首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Jinchuan Ni–Cu sulfide deposit is hosted by an elongated, olivine-rich ultramafic body that is divided by subvertical strike-slip faults into three segments (central, eastern, and western). The central segment is characterized by concentric enrichments of cumulus olivine crystals and interstitial sulfides (pyrrhotite–pentlandite–chalcopyrite intergrowth), whereas the eastern and western segments are characterized by an increase of sulfides toward the lower contacts. In all segments sulfides are concentrated at the expense of intercumulus silicates. Olivine re-crystallization is found to be associated with actinolite alteration in some samples. The compositional variations of primary olivine from the sulfide-poor samples can be explained by a small degree of olivine crystallization (<5%) from a basaltic magma followed by local re-equilibration of the olivine with up to 30% trapped silicate liquid. In the sulfide-bearing samples the compositions of primary olivine record the results of olivine-sulfide Fe–Ni exchange that occurred after the trapped silicate liquid crystallized. Our olivine data indicate that Ni in the original sulfide liquids increased inward in the central segment and laterally away from the lower contact in the eastern segment. Variations in the compositions of sulfide liquids are thought to result from fractional segregation of immiscible sulfide liquid from a basaltic magma in a staging chamber instead of in situ differentiation. High concentrations of olivine crystals (mostly >50 modal%) and sulfide (averaging ~5 wt%) in the rocks are consistent with the interpretation that the Jinchuan deposit was formed by olivine- and sulfide-laden magma successively ascending through a conduit to a higher, now-eroded, level. Sulfide enrichment toward the center in the central segment and toward the lower contact in the eastern and western segments may have, in part, resulted from flow differentiation and gravitational settling during magma ascent, respectively.Editorial handling: P. Lightfoot  相似文献   

2.
The Kalatongke (also spelt as Karatungk) Ni–Cu–(platinum-group element, PGE) sulfide deposit, containing 33 Mt sulfide ore with a grade of 0.8 wt.% Ni and 1.3 wt.% Cu, is located in the Eastern Junggar terrane, Northern Xinjiang, NW China. The largest sulfide ore body, which occupies more than 50 vol.% of the intrusion Y1, is dominantly comprised of disseminated sulfide with a massive sulfide inner zone. Economic disseminated sulfides also occur at the base of the intrusions Y2 and Y3. The main host rock types are norite in the lower part and diorite in the upper part of each intrusion. Enrichment in large ion lithophile elements and depletion in heavy rare earth elements relative to mid-ocean ridge basalt indicate that the mafic intrusions were produced from magmas derived from a metasomatized garnet lherzolite mantle. The average grades of the disseminated ores are 0.6 wt.% Ni and 1.1 wt.% Cu, whereas those of the massive ores are 2 wt.% Ni and 8 wt.% Cu. The PGE contents of the disseminated ores (14–69 ppb Pt and 78–162 ppb Pd) are lower than those of the massive ores (120–505 ppb Pt and 30–827 ppb Pd). However, on the basis of 100% sulfide, PGE contents of the massive sulfides are lower than those of the disseminated sulfides. Very high Cu/Pd ratios (>4.5 × 104) indicate that the Kalatongke sulfides segregated from PGE-depleted magma produced by prior sulfide saturation and separation. A negative correlation between the Cu/Pd ratio and the Pd content in 100% sulfide indicates that the PGE content of the sulfide is controlled by both the PGE concentrations in the parental silicate magma and the ratio of the amount of silicate to sulfide magma. The negative correlations between Ir and Pd indicate that the massive sulfides experienced fractionation.  相似文献   

