首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Along the mid- and north Atlantic coasts of the USA, over 90 % of salt marshes have been ditched. Ditching was largely abandoned by the mid-twentieth century; however, techniques that create permanent shallow water pools for mosquito control and bird habitat are increasingly being applied to marshes of the USA and elsewhere. Salt marshes in Plum Island Sound, Massachusetts, and Barnegat Bay, New Jersey, were used to examine differences between areas that have been ditched and those altered to increase the density of shallow pools in water table dynamics, salinity, soil and porewater chemistry, as well as short-term sedimentation, accretion, and elevation change rates. We found that the area with plugged ditches, berms, and pools in Plum Island had less drainage, higher salinity and porewater sulfide and ammonium concentrations, and higher soil organic matter than the adjacent ditched area. Despite averaging 8 cm lower in elevation, the Plum Island ditched area had less sediment deposition and was composed of higher elevation plant species than the area with plugged ditches, berms, and shallow pools. Elevation increased in the ditched area at a rate of 3.2 ± 0.5 mm/year, but elevation change was variable in the area with pools. In Barnegat Bay, the marsh area with pools and ditches had less sediment deposition and surface accretion than the ditch-only area, associated, in part, with the higher elevation. An average elevation difference of 4.5 cm was associated with a sixfold difference in mineral sediment deposition. Temporal sediment deposition and surface accretion was important in the ditch-only area but was absent or muted in the area with numerous pools. Elevation increased in both marsh areas at an average rate of 1.8 ± 0.8 mm/year, less than half the long-term average local rate of sea-level rise. Our results illustrate how physical manipulations including changes to tidal hydrology and surface topography interact with elevation to influence short-term biophysical feedbacks.  相似文献   

2.
Few studies concerning tide-restricted and restoring salt marshes emphasize fishes and decapod crustaceans (nekton) despite their ecological significance. This study quantifies nekton utilization of three New England salt marshes under tide-restricted and restoring conditions (Hatches Harbor, Massachusetts; Sachuest Point and Galilee, Rhode Island). The degree of tidal restriction differed among marshes allowing for an examination of nekton utilization patterns along a gradient of tidal restriction and subsequent restoration. Based on sampling in shallow subtidal creeks and pools, nekton density and richness were significantly lower in the restricted marsh compared to the unrestricted marsh only at the most tide-restricted site (Sachuest Point). The dissimilarity in community composition between the unrestricted and restricted marsh sites increased with more pronounced tidal restriction. The increase in nekton density resulting from tidal restoration was positively related to the increase in tidal range. Species richness only increased with restoration at the most tide-restricted site; no significant change was observed at the other two sites. These patterns suggest that only severe tidal restrictions significantly reduce the habitat value of New England salt marshes for shallow subtidal nekton. This study suggests that the greatest responses by nekton, and the most dramatic shift towards a more natural nekton assemblage, will occur with restoration of severely restricted salt marshes.  相似文献   

3.
Salt marshes are an important transition zone between terrestrial and marine ecosystems, and in their natural state, they often function to cycle or trap terrestrially derived nutrients and organic matter. Many US salt marshes were ditched during the twentieth century, potentially altering their functionality. The goal of this 4-year study was to assess the impact of water from ditches within seven salt marshes on estuarine water quality and plankton communities within four estuaries on Long Island, NY, USA. We found that concentrations of inorganic nutrients (ammonium, phosphate), dissolved and particulate organic nitrogen and carbon (POC, PON, DOC, DON), and total coliform bacteria were significantly enriched in salt marsh ditches compared to the estuaries they discharged into. In addition, concentrations of ammonium and DON became more enriched in ditches as tidal levels decreased, suggesting these constituents were generated in situ. Quantification of nitrogen sources in Flanders Bay, NY, suggested salt marsh ditches could represent a substantial source of N to this estuary during summer months. Experimental incubations demonstrated that water from salt marsh ditches was capable of significantly enhancing the growth of multiple classes of phytoplankton, with large diatoms and dinoflagellates displaying the most dramatic increases in growth. Experiments further demonstrated that salt marsh ditchwater was capable of significantly enhancing pelagic respiration rates, suggesting discharge from ditches could influence estuarine oxygen consumption. In summary, this study demonstrates that tidal draining of salt marsh ditches is capable of degrading multiple aspects of estuarine water quality.  相似文献   

