首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
应用Lamb-Jenkinson大气环流分型方法对横断山脉地区的8个经度×10个纬度范围内1948-2012年逐日平均的海平面气压场进行环流分型,由日平均海平面气压场算出6个环流指数(u、v、V、ξu、ξv、ξ),并由此划分出27种不同的环流型。分型结果表明:横断山脉地区主要环流分型为E型、NE型、SE型、N型和C型,其频率分别为:21.4%、14.6%、13.7%、9.8%和9.5%;E和NE型环流频率逐渐增加,C型环流型频率逐渐减少。春季横断山脉地区主导环流比较繁琐;NE、N型为夏季的主要环流型,但E型环流在夏季的频率也相当大;秋季和冬季横断山脉地区的主导环流型都为E型和SE型。夏季主导环流型持续时间较长,冬季也是主导环流持续的时间较长,个别年份主导环流型持续时间超过了一个月,这主要与横断山脉地区复杂的地形有联系。  相似文献   

4.
The Spinning Enhanced Visible and Infrared Imagery (SEVIRI) instrument, on board the Meteosat Second Generation (MSG), is a radiometer with eight infrared (IR) spectral bands. Seven of these channels are used to retrieve Layer Precipitable Water (LPW) and Stability Analysis Imagery (SAI). Both products are the PGE07 and the PGE08 of SAFNWC (Satellite Application Facility on support to Nowcasting and Very Short-Range Forecasting). The authors at Instituto Nacional de Meteorología (INM) have developed the LPW and SAI algorithms, in the SAFNWC framework. Both products are retrieved using statistical retrieval based on neural networks. The main advantage of these algorithms versus physical retrieval algorithms is the independence from the Numerical Weather Prediction (NWP) models. The LPW provides information on the water vapor contained in a vertical column of unit cross-section area in three layers in the troposphere (low, middle and high) and in the total layer in cloud free areas. The SAI provides estimations of the atmospheric instability in cloud free areas, in particular the Lifted Index (LI).The stability and precipitable water obtained with both products are routinely generated every 15 min at a satellite horizontal resolution of 3 km in NADIR. A significant advantage of these MSG products, compared to traditional measurements such as radiosondes, is their ability to measure high resolution temporal and spatial variations of atmospheric stability and moisture in pre-convective environments. The main disadvantage is that they do not have the vertical resolution of radiosonde. The MSG moisture and stability time trend fields are especially useful during the period preceding the outbreak of convection due to the high resolution. Once the outbreak of convection occurs, the products calculated in the clear air pixels surrounding the convective system will allow to foresee the evolution of the convection.  相似文献   

5.
The problem of error propagation is considered for spatially uncorrelated errors of the barotropic stream function in an oceanic general circulation model (OGCM). Such errors typically occur when altimetric data from satellites are assimilated into ocean models. It is shown that the error decays at first due to the dissipation of the smallest scales in the error field. The error then grows exponentially before it saturates at the value corresponding to the difference between independent realizations. A simple analytic formula for the error behavior is derived; it matches the numerical results documented for the present primitive-equation ocean model, and other models in the literature.  相似文献   

6.
This article describes a new general circulation model (GCM) developed jointly by The University of New South Wales (UNSW) and the University of Hamburg. The model is versatile in that it can be run as a medium-range (1 to 15 days) global numerical weather prediction (NWP) model; as an extended range (15 to 30 days) NWP model; and as a GCM for periods extending from seasons, through annual and decadal periods, and beyond. The model can be coupled with ocean models that vary in complexity from simple "swamp" oceans to complex ocean GCMs. The atmospheric GCM also has a number of novel features, particularly in the numerical integration scheme which is a high-order, mass-conserving, semi-implicit semi-Lagrangian scheme, thereby removing the stability restriction on the time-step and allowing efficient long-term integrations. The emphasis here will be on demonstrating that the new model performs effectively on the usual measures of skill (statistics such as mean errors, root-mean-square errors and anomaly correlations) in several standard applications upon which new models usually are assessed. These applications include medium range weather forecasts out to 10 days on a daily basis over a one year period; a limited 10-year simulation climatology, prediction of atmospheric anomalies using SST anomalies in an El Nino year; and an alternative two-way approach to regional modelling (the "down-scaling problem") made possible because the unconditional stability of the semi-implicit, semi-Lagrangian formulation permits large variations in grid spacing without changing the time step size. Finally, the model is run on a variety of parallel computing platforms and it is shown that near-linear speed-up can be attained. This is significant for both medium range NWP and very long-term GCM integrations. Received: 28 February 1996 / Accepted: 30 July 1996  相似文献   

