首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

Indo_Gangetic Plain (IGP) of India that stretched from the foothills of Himalayas near the Punjab State to the Gangetic delta in West Bengal State was known for highly fertile soil and favorable climatic condition for highest production of rice‐wheat. Appearance of soil salinity in large areas of IGP caused a major concern due to loss of productivity. The salt affected soils maps of India (NRSA 1997) showed vast areas of salt affected soils distributed along the Gangetic Plain covering the States of Haryana, Punjab, Uttar Pradesh, Bihar and West Bengal. In the analogue form, these maps contain voluminous data were difficult to handle without messing the whole dataset. An attempt was made to prepare a digitized database of salt affected soils to facilitate easy access, retrieval and map calculations required for reclamation and management of salt affected soil. The salt affected soils maps on 1:250, 000 scale were digitized for the States of Punjab, Haryana, Uttar Pradesh, Bihar and West Bengal using ILWIS. GIS. The Survey of India topomap was used for geo‐referencing and basemap preparation overlaying thematic layers for administrative and political boundaries, infrastructure, irrigation and drainage and settlements. The attribute data on physiography and the soil characteristics were stored in an attribute table and linked with the digitized polygons to prepare a relational database. Combining geo‐referenced (State) maps of Haryana, Punjab, Uttar Pradesh, Bihar and West Bengal using GIS, a composite map for Indo‐Gangetic plain was prepared. Four Agroclimatic regions (ACRs) and seventeen Agroclimatic zones (ACZs) were identified in the Indo‐Gangetic Plain (The Planning Commission of India) for planning and development of natural resources at regional level. The boundaries of ACZs and ACRs were delineated from the primary (master) database of IGP using ILWIS.GIS. The distribution of SAS polygons at regional and zonal level was delineated superimposing digitized boundaries of ACRs and ACZs over the master database of IGP. The state‐wise, region‐wise and zone‐wise extent of SAS was calculated. Soils were essentially saline at Lower‐ and Middle Gangetic Plain regions but highly variable and complex saline‐sodic in the Upper‐ and Trans‐Gangetic Plain regions. The area statistics showed that maximum SAS area occurred in ACR V (Upper Gangetic Plain) in Uttar Pradesh (UP) followed by ACR IV (Middle Gangetic Plain) in UP and Bihar, ACR III (Lower Gangetic Plain) in West Bengal and ACR VI (Trans‐Gangetic Plain) of Haryana and Punjab. Such database in digital format provides geo‐referenced, easy to access and retrievable, relational database comprising of thematic and attribute information of salt affected soils at state, regional and zonal level to facilitate overlay and map calculation of related data such as water quality, climatic, landform etc, useful for planning and decision making in reclamation and management of salt affected soils in IGP and other similar regions.  相似文献   

2.
The present study has been carried out to delineate the existing cropping systems in the Indo-Gangetic Plains (IGP) using 10 day composite SPOT VEGETATION (VGT) NDVI data acquired over a crop year (June–May). Results showed that it is feasible to identify the major crops like rice, wheat, sugarcane, potato, and cotton in the dominant growing areas with good accuracy. Double cropping pattern is the most prevalent. Rice-wheat, sugarcane based, cotton-wheat, rice-potato, rice-rice, maize/millet-wheat are some of the major rotations followed. Rice-wheat is the dominant rotation accounting for around 40% of the net sown area. Triple crop rotations was less than 5% of the area and observed in some parts of Uttar Pradesh, Bihar and West Bengal. Single crop rotation of rice-fallow is significant only in West Bengal.  相似文献   

3.
Cropping system study is not only useful to understand the overall sustainability of agricultural system, but also it helps in generating many important parameters which are useful in climate change impact assessment. Considering its importance, Space Applications Centre, took up a project for mapping and characterizing major cropping systems of Indo-Gangetic Plains of India. The study area included the five states of Indo-Gangetic Plains (IGP) of India, i.e. Punjab, Haryana, Uttar Pradesh, Bihar and West Bengal. There were two aspects of the study. The first aspect included state and district level cropping system mapping using multi-date remote sensing (IRS-AWiFS and Radarsat ScanSAR) data. The second part was to characterize the cropping system using moderate spatial resolution multi-date remote sensing data (SPOT VGT NDVI) and ground survey. The remote sensing data was used to compute three cropping system performance indices (Multiple Cropping Index, Area Diversity Index and Cultivated Land Utilization Index). Ground survey was conducted using questionnaires filled up by 1,000 farmers selected from 103 villages based on the cropping systems map. Apart from ground survey, soil and water sampling and quality analysis were carried out to understand the effect of different cropping systems and their management practices. The results showed that, rice-wheat was the major cropping system of the IGP, followed by Rice-Fallow-Fallow and Maize-Wheat. Other major cropping systems of IGP included Sugarcane based, Pearl millet-Wheat, Rice-Fallow-Rice, Cotton-Wheat. The ground survey could identify 77 cropping systems, out of which 38 are rice-based systems. Out of these 77 cropping systems, there were 5 single crop systems, occupying 6.5% coverage (of all cropping system area), 56 double crop systems with 72.7% coverage, and 16 triple crop systems with 20.8% coverage. The cropping system performance analysis showed that the crop diversity was found to be highest in Haryana, while the cropping intensity was highest in Punjab state.  相似文献   