3.
The Zijinshan high-sulfidation epithermal Cu–Au deposit is located in the Zijinshan ore field of South China, comprising porphyry–epithermal Cu–Au–Mo–Ag ore systems. The Cu ore body is more than 1000 m thick and is characterized by an assemblage of digenite–covellite–enargite–alunite. Digenite is the dominant Cu-bearing mineral, which makes this deposit unique, although the mechanisms of digenite formation remain controversial. To elucidate the genesis of digenite, this paper presents the Cu isotopic compositions of Cu-sulfides in the Zijinshan high-sulfidation Cu–Au deposit. The Cu isotopic values (65Cu relative to NIST 976) of all samples range from −2.97‰ to +0.34‰, and most values fall in a narrow range from −0.49‰ to +0.34‰, which is similar to the Cu isotopic signature of typical porphyry systems. Copper isotope ratios of each mineral decrease with increasing depth, a trend that is also typical of porphyry deposits. The variation tendency of δ65Cu values between sulfides is consistent with the sequence of mineral formation. These observations suggest that the Cu-sulfides in the Zijinshan Cu–Au deposit have a hypogene origin.  相似文献   

4.
Re–Os dating of disseminated ore from the Kalatongke Cu–Ni sulfide mineral deposit, Xinjiang, Northwest (NW) China, yields an apparent isochron age of 433 ± 31 Ma with an apparent initial 187Os/188Os (433 Ma) ratio of 0.197 ± 0.027. This apparent age is older than not only the zircon U–Pb age of the host intrusion (287 ± 5 Ma, Han et al., 2004) but also the stratigraphic age of the intruded country rock. Thus, the regression line is a pseudo-isochron. However, previous Re–Os dating of massive ores of the same deposit yielded an age that is consistent, within analytical uncertainty, with the zircon U–Pb age (Zhang et al., 2008). This relationship is similar to that observed in the Jinchuan deposit, NW China. Therefore, we suggested that the same mechanism, post-segregation diffusion of Os (Yang et al., 2008), is applicable to the Kalatongke deposit.Re–Os isotopic studies of Kalatongke, Jinchuan and representative magmatic Cu–Ni sulfide deposits suggest that the massive ores of mafic–ultramafic-rock-associated Cu–Ni sulfide deposits would yield geologically meaningful Re–Os age, whereas a pseudo-isochron would be obtained for the disseminated ores. Therefore, to obtain a geologically meaningful Re–Os age, the type of the deposit, the type of the ore and the ore-forming process should be taken into account.  相似文献   

5.
The Tongshankou Cu–Mo deposit, located in the westernmost Daye district of the Late Mesozoic Metallogenic Belt along the Middle-Lower reaches of the Yangtze River, eastern China, consists mainly of porphyry and skarn ores hosted in the Tongshankou granodiorite and along the contact with the Lower Triassic marine carbonates, respectively. Sensitive high-resolution ion microprobe zircon U–Pb dating constrains the crystallization of the granodiorite at 140.6 ± 2.4 Ma (1σ). Six molybdenite samples from the porphyry ores yield Re–Os isochron age of 143.8 ± 2.6 Ma (2σ), while a phlogopite sample from the skarn ores yields an 40Ar/39Ar plateau age of 143.0 ± 0.3 Ma and an isochron age of 143.8 ± 0.8 Ma (2σ), indicating an earliest Cretaceous mineralization event. The Tongshankou granodiorite has geochemical features resembling slab-derived adakites, such as high Sr (740–1,300 ppm) and enrichment in light rare earth elements (REE), low Sc (<10 ppm), Y (<13.3 ppm), and depletion in heavy REE (<1.2 ppm Yb), and resultant high Sr/Y (60–92) and La/Yb (26–75) ratios. However, they differ from typical subduction-related adakites by high K, low MgO and Mg#, and radiogenic Sr–Nd–Hf isotopic compositions, with (87Sr/86Sr) t  = 0.7062–0.7067, ɛ Nd(t) = −4.37 to −4.63, (176Hf/177Hf) t  = 0.282469–0.282590, and ɛ Hf(t) = −3.3 to −7.6. The geochemical and isotopic data, coupled with geological analysis, indicate that the Tongshankou granodiorite was most likely generated by partial melting of enriched lithospheric mantle that was previously metasomitized by slab melts related to an ancient subduction system. Magmas derived from such a source could have acquired a high oxidation state, as indicated by the assemblage of quartz–magnetite–titanite–amphibole–Mg-rich biotite in the Tongshankou granodiorite and the compositions of magmatic biotite that fall in the field between the NiNiO and magnetite–hematite buffers in the Fe3+–Fe2+–Mg diagram. Sulfur would have been present as sulfates in such highly oxidized magmas, so that chalcophile elements Cu and Mo were retained as incompatible elements in the melt, contributing to subsequent mineralization. A compilation of existing data reveals that porphyry and porphyry-related Cu–Fe–Au–Mo mineralization from Daye and other districts of the Metallogenic Belt along the Middle-Lower reaches of the Yangtze River took place coevally in the Early Cretaceous and was related to an intracontinental extensional environment, distinctly different from the arc-compressive setting of the Cenozoic age that has been responsible for the emplacement of most porphyry Cu deposits of the Pacific Rim.  相似文献   