7.
应用常规资料、海南省乡镇自动站资料和海口多普勒雷达资料,对2013年3月20日海南岛罕见大范围强冰雹过程进行综合分析。结果表明:中层干冷气流叠加在低层暖湿气流上形成对流不稳定层结以及低层逆温为不稳定能量积聚提供了有利条件;中等到强的垂直风切变有利于强对流有组织发展和维持;海陆风辐合和地形抬升是海南低槽类冰雹发生的主要触发机制。该过程先后有4个超级单体产生,其中两个单体由一母体回波分裂后持续发展成为左移超级单体和右移超级单体,左移超级单体出现中反气旋,低层弱回波区位于其移动方向左后侧,右移超级单体出现中气旋,低层弱回波区位于其移动方向右后侧;在适宜的0℃层和-20℃层高度下,发现三体散射或中(反)气旋时立即发布冰雹警报,预报时效最长可提前20~30 min;冰雹发生前55 dBz回波顶在-20℃层高度之上,同时垂直积分液态水含量(VIL)均有跃增过程且其普遍达65kg·m-2时,地面开始测得冰雹,当VIL跃增到60kg·m-2时发布冰雹警报,预报时效最长则可提前1~3个体扫时间(约5~15min),当VIL降至40kg·m-2以下时冰雹过程结束。  相似文献   

8.

使用探空观测资料、NCEP再分析资料及多普勒天气雷达产品等多种气象资料,对2015年4月3日湖南出现的一次大范围不同类型强对流天气过程进行了分析,结果表明:强对流天气过程发生前大气环流出现明显调整;低空西南急流的发展加强、中层干冷空气的卷入为大范围强对流天气提供了有利的环境条件;高层辐散、低层辐合的抽吸作用及气旋性切变、湿斜压强迫作用,是湘东北发生混合对流和极端强降水的主要原因。汉寿在逆温层之上暖湿气流抬升和强垂直风切变作用下产生的冰雹,具有高架雷暴特征。新晃具有较高热力不稳定,在冷暖空气交汇时产生冰雹。雷达产品分析表明,冰雹、雷雨大风发生时分别具有典型的三体散射与中高层较强辐散特征,而短时强降水发生时具有低质心和高效降水效率及列车效应特征。

  相似文献   

9.
The study deals with changes in large-scale atmospheric circulation (represented by circulation types) and associated surface air temperatures as projected in an ensemble of regional climate models (RCMs) from the ENSEMBLES project. We examine changes of circulation type frequencies and means of daily maximum and minimum temperatures within circulation types in individual seasons for two time slices of transient runs under the SRES A1B scenario (2021–2050 and 2071–2100) with respect to the control period (1961–1990). To study the influence of driving data, simulations of the driving general circulation models (GCMs) also are evaluated. We find that all models project changes of atmospheric circulation that are statistically significant for both future time slices. The models tend to project strengthening of the westerly circulation in winter and its weakening in summer. We show that increases of daily maximum and minimum temperatures in all seasons differ for individual circulation types. There are, however, only few features of the projected changes in the future circulation–temperature links that are common among the models, in particular relatively smaller warming for westerly types. Only in winter, projected changes in circulation types tend to contribute to the projected overall warming. This effect is negligible and mostly opposite in the other seasons. We also detect a strong influence of driving data on RCMs’ simulation of atmospheric circulation and temperature changes.  相似文献   