4.
In a continuing effort to monitor the fish response to marsh restoration (resumed tidal flow, creation of creeks), we compared qualitative and quantitative data on species richness, abundance, assemblage structure and growth between pre-restoration and post-restoration conditions at two former salt hay farms relative to a reference marsh in the mesohaline portion of Delaware Bay. The most extensive comparison, during April–November 1998, sampled fish populations in large marsh creeks with otter trawls and in small marsh creeks with weirs. Species richness and abundance increased dramatically after restoration. Subsequent comparisons indicated that fish size, assemblage structure, and growth of one of the dominant species,Micropogonias undulatus, was similar between reference and restored marshes 1 and 2 yr post-restoration. Total fish abundance and abundance of the dominant species was greater, often by an order of magnitude, in one of the older restored sites (2 yr post-restoration), while the other restored site (1 yr post-restoration) had values similar to the reference marsh. The success of the restoration at the time of this study suggests that return of the tidal flow and increased marsh area and edge in intertidal and subtidal creeks relative to the former salt hay farms contributed to the quick response of resident and transient young-of-the-year fishes.  相似文献   

5.
Currently, the largest tidal wetlands restoration project on the US Pacific Coast is being planned and implemented in southern San Francisco Bay; however, knowledge of baseline conditions of salt marsh extent in the region prior to European settlement is limited. Here, analysis of 24 sediment cores collected from ten intact southern San Francisco Bay tidal marshes were used to reconstruct spatio-temporal patterns of marsh expansion to provide historic context for current restoration efforts. A process-based marsh elevation simulation model was used to identify interactions between sediment supply, sea-level rise, and marsh formation rates. A distinct age gradient was found: expansion of marshes in the central portion of southern San Francisco Bay dated to 500 to 1500 calendar years before present, while expansion of marshes in southernmost San Francisco Bay dated to 200 to 700 calendar years before present. Thus, much of the tidal marsh area mapped by US Coast Survey during the 1853–1857 period were in fact not primeval tidal marshes that had persisted for millennia but were recently formed landscapes. Marsh expansion increased during the Little Ice Age, when freshwater inflow and sediment influx were higher than during the previous millennium, and also during settlement, when land use changes, such as introduction of livestock, increased watershed erosion, and sediment delivery.  相似文献   

6.
Marshes are important habitats for various life history stages of many fish and invertebrates. Much effort has been directed at restoring marshes, yet it is not clear how fish and invertebrates have responded to marsh restoration. The blue crab,Callinectes sapidus, uses marsh habitats during much of its benthic life. We investigated the response of blue crabs to marsh restoration by comparing crab abundance (catch per unit effort), mean size and size frequency distribution, sex ratio, and molt stages of crabs in recently restored marshes that were former salt hay farms to that of adjacent reference marshes with similar physical characteristics in the mesohaline portion of Delaware Bay. Field sampling occurred monthly (April–November) in 1997 and 1998 using replicate daytime otter trawls in large marsh creeks and weirs in smaller intertidal marsh creeks. Blue crabs were either equal or more abundant, the incidence of molting was in most months similar, and population sex ratios were indistinguishable in restored and reference marshes, suggesting that the restored areas attract crabs and support their growth. Site location had a greater effect on the sex ratio of crabs such that marshes closer to the mouth of the bay contained a higher percentage of adult female crabs. In each annual growing season (April–July), the monthly increase in crab size and, in some months (June–July), the incidence of molting at the restored sites was greater than the reference sites, suggesting that the restored sites may provide areas for enhanced growth of crabs. These results suggest that blue crabs have responded positively to restoration of former salt hay farms in the mesohaline portion of Delaware Bay.  相似文献   

7.
Salt pools are water-filled depressions common to north-temperate salt marshes. In Wells, ME, USA, cores reveal a unique salt pool signature consisting of water-saturated dark-gray mud often containing fragments of Ruppia maritima. Cores through pool sediment reenter salt marsh peat, not tidal flat sediment, demonstrating that most pools are of secondary origin. A principal component analysis of attribute data collected from 119 pools defines three distinct pool types: those with (1) surrounding high-marsh vegetation and thick heavily undercut banks (40% of the variance), (2) surrounding low-marsh vegetation and thicker slightly undercut banks (18% of the variance), and (3) surrounding low-marsh vegetation and less thick moderately undercut banks, containing R. maritima and a surficial drainage (15% of the variance). Cores and spatiotemporal analyses of aerial photographs between 1962 and 2003 reveal dramatic salt marsh surface dynamism suggesting that salt pools influence the geomorphological evolution of coastal marshes.  相似文献   

