which does not require prior calculation of the areal constant. This method is applied to the binary 04404 N 4313.  相似文献   

15.
Frozen orbits are always important foci of orbit design because of their valuable characteristics that their eccentricity and argument of pericentre remain constant on average. This study investigates quasi-circular frozen orbits and examines their basic nature analytically using two different methods. First, an analytical method based on Lagrangian formulations is applied to obtain constraint conditions for Martian frozen orbits. Second, Lie transforms are employed to locate these orbits accurately, and draw the contours of the Hamiltonian to show evolutions of the equilibria. Both methods are verified by numerical integrations in an 80 × 80 Mars gravity field. The simulations demonstrate that these two analytical methods can provide accurate enough results. By comparison, the two methods are found well consistent with each other, and both discover four families of Martian frozen orbits: three families with small eccentricities and one family near the critical inclination. The results also show some valuable conclusions: for the majority of Martian frozen orbits, argument of pericentre is kept at 270° because J 3 has the same sign as J 2; while for a minority of ones with low altitude and low inclination, argument of pericentre can be kept at 90° because of the effect of the higher degree odd zonals; for the critical inclination cases, argument of pericentre can also be kept at 90°. It is worthwhile to note that there exist some special frozen orbits with extremely small eccentricity, which could provide much convenience for reconnaissance. Finally, the stability of Martian frozen orbits is estimated based on the trace of the monodromy matrix. The analytical investigations can provide good initial conditions for numerical correction methods in the more complex models.  相似文献   

16.
The significant orbital eccentricities of most giant extrasolar planets may have their origin in the gravitational dynamics of initially unstable multiple planet systems. In this work, we explore the dynamics of two close planets on inclined orbits through both analytical techniques and extensive numerical scattering experiments. We derive a criterion for two equal mass planets on circular inclined orbits to achieve Hill stability, and conclude that significant radial migration and eccentricity pumping of both planets occurs predominantly by 2:1 and 5:3 mean motion resonant interactions. Using Laplace-Lagrange secular theory, we obtain analytical secular solutions for the orbital inclinations and longitudes of ascending nodes, and use those solutions to distinguish between the secular and resonant dynamics which arise in numerical simulations. We also illustrate how encounter maps, typically used to trace the motion of massless particles, may be modified to reproduce the gross instability seen by the numerical integrations. Such a correlation suggests promising future use of such maps to model the dynamics of more coplanar massive planet systems.  相似文献   

17.
18.
In the analytical approach to the main problem in satellite theory, the consideration of the physical parameters imposes a lower bound for normalized Hamiltonian. We show that there is no elliptic frozen orbits, at critical inclination, when we consider small values of H, the third component of the angular momentum. The argument used suggests that it might be applied also to more realistic zonal and tesseral models. Moreover, for almost polar orbits, when H may be taken as another small parameter, a different approach that will simplify the ephemerides generators is proposed.  相似文献   

19.
We consider the particular case of the planar three body problem obtained when the masses form an isosceles triangle for all time. Various authors [1, 2, 12, 8, 9, 13, 10] have contributed in the knowledge of the triple collision and of several families of periodic orbits in this problem. We study the flow on a fixed level of negative energy. First we obtain a topological representation of the energy manifold including the triple collision and infinity as boundaries of that manifold. The existence of orbits connecting the triple collision and infinity gives some homoclinic and heteroclinic orbits. Using these orbits and the homothetic solutions of the problem we can characterize orbits which pass near triple collision and near infinity by pairs of sequences. One of the sequences describes the regions visited by the orbit, the other refers to the behaviour of the orbit between two consecutive passages by a suitable surface of section. This symbolic dynamics which has a topological character is given in an abstract form and after it is applied to the isosceles problem. We try to keep globality as far as possible. This strongly relies on the fact that the intersection of some invariant manifolds with an equatorial plane (v=0) have nice spiraling properties. This can be proved by analytical means in some local cases. Numerical simulations given in Appendix A make clear that these properties hold globally.  相似文献   

20.
This is a numerical study of orbits in the elliptic restricted three-body problem concerning the dependence of the critical orbits on the eccentricity of the primaries. They are defined as being the separatrix between stable and unstable single periodic orbits. As our results are adapted to the existence of planetary orbits in double stars we concentrated first on the P-orbits (defined to surround both primaries). Due to the complexity of the elliptic problem there is no analytical approach possible. Using the results of some 300 integrated orbits for 103 to 3. 103 periods of the primaries we established lower and upper bounds for the critical orbits for different values of the eccentricity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号