4.
Monitoring of Agricultural crops using remote sensing data is an emerging tool in recent years. Spatial determination of sowing date is an important input of any crop model. Geostationary satellite has the capability to provide data at high temporal interval to monitor vegetation throughout the entire growth period. A study was conducted to estimate the sowing date of wheat crop in major wheat growing states viz. Punjab, Haryana, Uttar Pradesh (UP), Madhya Pradesh (MP), Rajasthan and Bihar. Data acquired by Charged Couple Detector (CCD) onboard Indian geostationary satellite INSAT 3A have continental (Asia) coverage at 1 km?×?1 km spatial resolution in optical spectral bands with high temporal frequency. Daily operational Normalized Difference Vegetation Index (NDVI) product from INSAT 3A CCD available through Meteorological and Oceanographic Satellite Data Archival Centre (MOSDAC) was used to estimate sowing date of wheat crop in selected six states. Daily NDVI data acquired from September 1, 2010 to December 31, 2010 were used in this study. A composite of 7 days was prepared for further analysis of temporal profile of NDVI. Spatial wheat crop map derived from AWiFS (56 m) were re-sampled at INSAT 3A CCD parent resolution and applied over each 7 day composite. The characteristic temporal profiles of 7 day NDVI composite was used to determine sowing date. NDVI profile showed decreasing trend during maturity of kharif crop, minimum value after harvest and increasing trend after emergence of wheat crop. A mathematical model was made to capture the persistent positive slope of NDVI profile after an inflection point. The change in behavior of NDVI profile was detected on the basis of change in NDVI threshold of 0.3 and sowing date was estimated for wheat crop in six states. Seven days has been deducted after it reached to threshold value with persistent positive slope to get sowing date. The clear distinction between early sowing and late sowing regions was observed in study area. Variation of sowing date was observed ranging from November 1 to December 20. The estimated sowing date was validated with the reported sowing date for the known wheat crop regions. The RMSD of 3.2 (n?=?45) has been observed for wheat sowing date. This methodology can also be applied over different crops with the availability of crop maps.  相似文献   

5.
The virtual certainty of the anticipated climate change will continue to raise many questions about its aggregated impact of environmental changes on our regional food security in imminent future. Crop responses to these changes are certain, but its exact characteristics are hardly understood at regional scale due to complex overlapping effects of climate change and anthropogenic manipulation of agro-ecosystem. This study derived phenology of wheat in north India from satellite data and analyzed trends of phenology parameters over last three decades. The most striking change-point period in phenology trends were also derived. The phenology was derived from two sources: (1) STAR-Global vegetation Health Products-NDVI, and (2) GIMMS-NDVI. The results revealed significant earliness in start of growing season (SOS) in Punjab and Haryana while delay was found in Uttar Pradesh (UP). End of the wheat season almost always occurred early, to even those place where SOS was delayed. Length of growing season increased in most of Punjab and northern Haryana whereas its decrease dominated in UP. The early sowing practice of the farmers of the Punjab and Haryana may be one of the adaptation strategies to manage the terminal heat stress in reproductive stage of the crop in the region. The change-point occurred in late 1990s (1998–2000) in Punjab and Haryana, while in eastern UP it was in early 1990s (1990–1995). Despite the difference in temporal aggregation and spatial resolution, both the datasets yielded similar trends, confirming both the robustness of the results and applicability of the datasets over the region. The results demands further research for proper attribution of the effects into its causes and may help devising crop adaption practices to climatic stresses.  相似文献   