8.
This study evaluated the use by fish of restored tidal wetlands and identified links between fish species composition and habitat characteristics. We compared the attributes of natural and constructed channel habitats in Sweetwater Marsh National Wildlife Refuge, San Diego Bay, California, by using fish monitoring data to explore the relationships between channel environmental characteristics and fish species composition. Fishes were sampled annually for 8 yr (1989–1996) at eight sampling sites, four in constructed marshes and four in natural marshes, using beach seines and blocking nets. We also measured channel habitat characteristics, including channel hydrology (stream order), width and maximum depth, bank slope, water quality (DO, temperature, salinity), and sediment composition. Fish colonization was rapid in constructed channels, and there was no obvious relationship between channel age and species richness or density. Total richness and total density did not differ significantly between constructed and natural channels, although California killifish (Fundulus parvipinnis) were found in significantly higher densities in constructed channels. Multivariate analyses showed fish assemblage composition was related to channel habitat characteristics, suggesting a channel’s physical properties were more important in determining fish use than its restoration status. This relationship highlights the importance of designing restoration projects with natural hydrologic features and choosing proper assessment criteria in order to avoid misleading interpretations of constructed channel success. We recommend that future projects be designed to mimic natural marsh hydrogeomorphology and diversity more closely, the assessment process utilize better estimates of fish habitat function (e.g., individual and community-based species trends, residence time, feeding, growth) and reference site choice, and experimental research be further incorporated into the restoration process.  相似文献   

9.
In a large (8 ha) salt marsh restoration site, we tested the effects of excavating tidal creeks patterned after reference systems. Our purposes were to enhance understanding of tidal creek networks and to test the need to excavate creeks during salt marsh restoration. We compared geomorphic changes in areas with and without creek networks (n = 3; each area 1.3 ha) and monitored creek cross-sectional areas, creek lengths, vertical accretion, and marsh surface elevations for 5 yr that included multiple sedimentation events. We hypothesized that cells with creeks would develop different marsh surface and creek network characteristics (i.e., surface elevation change, sedimentation rate, creek cross-sectional area, length, and drainage density). Marsh surface vertical accretion averaged 1.3 cm yr−1 with large storm inputs, providing the opportunity to assess the response of the drainage network to extreme sedimentation rates. The constructed creeks initially filled due to high accretion rates but stabilized at cross-sectional areas matching, or on a trajectory toward, equilibrium values predicted by regional regression equations. Sedimentation on the marsh surface was greatest in low elevation areas and was not directly influenced by creeks. Time required for cross-sectional area stabilization ranged from 0 to > 5 yr, depending on creek order. First-order constructed creeks lengthened rapidly (mean rate of 1.3 m yr−1) in areas of low elevation and low vegetation cover. New (volunteer) creeks formed rapidly in cells without creeks in areas with low elevation, low vegetation cover, and high elevation gradient (mean rate of 6.2 m yr−1). After 5 yr, volunteer creeks were, at most, one-fourth the area of constructed creeks and had not yet reached the upper marsh plain. In just 4 yr, the site’s drainage density expanded from 0.018 to reference levels of 0.022 m m−2. Pools also formed on the marsh plain due to sediment resuspension associated with wind-driven waves. We conclude that excavated creeks jump-started the development of drainage density and creek and channel dimensions, and that the tidal prism became similar to those of the reference site in 4–5 yr.  相似文献   

10.
Currently, mangroves dominate the tidal wetlands of Tampa Bay, Florida, but an examination of historic navigation charts revealed dominance of tidal marshes with a mangrove fringe in the 1870s. This study's objective was to conduct a new assessment of wetland change in Tampa Bay by digitizing nineteenth century topographic and public land surveys and comparing these to modern coastal features at four locations. We differentiate between wetland loss, wetland gain through marine transgression, and a wetland conversion from marsh to mangrove. Wetland loss was greatest at study sites to the east and north. Expansion of the intertidal zone through marine transgression, across adjacent low-lying land, was documented primarily near the mouth of the bay. Generally, the bay-wide marsh-to-mangrove ratio reversed from 86:14 to 25:75 in 125?years. Conversion of marsh to mangrove wetlands averaged 72?% at the four sites, ranging from 52?% at Old Tampa Bay to 95?% at Feather Sound. In addition to latitudinal influences, intact wetlands and areas with greater freshwater influence exhibited a lower rate of marsh-to-mangrove conversion. Two sources for nineteenth century coastal landscape were in close agreement, providing an unprecedented view of historic conditions in Tampa Bay.  相似文献   