6.
Precise U–Pb geochronology, Hf isotope compositions and trace element distributions in zircons are combined in the present study to define the timing and sources of the magmatism forming the Medet porphyry copper deposit, Bulgaria. ID-TIMS U–Pb-zircon dating demonstrates that ore-bearing magmatism extended for less than 1.12 Ma. As inferred from the field relationships, it started with the intrusion of a quartz-monzodiorite at 90.59?±?0.29 Ma followed by granodiorite porphyries at 90.47?±?0.30 and 90.27?±?0.60 Ma and by crosscutting aplite dykes at 90.12?±?0.36 Ma. These units were overprinted by potassic alteration and host economic copper-(Mo–Au) mineralization. The main magmatic–hydrothermal activity ceased after that, and a later quartz-granodiorite porphyry dyke, dated at 89.26?±?0.32 Ma, only contains an uneconomic quartz–pyrite mineralization. Assimilation of Lower Paleozoic rocks with a mantle to mantle–crust signature is characteristic of the fertile magma in the Medet deposit, as defined by positive ?-Hf values of the inherited zircons. The positive Ce-anomalies and the higher Eu/Eu* ratios of the zircons in the mineralized Cretaceous rocks of Medet deposit argue for crystallization from a generally more oxidized magma compared to the later quartz-granodiorite porphyry dyke. A change in paleostress conditions occurred during the intrusion of the Medet pluton and its dykes. The initial stage reveals E–W extension associated with N–S compression, whereas the younger granodiorite dyke was emplaced during subsequent N–S extension. The large-scale switch of the extensional stress regime during the mineralization was favourable for ore deposition by channelling the fluids and increasing the effective permeability.  相似文献   

7.
8.
Feldspar Pb isotopes have been widely used to trace magmatic formation and evolution processes. However, it remains unclear whether post-magmatic thermal events can affect feldspar Pb isotopic ratios. Here, the in situ Pb isotopic composition of feldspar hosted in granitic rocks (thirteen Archean and one Paleoproterozoic) from the northern Kongling terrane, Yangtze Craton, South China, is analyzed. The samples reveal a substantial variation in their Pb isotopic composition, spanning the gap between the 1.9 Ga and present-day geochrons, which indicates extensive resetting by later tectonothermal events. This resetting was interpreted to have likely resulted from Paleoproterozoic and Neoproterozoic tectonothermal events related to the assembly and breakup of the Columbia and Rodinia supercontinents. These results suggest that Pb isotopes should be used cautiously when tracing magma sources and petrogenesis in magmatic rocks that have experienced post-magmatic reworking. However, the in situ Pb isotopic composition of feldspar in ancient granitoids may also potentially be used to reveal later tectonothermal events. The extensive resetting of the Pb isotopic composition in feldspar by regional thermal events may also provide new insights into our understanding of the Pb isotope paradox.  相似文献   