10.
利用ERA-Interim资料,采用改进的变形欧拉平均方法对1979—2011年剩余环流季节内时空结构转换及其演变特征进行了分析。结果表明:(1)150 hPa附近4—8月剩余环流上升中心发生了整体向北移动的趋势,而9月至次年2月则表现为整体向南的移动,并且6—8月和9—11月的移动较为明显,分别向北和向南移动了3.168°和2.277°。(2)对流层内的剩余质量输送显著增强,但是热带环流上升区以及穿越对流层顶进入平流层的输送存在着减弱的趋势。(3)两半球高纬度100 hPa附近从最低平流层向下输送的质量通量以及热带对流层顶附近向上输送的质量通量在各季节年代际变化中基本都是减弱的,仅在6—8月和9—11月北半球向下质量通量出现了增强。  相似文献   

11.
12.
台风系统为中α尺度系统,接近大尺度系统.为了研究环境气流与台风的相互作用,需要将台风从环境风场中分离出来.分别采用时间滤波、空间滤波和动力学方法将2010年第13号(1013号)超强台风“鲶鱼”(Megi)从环境风场中分离出来,对比分离得到的台风环境场,结果表明:时间滤波和空间滤波具有相对的随机性,容易留下台风风场的残留,同时也会减弱环境风场,而采用动力学方法可以将台风“Megi”较好地分离出来.3种方法各有优缺点,采用时间滤波可以使风场、高度场和温度场很好地平衡,但是需要较长的时间序列;空间滤波方法,仅采用一个时刻的时间,方法相对简单易用,但是由于台风风场、高度场和温度场的尺度并不相同,采用同一尺度对台风滤波容易造成风场、高度场和温度场的不平衡;动力学滤波方法分离效果较好,但是相对复杂,在低层也容易产生不平衡的现象.  相似文献   

13.
利用雷达、卫星、风廓线雷达和地面加密区域自动气象站等观测资料,分析了2016年入梅后发生在鄂东地区一次极端强降水事件的中尺度对流系统发生发展过程、结构演变及其传播特征,旨在揭示造成强降水过程中的3个中尺度对流系统(MCS)的触发、发展、维持机理以及它们之间内在的中尺度动力学关系,尤其是地形作用下的低空急流的演变与强降水对流风暴系统相互作用过程。研究表明:(1)与大多数梅雨锋上的强降水带与低空切变线平行分布不同,此次极端强降水雨带呈倾斜的"n"字形,其中两条主雨带近乎与低空切变线垂直;此次极端强降水分别由大别山迎风坡上西北—东南向MCS、湖北中东部平原地区西北—东南向MCS和桐柏—大洪山东侧东北—西南向MCS造成。3个MCS移动缓慢,都具有后向传播的特征。(2)大别山迎风坡上MCS初始雷暴是低空急流下边界不断向下扩展过程中在地形抬升作用下触发的,而湖北中东部平原地区的MCS和桐柏—大洪山东侧MCS的触发、发展、加强都与大别山迎风坡上MCS形成的冷池加速推进形成的出流边界与环境气流形成的强烈辐合抬升作用有关。(3)垂直于大别山的边界层西南急流对山坡上的对流冷池产生的顶托作用不仅平衡了冷池密...  相似文献   

14.
This study focuses on the evolution of large-scale circulations before and after the beginning of the Meiyu and analyzes the formations of the typical vertical circulation pattern associated with Meiyu and its relationship with the Meiyu rainband. Results show that the typical vertical circulation pattern during the Meiyu season is characterized by the ??two-leg??-type pattern in the vorticity field, a typhoon eye-like structure of the equivalent potential temperature field, as well as the sharp gradient of the equivalent potential temperature zone, i.e., the Meiyu front are typically presented in the Meiyu season. Tracking its evolution process, we find that the typical vertical circulation pattern is built at late March and early April along with the rainband locating at the area south to the Yangtze River. This typical pattern and the rainband both advance northward affecting Jianghuai valley since the beginning of Meiyu. Moreover, the typical vertical circulation pattern derived from Meiyu season has been formed in April and corresponds to the reverse of the land-sea thermal contrast between the Eastern Asia and western Pacific Ocean, demonstrating the close relationship of the movement between the rainband and the march of the East Asian subtropical summer monsoon.  相似文献   