11.
Anthropogenic activities in New England salt marshes have altered hydrologic flows in various ways, but unintended consequences from some types of habitat modifications have received little attention. Specifically, ditches have existed on salt marshes for decades, but the effects of these hydrologic alterations are only poorly understood. Ditch-plugging is a more recent methodology used for salt marsh habitat enhancement and mosquito control, but the long-term effects from this management practice are also unclear. The interactions involving marsh surface elevation, soil characteristics, and hydrologic regimes result in feedbacks that regulate the salt marsh self-maintenance process, and these interactions vary with hydrologic modification. Using natural tidal creeks and pools as controls, we examined the effects of ditching and plugging, respectively, on hydrology, surface elevations, and soils. Results showed the most apparent effects of altered hydrology from ditching are prolonged pore-water retention in the rooting zone and significantly lower soil bulk density and mineral content when compared with natural creek habitat. From a management perspective, the important question is whether the combined alterations to physical and biological processes will hinder the marsh’s ability to keep pace with increasing rates of sea level rise, especially in more heavily ditched marshes. In contrast, ditch-plugging results in the decoupling of feedback processes that promote salt marsh self-maintenance and in doing so, threatens marsh stability and resilience to climate change. High surface water levels, permanently saturated soils, marsh subsidence, and significantly lower bulk density, carbon storage, soil strength, and redox levels associated with hydrologic alterations from ditch-plugging all support this conclusion.  相似文献   

12.
Large-scale marsh restoration efforts were conducted to restore normal salt marsh structure and function to degraded marshes (i.e., former salt hay farms) in the mesohaline lower Delaware Bay. While nekton response has been previously evaluated for the marsh surface and subtidal creeks in these marshes, little effort has been focused on intertidal creeks. Nekton response in intertidal creeks was evaluated by sampling with seines to determine if restored (i.e., former salt hay farms restored in 1996) and reference (i.e., natural or relatively undisturbed) salt marshes were utilized by intertidal nekton in a similar manner. The overall nekton assemblage during June–October 2004–2005 was generally comprised of the same species in both the restored and reference marshes. Intertidal creek catches in both marsh types consisted primarily ofFundulus heteroclitus andMenidia menidia, with varying numbers of less abundant transient species present. Transient nekton were more abundant at restored marshes than reference marshes, but in insufficient numbers to cause differences in nekton assemblages. In both marsh types, low tide stages were characterized by resident nekton, dominated byF. heteroclitus, while high tide stages were characterized by a variable mix of transient and resident nekton. Assemblage level analyses indicated that intertidal creeks in restored and reference marshes were generally utilized in a similar manner by a similar nekton assemblage, so restoration efforts were deemed successful. This is in agreement with multiple comparative studies from the ame marshes examining fish, invertebrates, and vegetation in different marsh habitats.  相似文献   

13.
Tidal marsh (re)creation on formerly embanked land is increasingly executed along estuaries and coasts in Europe and the USA, either by restoring complete or by reduced tidal exchange. Ecosystem functioning and services are largely affected by the hydro-geomorphologic development of these areas. For natural marshes, the latter is known to be steered by feedbacks between tidal inundation and sediment accretion, allowing marshes to reach and maintain an equilibrium elevation relative to the mean sea level. However, for marsh restoration sites, these feedbacks may be disturbed depending on the restoration design. This was investigated by comparing the inundation-elevation change feedbacks in a natural versus restoration site with reduced tidal exchange in the Scheldt estuary (Belgium). This study analyzes long-term (9 years) datasets on elevation change and tidal inundation properties to disentangle the different mechanisms behind this elevation-inundation feedback. Moreover, subsequent changes in sediment properties that may affect this feedback were explored. In the restoration area with reduced tidal exchange, we found a different elevation-inundation feedback than on natural marshes, which is a positive feedback on initially high sites (i.e., sediment accretion leads to increasing inundation, hence causing accelerating sediment accretion rates) and a gradual silting up of the whole area. Furthermore, there is evidence for the presence of a relict consolidated sediment layer. Consequently, shallow subsidence is less likely to occur. Although short-term ecological development of the tidal marsh was not impeded, long-term habitat development may be affected by the differences in hydro-geomorphological interactions. An increase of inundation frequency on the initially high sites may cause inhibition of habitat succession or even reversed succession. Over time, the climax state of the restoration area may be different compared to natural marshes. Moreover, sediment-related ecosystem services, such as nutrient and carbon burial, may be positively influenced because of continuing sedimentation, although flood water storage potential will decrease with increasing elevation. Depending on the restoration goals, ecosystem trajectories and delivery of ecosystem services can be controlled by adaptive management of the tidal volume entering the restoration area.  相似文献   