9.
The Kalatongke Cu–Ni sulfide deposits located in the East Junggar terrane, northern Xinjiang, western China are the largest magmatic sulfide deposits in the Central Asian Orogenic Belt (CAOB). The chemical and carbon isotopic compositions of the volatiles trapped in olivine, pyroxene and sulfide mineral separates were analyzed by vacuum stepwise-heating mass spectrometry. The results show that the released volatiles are concentrated at three temperature intervals of 200–400°C, 400–900°C and 900–1200°C. The released volatiles from silicate mineral separates at 400–900°C and 900–1200°C have similar chemical and carbon isotopic compositions, which are mainly composed of H2O (av. ~92 mol%) with minor H2, CO2, H2S and SO2, and they are likely associated with the ore-forming magmatic volatiles. Light δ13CCO2 values (from ?20.86‰ to ?12.85‰) of pyroxene indicate crustal contamination occurred prior to or synchronous with pyroxene crystallization of mantle-derived ore-forming magma. The elevated contents of H2 and H2O in the olivine and pyroxene suggest a deep mantle-originated ore-forming volatile mixed with aqueous volatiles from recycled subducted slab. High contents of CO2 in the ore-forming magma volatiles led to an increase in oxygen fugacity, and thereby reduced the solubility of sulfur in the magma, then triggered sulfur saturation followed by sulfide melt segregation; CO2 contents correlated with Cu contents in the whole rocks suggest that a supercritical state of CO2 in the ore-forming magma system under high temperature and pressure conditions might play a key role in the assemblage of huge Cu and Ni elements. The volatiles released from constituent minerals of intrusion 1# have more CO2 and SO2 oxidized gases, higher CO2/CH4 and SO2/H2S ratios and lighter δ13CCO2 than those of intrusions 2# and 3#. This combination suggests that the higher oxidation state of the volatiles in intrusion 1# than intrusions 2# and 3#, which could be one of key ore-forming factors for large amounts of ores and high contents of Cu and Ni in intrusion 1#. The volatiles released at 200–400°C are dominated by H2O with minor CO2, N2+CO and SO2, with δ13CCO2 values (?25.66‰ to ?22.98‰) within the crustal ranges, and are considered to be related to secondary tectonic– hydrothermal activities.  相似文献   

10.
Numerous Fe–Cu deposits in southwestern China form the Kangdian Iron-Oxide Copper-Gold (IOCG) metallogenic Province. These deposits have a close association of Fe-oxides and Cu-sulfides formed at different stages, which are possibly related to multiple hydrothermal events. In this paper, U–Pb dating and chemical analyses on allanite from different stages of the Lala deposit were used to constrain timing and origin of such events. Allanite occurs as disseminated grains or patches in Fe–Cu ores and is closely associated with chalcopyrite, molybdenite, calcite and minor titanite, postdating magnetite and apatite. High-resolution backscattered electronic (BSE) imaging, electron microprobe compositions and X-ray scanning profiles demonstrate that REE-rich primary allanite was replaced by later, relatively porous and REE-poor secondary allanite. Such a replacement was promoted by interaction between primary allanite and fluid fluxes infiltrating the minerals, following an exchange scheme of REE3+ + Fe2+ → Ca2+ + Al3+. The secondary allanite has higher Fe3+/(Fe3++Fe2+) ratios and U contents, indicating involvement of relatively oxidized fluids during alteration. The alteration has also produced unidentified secondary REE minerals in fractures, indicating re-deposition of some of the removed REEs. The primary and secondary allanites are dated by in situ LA-ICP-MS technique and have U–Pb ages of 1,067 ± 41 Ma and 880–850 Ma, respectively. The ~1.07 Ga primary allanite was contemporaneous with the main Mo–Cu–LREE mineralization with a molybdenite Re–Os age of ~1.08 Ga. The 880–850 Ma secondary allanite is comparable with the Ar–Ar ages (890–830 Ma) of biotite from hosting schists and undeformed sulfide veins occurring throughout the Kangdian Province, suggesting that such an event was possibly syn-deformational and represents a younger hydrothermal event. Occurrences of both primary and secondary allanites suggest that the mineralization may have involved multiple tectonothermal events including the ~1.05–1.1 Ga intra-plate and subsequent 960–740 Ma arc magmatism in the Kangdian region.  相似文献   