15.
By analyzing the results of a realistic ocean general circulation model (OGCM) and conducting a series of idealized OGCM experiments, the dynamics of the Kuroshio Current System is examined. In the realistic configuration, the Kuroshio Current System is successfully simulated when the horizontal resolution of OGCMs is increased from 1/2° to 1/10°. The difference between the two experiments shows a jet, the model’s Kuroshio Extension, and a pair of cyclonic and anticyclonic, “relative,” recirculation gyres (RRGs) on the northern and southern flanks of the jet. We call them recirculation gyres because they share some features with ordinary recirculation gyres in previous studies, and we add the adjective “relative” to emphasize that they may not be apparent in the total field. Similar zonal jet and RRGs are obtained also in the idealized model with a rectangular basin and a flat bottom with a horizontal resolution of 1/6°. The northern RRG is generated by the injection of high potential vorticity (PV) created in the viscous sublayer of the western boundary current, indicating the importance of a no-slip boundary condition. Since there is no streamline with such high PV in the Sverdrup interior, the eastward current in the northern RRG region has to lose its PV anomaly by viscosity before connecting to the interior. In the setup stage this injection of high PV is carried out by many eddies generated from the instability of the western boundary current. This high PV generates the northern RRG, which induces the separation of the western boundary current and the formation of the zonal jet. In the equilibrium state, the anomalous high PV values created in the viscous sublayer are carried eastward in the northern flank of the zonal jet. The southern RRG is due to the classical Rhines–Young mechanism, where low PV values are advected northward within the western boundary inertial sublayer, and closed, PV-conserving streamlines form to the south of the Kuroshio Extension, allowing slow homogenization of the low PV anomalies. The westward-flowing southern branch of this southern RRG stabilizes the inertial western boundary current and prevents its separation in the northern half of the Sverdrup subtropical gyre, where the western boundary current is unstable without the stabilizing effect of the southern RRG. Therefore, in the equilibrium state, the southern RRG should be located just to the north of the center of the Sverdrup subtropical gyre, which is defined as the latitude of the Sverdrup streamfunction maximum. The zonal jet (the Kuroshio Extension) and the northern RRG gyre are formed to the north of the southern RRG. This is our central result. This hypothesis is confirmed by a series of sensitivity experiments where the location of the center of the Sverdrup subtropical gyre is changed without changing the boundaries of the subtropical gyre. The locations of the zonal jets in the observed Kuroshio Current System and Gulf Stream are consistent as well. Sensitivities of the model Kuroshio Current System are also discussed with regard to the horizontal viscosity, strength of the wind stress, and coastline.  相似文献   

16.
张立凤  张铭 《气象科学》2008,28(5):480-487
利用1958-1997年的NCEP/NCAR再分析资料,以南海夏季风爆发日为临界日,分析了季风爆发前后全球平均环流和扰动环流的演变.结果显示,季风爆发前后气候平均场的环流形势是完全不同的,且这一变化是全球性的.从扰动场的演变看,伴随季风的爆发,扰动环流的变化不仅是全球的,而且具有突发性.分析还指出了南海西南季风的来源和三支越赤道气流的作用,特别是南半球环流的变化以及其对南海夏季风爆发的影响.  相似文献   

17.
Summary This paper presents the basic configuration and preliminary performance of a twenty-layer oceanic general circulation model which represents a portion of the recent progress in developing coupled ocean-atmosphere general circulation models made by the authors. The model uses latitude/depthdependent thermohaline-stratification subduction, -coordinate, three-dimensional implicit diffusion, complete convective adjustment, separating and coupling of external and internal modes and Asselin temporal filter, and thermodynamic sea-ice calculation. With seasonally varying climatological forcing at the surface and enhanced surface salinities in the region adjacent Antarctica, the model has been integrated for one thousand years to reach a quasiequilibrium state. Preliminary verification shows that the model is capable of simulating successfully not only many aspects of the upper ocean circulation but also an acceptable thermohaline circulation. The modelled overturning rate of the North Atlantic Deep Water (NADW) is greater than 15Sv. The simulated overturning rate of the Antarctic Bottom Water (AABW) is about 20Sv. The southward outflow of NADW can be identified from not only the meridional overturning streamfunction but also the current fields at four deeper levels from 1455m to 2475m. The AABW northward outflow exists at some bottom levels below 2600m, and mainly flows towards the Pacific basin.Major problems in the present simulation include the underestimate of the NADW outflow, the failure to simulate the Antarctic Intermediate Water (AAIW), the too fresh bottom water and the too diffuse thermocline of the model. A sensitivity experiment has revealed that the model diffusion process has an important impact on the simulation of both the thermocline and the NADW outflow.With 16 Figures  相似文献   