14.
Vertical accretion of impounded marsh and adjacent natural marsh at four sites in southwestern Louisiana was estimated in 1994 by determining the depth of a stratum containing137Cs deposited in 1963. With relative marsh elevation, soil bulk density, organic matter content, and organic and mineral matter accumulation rates were used to describe soil formation. Three sites were impounded in 1956 and one site in 1951. Impounded marshes had lower marsh surface elevation than natural marshes because of hydrologic isolation from tidal sediment subsidies and substrate oxidation during forced drying. The elevation of natural marshes ranged from 12 cm to 42 cm higher than the elevation of the impounded marshes in 1963 and from 20 cm to 32 cm higher in 1994. Vertical accretion between 1963 and 1994 ranged from 9 cm to 28 cm in impounded marsh and from 15 cm to 21.5 cm in natural marsh. Only in impounded marsh that remained permanently flooded was accretion greater than in natural marsh.  相似文献   

15.
Through their physiological effects on ion, oxygen, and carbon balance, respectively, salinity, sulfide, and prolonged flooding combine to constrain the invasion and spread ofPhragmites in tidal wetlands. Initial sites of vigorous invasion by seed germination and growth from rhizome fragments appear limited to sections of marsh where salinity is <10‰, sulfide concentrations are less than 0.1 mM, and flooding frequency is less than 10%. In polyhaline tidal wetlands the invasion sites include the upland fringe and some high marsh creek banks. The zones of potential invasion tend to be larger in marshes occupying lower-salinity portions of estuaries and in marshes that have been altered hydrologically. Owing to clonal integration and a positive feedback loop of growth-induced modification of edaphic soil conditions, however, a greater total area of wetland is susceptible toPhragmites expansion away from sites of establishment. Mature clones have been reported growing in different marshes with salinity up to 45‰, sulfide concentration up to 1.75 mM, and flooding frequency up to 100%. ForPhragmites establishment and expansion in tidal marshes, windows of opportunity open with microtopographic enhancement of subsurface drainage patterns, marsh-wide depression of flooding and salinity regimes, and variation in sea level driven by global warming and lunar nodal cycles. To avoidPhragmites monocultures, tidal wetland creation, restoration, and management must be considered within the context of these different scales of plant-environment interaction.  相似文献   

16.
Tidal salt marsh is a key defense against, yet is especially vulnerable to, the effects of accelerated sea level rise. To determine whether salt marshes in southern New England will be stable given increasing inundation over the coming decades, we examined current loss patterns, inundation-productivity feedbacks, and sustaining processes. A multi-decadal analysis of salt marsh aerial extent using historic imagery and maps revealed that salt marsh vegetation loss is both widespread and accelerating, with vegetation loss rates over the past four decades summing to 17.3 %. Landward retreat of the marsh edge, widening and headward expansion of tidal channel networks, loss of marsh islands, and the development and enlargement of interior depressions found on the marsh platform contributed to vegetation loss. Inundation due to sea level rise is strongly suggested as a primary driver: vegetation loss rates were significantly negatively correlated with marsh elevation (r 2?=?0.96; p?=?0.0038), with marshes situated below mean high water (MHW) experiencing greater declines than marshes sitting well above MHW. Growth experiments with Spartina alterniflora, the Atlantic salt marsh ecosystem dominant, across a range of elevations and inundation regimes further established that greater inundation decreases belowground biomass production of S. alterniflora and, thus, negatively impacts organic matter accumulation. These results suggest that southern New England salt marshes are already experiencing deterioration and fragmentation in response to sea level rise and may not be stable as tidal flooding increases in the future.  相似文献   