11.
The Eastern Tianshan Orogenic Belt of the Central Asian Orogenic Belt and the Beishan terrane of the Tarim Block, NW China, host numerous Fe deposits. The Cihai Fe deposit (>90 Mt at 45.6 % Fe) in the Beishan terrane is diabase-hosted and consists of the Cihai, Cinan, and Cixi ore clusters. Ore minerals are dominantly magnetite, pyrite, and pyrrhotite, with minor chalcopyrite, galena, and sphalerite. Gangue minerals include pyroxene, garnet, hornblende and minor plagioclase, biotite, chlorite, epidotite, quartz, and calcite. Pyrite from the Cihai and Cixi ore clusters has similar Re–Os isotope compositions, with ~14 to 62 ppb Re and ≤10?ppt common Os. Pyrrhotite has ~5 to 39 ppb Re and ~0.6 ppb common Os. Pyrite has a mean Re–Os model age of 262.3?±?5.6 Ma (n?=?13), in agreement with the isochron regression of 187Os vs. 187Re. The Re–Os age (~262 Ma) for the Cihai Fe deposit is within uncertainty in agreement with a previously reported Rb–Sr age (268?±?25 Ma) of the hosting diabase, indicating a genetic relationship between magmatism and mineralization. Magnetite from the Cihai deposit has Mg, Al, Ti, V, Cr, Co, Ni, Mn, Zn, Ga, and Sn more elevated than that of typical skarn deposits, but both V and Ti contents lower than that of magmatic Fe–Ti–V deposits. Magnetite from these two ore clusters at Cihai has slightly different trace element concentrations. Magnetite from the Cihai ore cluster has relatively constant trace element compositions. Some magnetite grains from the Cixi ore cluster have higher V, Ti, and Cr than those from the Cihai ore cluster. The compositional variations of magnetite between the ore clusters are possibly due to different formation temperatures. Combined with regional tectonic evolution of the Beishan terrane, the Re–Os age of pyrite and the composition of magnetite indicate that the Cihai Fe deposit may have derived from magmatic–hydrothermal fluids related to mafic magmatism, probably in an extensional rift environment.  相似文献   

12.
The Shuangqing Fe–Pb–Zn–Cu deposit is located in the Xiangride County of Qinghai Province, China, and is a typical example of skarn deposits in the East Kunlun Mountains. Skarnization and mineralization took place along the contact zone between Carboniferous carbonates and the concealed Triassic plagiogranite. LA–ICP–MS U–Pb dating of zircons from the plagiogranite has yielded ages of 227.2 ± 1.0 and 226.54 ± 0.97 Ma, which are interpreted as the emplacement age of the plagiogranite. Molybdenites separated from ore-bearing quartz-veins yielded a Re–Os isochron age of 226.5 ± 5.1 Ma. These age data confirm that both intrusion and related skarn mineralization initiated at ~ 227 Ma. Re contents of molybdenite, zircon εHf(t) and 176Hf/177Hf values fall into the ranges 3.31 to 6.58 μg/g, − 8.6 to − 0.0, and 0.282403 to 0.28263850, respectively. The timing of the Shuangqing Fe–Pb–Zn–Cu mineralization coincided with a major change in the stress field in East Kunlun from transpression to extension, related to the partial melting of thickening crustal materials in a post-collisional tectonic setting.  相似文献   

13.
14.
The Qimantage area of Northwest China lies in the western part of the East Kunlun Orogenic Belt, and is dominated by late Permian to Late Triassic granitoids. Among these, the Middle Triassic granitoids are mainly distributed south of the North Kunlun Fault, and consist of two main granitic assemblages: the Kaimuqi assemblage in the east and the Mositu assemblage in the west. To better constrain the Indosinian tectonic evolution of this area, we present data on the geochronology, geochemistry, and petrology of ore-bearing granodiorites from the Kaimuqi area in eastern Qimantage. The granodiorite samples have porphyritic or fine-grained textures. Laser ablation inductively coupled plasma mass spectrometry U–Pb zircon dating yields emplacement ages of 238–242 Ma, interpreted here as the result of the Middle Triassic magmatism. The granodiorites are mostly of the high-K calc-alkaline series, and are enriched in light rare earth elements, depleted in heavy rare earth elements such as Nb, Ta, P, and Ti, and have weak negative Eu (Eu/Eu*) anomalies. The Kaimuqi granodiorites have lower SiO2 and Sr contents, and higher Na2O/K2O ratios than the Mositu granodiorites. They also show initial 87Sr/86Sr ratios of 0.712151–0.715436, εNd(t) values of ?7.4 to ?6.3, and two-stage Nd model ages of 1.53–1.61 Ga. Together with their radiogenic Pb isotopic ratios for 206Pb/204Pb(t) (18.271–18.622), 207Pb/204Pb(t) (15.637–15.651), and 208Pb/204Pb(t) (38.452–37.870), these data indicate both mantle and crustal contributions to the source of the granodiorites. Field investigations show that Middle Triassic granitoids in both the Mositu and Kaimuqi assemblages contain large numbers of mafic microgranular enclaves, which supports an interpretation of mantle and crustal magmatic mixing. Based on a comparison of these results with data from coeval granites in the Mositu assemblage, we propose that the Middle Triassic granitoids in the Qimantage area were produced at ca. 240 Ma, as a result of the end of subduction and the initiation of collision during the Variscan–Indosinian orogeny. Magma mixing may be interpreted as the result of slab breakoff in a subduction zone environment, which led to fluid metasomatism and induced partial melting of an enriched lithospheric mantle, resulting in the formation of voluminous granitic magma.  相似文献   