18.
 Effects of the seasonal variation in thermohaline and wind forcing on the abyssal circulation are investigated by using an ocean general circulation model. To isolate effects of the seasonality in the thermohaline forcing from those in the wind forcing, we carry out three experiments with (1) annual-mean wind forcing and perpetual-winter thermohaline forcing, (2) annual-mean wind forcing and seasonal thermohaline forcing, and (3) seasonal wind forcing and seasonal thermohaline forcing. The deep water under the seasonal thermohaline forcing becomes warmer than under the perpetual-winter thermohaline forcing. Although the perpetual-winter thermohaline forcing is widely used and believed to reproduce the deep water better than the annual-mean forcing, the difference between the results of the perpetual-winter and the seasonal thermohaline forcing is significant. The seasonal variation of the Ekman convergence and divergence produces meridional overturning cells extending to the bottom because the period of seasonal cycle is shorter than the adjustment timescale by baroclinic Rossby waves. The heat transport owing to those Ekman flows and temperature anomalies makes the upper water (0–200 m) colder at low to mid-latitudes (40S–40N) and warmer at high latitudes. Also the deep water becomes warmer owing to the warming of the northern North Atlantic, the main source region of North Atlantic Deep Water. The model is also synchronously (i.e., without acceleration) integrated with seasonal forcing for 5400 y. A past study suggested that under seasonal forcing, a sufficient equilibrium state can be achieved after only decades of synchronous integration following more than 10 000 y of accelerated integration. Here, the result so obtained is compared with that of the 5400-y synchronous integration. The difference in the global average temperature is as small as 0.12 °C, and most of the difference is confined to the Southern Ocean. Received: 1 May 1998 / Accepted: 5 January 1999  相似文献   

19.
利用NCEP/DOE再分析资料,通过EOF分解、合成分析和线性回归等多种统计学方法,对年际时间尺度上冬季中东副热带西风急流(Middle East subtropical westerly Jet stream,MEJ)中心位置的变化进行研究,分析了MEJ中心位置的年际变化与大气环流的联系,找到了与MEJ中心位置相联系...  相似文献   

20.
The instability of a symmetric jet moving horizontally, in which two shear layers with opposite shear of the same strength are separated by a central irrotational layer and are adjoined by unbounded, irrotational outer layers, is studied.First, the fluid is assumed to be homogeneous. Two unstable modes are found, the central wave one-quarter wave length out of phase with the outer wave. Mode I consists of central waves being in phase and outer waves being in phase. Mode II consists of central waves being in opposite phase and outer waves being in opposite phase. For a given width of the jet, the thicker the central irrotational layer, the stronger the shear of the shear layers, the stronger the instability. For a fixed ratio of the thickness of central layer to that of the shear layers, mode I is more unstable than mode II.Next, a density jump across the outer interface levels and another density jump across the central interface levels are introduced. The effect of these density jumps on mode I is to reduce the growth of the wave. The wave with equal density jump across every interface level grows somewhat slower than the waves with the entire density jump across outer or central interface levels. For an idealized velocity profile with isentropic layers with an overall Richardson number of 4.9, the linear theory predicts that the amplitude of the wave doubles in about 5 min and the wave-length is 241 m, which compares favorably with 320m obtained in the boundary layer by Gossard et al. (1970). For atmospheric parameters with an overall Richardson number of unity, linear theory predicts that the amplitude of the wave doubles in about % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGOmamaale% aaleaacaaIXaaabaGaaG4maaaaaaa!383C!\[2{\textstyle{1 \over 3}}\] min and the wave-length is about 510 m, which is only slightly larger than the width of the jet.A physical argument is invoked to explain the evolution of finite-amplitude waves.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号