17.
Primary producer (angiosperms, macroalgae, submerged aquatic vegetation), suspended particulate matter, andFundulus heteroclitus isotope values (δ13C, δ15N, δ34S) were examined to assess their use as indicators for changes in food web support functions in tidally-restored salt marshes. Study sites, located throughout the southern New England region (USA), ranged fromSpartina alterniflora-dominated reference marshes, marshes under various regimes and histories of tide restoration, and a severely tide-restrictedPhragmites australis marsh.Fundulus δ13C values were greater for fish from referenceSpartina marshes than for fish from adjacent tide-restricted or tide-restored marshes where higher percent cover of C3 plants, lower water column salinities, and more negative dissolved inorganic δ13C values were observed. The difference inFundulus δ13C values between a tide-restrictedPhragmites marsh and an adjacent referenceSpartina marsh was great compared to the difference between marshes at various stages of tide restoration and their respective reference marshes, suggesting that food web support functions are restored as the degree of tidal restriction is lessened. While a multiple isotopic approach can provide valuable information for determining specific food sources to consumers, this study demonstrates that monitoringFundulus δ13C values alone may be useful to evaluate the trajectory of ecological change for marshes undergoing tidal restoration.  相似文献   

18.
Many salt marshes in densely populated areas have been subjected to a reduction in tidal flow. In order to assess the impact of tidal flow restriction on marsh sedimentation processes, sediment cores were collected from flow-restricted restricted salt marshes along the Connecticut coast of Long Island Sound. Cores were also collected from unrestricted reference marshes and from a marsh that had been previously restricted but was restored to fuller tidal flushing in the 1970's. High bulk densities and low C and N concentrations were found at depth in the restricted marsh cores, which we attribute to a period of organic matter oxidation, sediment compaction, and marsh surface subsidence upon installation of flow restrictions (between 100 and 200 years before the present, depending on the marsh). Recent sedimentation rates at the restricted marshes (as determined by137Cs and210Pb dating) were positive and averaged 78% (137Cs) and 50% (210Pb) of reference marsh sedimentation rates. The accumulation of inorganic sediment was similar at the restricted and reference marshes, perhaps because of the seasonal operation of the tide gates, while organic sediment accretion (and pore space) was significantly lower in the restricted marshes, perhaps because of higher decomposition rates. Sedimentation rates at the restored marsh were significantly higher than at the reference marshes. This marsh has responded to the higher water levels resulting from restoration by a rapid increase in marsh surface elevation.  相似文献   

19.
We measured the amount of arsenic, chromium, copper, lead, nickel, vanadium, and zinc accumulated over a five-year period from 1997 to 2002 in surface sediments of seven salt marshes along the New Brunswick coast of the Bay of Fundy, Canada. Study sites extended from outer to inner Bay, spanning a gradient in tidal range (6–12 m) and mean sediment deposition rate (0.27–1.76 cm yr−1). In each study site, metal concentrations were measured in low and high marsh areas. Concentrations of chromium, nickel, and zinc appear to be within their natural range, while arsenic, lead, and vanadium are enriched in some sites. Calculated sediment metal loadings rates showed variability among marsh sites that closely followed sediment deposition patterns, suggesting sediment deposition rate is the driving factor of short-term metal accumulation in Fundy marshes. The value of salt marshes as a sink for metals may be enhanced by high sedimentation rates.  相似文献   

20.
A fundamental question in ecology is how biological interactions and biogeographic processes interact to determine the biodiversity of local sites. We quantified patterns of plant species diversity on transects across elevation at 59 salt marsh sites in Georgia and 49 sites in Texas. Although these regions have similar climates and floras, we anticipated that diversity might differ because of differences in tidal regime. Diversity was measured at global, regional, site, and plot scales to consider processes occurring at all levels. Species pools were similar between regions. Texas had greater diversity at the site and plot scales, suggesting that processes occurring at the site scale differed. The greater diversity of Texas sites and plots was associated with wider distributions of individual species across the marsh landscape and proportionally more middle marsh (a high diversity zone) and less low marsh (a low diversity zone) than in Georgia marshes. Preliminary data suggested that these differences were not due to differences in salinity regime or standing biomass between regions, leaving differences in tidal regime as the most plausible hypothesis accounting for differences in plant diversity. We speculate that the less-predictable tidal regime in Texas leads to temporal variation in abiotic conditions that limit the ability of any one species to competitively exclude others from particular marsh zones.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号