15.
The Dongfengnanshan Cu polymetallic deposit is one representative deposit of the Tianbaoshan ore district in the Yanbian area, northeast(NE) China. There occur two types of ore bodies in this deposit, the stratiform ore bodies and veintype ones, controlled by the Early Permian strata and the Late Hercynian diorite intrusion, respectively. Due to the ambiguous genetic type of the stratiform ore bodies, there has been controversy on the relationship between them and veintype ore bodies. To determine the genetic type of stratiform ore bodies, laser ablation inductively coupled plasma mass spectrometry(LA-ICP-MS) in situ trace elements and S–Pb isotope analysis have been carried on the sulfides in the stratiform ore bodies. Compared with that in skarn, Mississippi Valley-type(MVT), and epithermal deposits, sphalerite samples in the stratiform ore bodies of the Dongfengnanshan deposit are significantly enriched in Fe, Mn, and In, while depleted in Ga, Ge, and Cd, which is similar to the sphalerite in volcanic-associated massive sulfide(VMS) deposits. Co/Ni ratio of pyrrhotites in the stratiform ore bodies is similar to that in VMS-type deposits. The concentrations of Zn and Cd of chalcopyrites are similar to those of recrystallized VMS-type deposits. These characteristics also reflect the intermediate ore-forming temperature of the stratiform ore bodies in this deposit. Sulfur isotope compositions of sulfides are similar to those of VMS-type deposits, reflecting that sulfur originated from the Permian Miaoling Formation. Lead isotope compositions indicate mixed-source for lead. Moreover, the comparison of the Dongfengnanshan stratiform ore bodies with some VMStype deposits in China and abroad, on the trace elements and S–Pb isotope characteristics of the sulfides reveals that the stratiform ore bodies of the Dongfengnanshan deposit belong to the VMS-type, and have closely genetic relationship with the early Permian marine volcanic sedimentary rocks.  相似文献   

16.
The Yinshan Cu–Au–Pb–Zn–Ag deposit is located in Dexing, South China. Ore bodies are primarily hosted in low-grade phyllite of the Neoproterozoic Shuangqiaoshan Group along EW- and NNW-striking fault zones. Pb–Zn–Ag mineralization is dictated by Jurassic rhyolitic quartz porphyries (ca. 172 Ma), whereas Cu–Au mineralization is associated with Jurassic dacite porphyries (ca. 170 Ma). The main ore minerals are pyrite, chalcopyrite, galena, sphalerite, tetrahedrite–tennatite, gold, silver, and silver sulphosalt, and the principal gangue minerals are quartz, sericite, calcite, and chlorite. Two-phase liquid-rich (type I), two-phase vapor-rich (type II), and halite-bearing (type III) fluid inclusions can be observed in the hydrothermal quartz-sulfides veins. Type I inclusions are widespread and have homogenization temperatures of 187–303 °C and salinities of 4.2–9.5 wt.% NaCl equivalent in the Pb–Zn–Ag mineralization, and homogenization temperatures of 196–362 °C and salinities of 3.5–9.9 wt.% NaCl equivalent in the Cu–Au mineralization. The pervasive occurrence of type I fluid inclusions with low-moderate temperatures and salinities implies that the mineralizing fluids formed in epithermal environments. The type II and coexisting type III inclusions, from deeper levels below the Cu–Au ore bodies, share similar homogenization temperatures of 317–448 °C and contrasting salinities of 0.2–4.2 and 30.9–36.8 wt.% NaCl equivalent, respectively, which indicates that boiling processes occurred. The sulfur isotopic compositions of sulfides (δ34S = −1.7‰ to +3.2‰) suggest a homogeneous magmatic sulfur source. The lead isotopes of sulfides (206Pb/204Pb = 18.01–18.07; 207Pb/204Pb = 15.55–15.57; and 208Pb/204Pb = 38.03–38.12) are consistent with those of volcanic–subvolcanic rocks (206Pb/204Pb = 18.03–18.10; 207Pb/204Pb = 15.56–15.57; and 208Pb/204Pb = 38.02–38.21), indicating a magmatic origin for lead in the ore. The oxygen and hydrogen isotope compositions (δ18O = +7.8‰ to +10.5‰, δD = −66‰ to −42‰) of inclusion water in quartz imply that ore-forming fluids were mainly derived from magmatic sources. The local boiling process beneath the epithermal Cu–Au ore-forming system indicates the possibility that porphyry-style ore bodies may exist at even deeper zones.  相似文献   

17.
The Dikulushi Cu–Ag vein-type deposit is located on the Kundelungu Plateau, in the southeastern part of the Democratic Republic of Congo (D.R.C.). The Kundelungu Plateau is situated to the north of the Lufilian Arc that hosts the world-class stratiform Cu–Co deposits of the Central African Copperbelt. A combined petrographic, fluid inclusion and stable isotope study revealed that the mineralisation at Dikulushi developed during two spatially and temporally distinct mineralising episodes. An early Cu–Pb–Zn–Fe mineralisation took place during the Lufilian Orogeny in a zone of crosscutting EW- and NE-oriented faults and consists of a sequence of sulphides that precipitated from moderate-temperature, saline H2O–NaCl–CaCl2-rich fluids. These fluids interacted extensively with the country rocks. Sulphur was probably derived from thermochemical reduction of Neoproterozoic seawater sulphate. Undeformed, post-orogenic Cu–Ag mineralisation remobilised the upper part of the Cu–Pb–Zn–Fe mineralisation in an oxidising environment along reactivated and newly formed NE-oriented faults in the eastern part of the deposit. This mineralisation is dominated by massive Ag-rich chalcocite that precipitated from low-temperature H2O–NaCl–KCl fluids, generated by mixing of moderate- and low-saline fluids. The same evolution in mineralisation assemblages and types of mineralising fluids is observed in three other Cu deposits on the Kundelungu Plateau. Therefore, the recognition of two distinct types of (vein-type) mineralisation in the study area has a profound impact on the exploration in the Kundelungu Plateau region. The identification of a Cu–Ag type mineralisation at the surface could imply the presence of a Cu–Pb–Zn–Fe mineralisation at depth.  相似文献   

18.
The Maozu Pb–Zn deposit, located on the western margin of the Yangtze Block, southwest China, is a typical carbonate-hosted deposit in the Sichuan–Yunnan–Guizhou Pb–Zn metallogenic province with Pb + Zn reserves of about 2.0 million tonnes grading 4.15 wt.% Pb and 7.25 wt.% Zn. Its ore bodies are hosted in Sinian (635–541 Ma) Dengying Formation dolostone and show stratiform, vein and irregular textures. Ores are composed of sphalerite, galena, pyrite, calcite, dolomite, quartz and fluorite with massive, banded, disseminated and veined structures. The C–O–Sm–Nd isotopic compositions of hydrothermal calcites and S–Pb isotopic compositions of sulfides were analyzed to constrain the origin of the Maozu deposit. δ13CPDB and δ18OSMOW values of hydrothermal calcites range from −3.7‰ to −2.0‰ and +13.8‰ to +17.5‰, respectively, and plot near the marine carbonate rocks field in a plot of δ13CPDB vs. δ18OSMOW, with a negative correlation. It suggests that CO2 in the hydrothermal fluids was mainly originated from marine carbonate rocks, with limited influence from sedimentary organic matter. δ34SCDT values of sulfides range from +9.9‰ to +19.2‰, similar to that of Cambrian to Triassic seawater sulfate (+15‰ to +35‰) and evaporate (+15‰ to +30‰) in the Cambrian to Triassic sedimentary strata. It suggests that reduced sulfur was derived from evaporate in sedimentary strata by thermo chemical sulfate reduction. Sulfides have low radiogenic Pb isotope compositions (206Pb/204Pb = 18.129–18.375, 207Pb/204Pb = 15.640–15.686 and 208Pb/204Pb = 38.220–38.577) that plot in the field between upper crust and the orogenic belt evolution curve in the plot of 207Pb/204Pb vs. 206Pb/204Pb, and similar to that of age corrected Proterozoic basement rocks (Dongchuan and Kunyang Groups). This indicates that ore-forming metals were mainly derived from basement rocks. Hydrothermal calcite yields a Sm–Nd isotopic age of 196 ± 13 Ma, possibly reflecting the timing of Pb–Zn mineralization in the SYG province, younger than the Permian Emeishan mantle plume (∼260 Ma). All data combined suggests that hydrothermal fluids circulated through basement rocks where they picked up metals and migrated to surface, mixed with reduced sulfur-bearing fluids and precipitated metals. Ore genesis of the Maozu deposit is different from known magmatic–hydrothermal, Sedimentary Exhalative or Mississippi Valley-types, which maybe represent a unique ore deposit type, named as the SYG-type.  相似文献   

19.
The carbon isotopic composition of alkenes from loess-paleosol sequences in China Loess was measured by pyrolysis /gas chromatography /isotopic ratio mass spectrometry. Thermochemolysis products of the insoluble residues were characterized using GC/MS, an…  相似文献   

20.
There are two types of lead–zinc ore bodies, i.e., sandstone-hosted ores (SHO) and limestone-hosted ores (LHO), in the Jinding giant sulfide deposit, Yunnan, SW China. Structural analysis suggests that thrust faults and dome structures are the major structural elements controlling lead–zinc mineralization. The two types of ore bodies are preserved in two thrust sheets in a three-layered structural profile in the framework of the Jinding dome structure. The SHO forms the cap of the dome and LHO bodies are concentrated beneath the SHO cap in the central part of the dome. Quartz, feldspar and calcite, and sphalerite, pyrite, and galena are the dominant mineral components in the sandstone-hosted lead–zinc ores. Quartz and feldspar occur as detrital clasts and are cemented by diagenetic calcite and epigenetic sulfides. The sulfide paragenetic sequence during SHO mineralization is from early pyrite to galena and late sphalerite. Galena occurs mostly in two types of cracks, i.e., crescent-style grain boundary cracks along quartz–pyrite, or rarely along pyrite–pyrite boundaries, and intragranular radial cracks in early pyrite grains surrounding quartz clasts. The radial cracks are more or less perpendicular to the quartz–pyrite grain boundaries and do not show any overall (whole rock) orientation pattern. Their distribution, morphological characteristics, and geometrical relationships with quartz and pyrite grains suggest the predominant role of grain-scale cracking. Thermal expansion cracking is one of the most important mechanisms for the generation of open spaces during galena mineralization. Cracking due to heating or cooling by infiltrating fluids resulted from upwelling fluid phases through fluid passes connecting the SHO and LHO bodies, provided significant spaces for crystallization of galena. The differences in coefficients of thermal expansion between pyrite and quartz led to a difference in volume changes between quartz grains and pyrite grains surrounding them and contributed to cracking of the pyrite grains when temperature changed. Combined thermal expansion and elastic mismatch due to heating and subsequent cooling resulted in the radial and crescent cracking in the pyrite grains and along the quartz–pyrite grain boundaries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号