6.
The goal of this study was to map rainfed and irrigated rice-fallow cropland areas across South Asia, using MODIS 250?m time-series data and identify where the farming system may be intensified by the inclusion of a short-season crop during the fallow period. Rice-fallow cropland areas are those areas where rice is grown during the kharif growing season (June–October), followed by a fallow during the rabi season (November–February). These cropland areas are not suitable for growing rabi-season rice due to their high water needs, but are suitable for a short -season (≤3 months), low water-consuming grain legumes such as chickpea (Cicer arietinum L.), black gram, green gram, and lentils. Intensification (double-cropping) in this manner can improve smallholder farmer’s incomes and soil health via rich nitrogen-fixation legume crops as well as address food security challenges of ballooning populations without having to expand croplands. Several grain legumes, primarily chickpea, are increasingly grown across Asia as a source of income for smallholder farmers and at the same time providing rich and cheap source of protein that can improve the nutritional quality of diets in the region. The suitability of rainfed and irrigated rice-fallow croplands for grain legume cultivation across South Asia were defined by these identifiers: (a) rice crop is grown during the primary (kharif) crop growing season or during the north-west monsoon season (June–October); (b) same croplands are left fallow during the second (rabi) season or during the south-east monsoon season (November–February); and (c) ability to support low water-consuming, short-growing season (≤3 months) grain legumes (chickpea, black gram, green gram, and lentils) during rabi season. Existing irrigated or rainfed crops such as rice or wheat that were grown during kharif were not considered suitable for growing during the rabi season, because the moisture/water demand of these crops is too high. The study established cropland classes based on the every 16-day 250?m normalized difference vegetation index (NDVI) time series for one year (June 2010–May 2011) of Moderate Resolution Imaging Spectroradiometer (MODIS) data, using spectral matching techniques (SMTs), and extensive field knowledge. Map accuracy was evaluated based on independent ground survey data as well as compared with available sub-national level statistics. The producers’ and users’ accuracies of the cropland fallow classes were between 75% and 82%. The overall accuracy and the kappa coefficient estimated for rice classes were 82% and 0.79, respectively. The analysis estimated approximately 22.3?Mha of suitable rice-fallow areas in South Asia, with 88.3% in India, 0.5% in Pakistan, 1.1% in Sri Lanka, 8.7% in Bangladesh, 1.4% in Nepal, and 0.02% in Bhutan. Decision-makers can target these areas for sustainable intensification of short-duration grain legumes.  相似文献   

7.
Detection of crop water stress is crucial for efficient irrigation water management. Potential of Satellite data to provide spatial and temporal dynamics of crop growth conditions makes it possible to monitor crop water stress at regional level. This study was conducted in parts of western Uttar Pradesh and Haryana. Multi-temporal Landsat data were used for detecting wheat crop water stress using vegetation indices (VIs), viz. vegetation water stress index (VWSI) and land surface wetness index water stress factor (Ws_LSWI). The estimated water stress from satellite data-based VIs was validated by water stress factor (Ws) derived from flux-tower data. The study observed Ws_LSWI to be better index for water stress detection. The results indicated that Ws_LSWI was superior over other index showing RMSE = 0.12, R2 = 0.65, whereas VWSI showed overestimated values with mean RD 4%.  相似文献   

8.
Crop phenological parameters, such as the start and end time of the crop growth, the total length of the growing season, time of peak vegetation and rate of greening and senescence are important for planning crop management and crop diversification/intensification. Multi-temporal remote sensing data provides opportunity to characterize the crop phenology at regional level. This study was conducted during the kharif season of the year 2001–02 for Punjab. The ten-day Normalised Difference Vegetation Index (NDVI) composite products, with 1 km spatial resolution, available from the Vegetation sensor onboard SPOT4 were used for the study. Twenty-one temporal datasets from May 1, 2001 to November 21, 2001 were used. Logical modelling approach was followed to compute the minimum and maximum NDVI, the amplitude of NDVI, the threshold NDVI during sowing and harvest, the crop duration, integrated NDVI and skewness of profile. The analysis showed that before July beginning, in the whole of Punjab, sowing/planting was over. It was found that the crop emergence in the eastern part of the state started earlier than the western region. The maximum NDVI, which represented peak vegetative stage, was above 0.7 and occurred mostly during August. The duration of crops ranged between 90–140 days, with majority between 110–120 days. Total integrated NDVI in Punjab was generally above 60. Using principal component analysis and divergence analysis seven best metrics were selected for crop discrimination.  相似文献   

9.
A study was conducted to improve precision of crop acreage adopting stratified random sampling approach. Remotely sensed data was used to classify mustard crop for the states of Rajasthan, Madhya Pradesh, Uttar Pradesh, Gujarat and Haryana covering 81% of mustard area of India. A grid of size 5 × 5 km was super-imposed on classified image of study area and proportion of mustard crop within the grid was ascertained. Crop proportion was used to determine strata. Stratification was done based on equal interval of proportion, equal sample number and cumulative square root of frequency method. Cumulative square root of frequency method gave highest precision in all the cases.  相似文献   

10.
A national level project on kharif rice identification and acreage estimation is being carried out successfully for several states in the country. A similar methodology based on the temporal profile for identification and delineation of various land cover classes has been followed for the Rabi rice acreage estimation. To define rabi rice, rabi season in India starts from November — February to March — June. Though the main growing season is predominantly winter but the uncertainty of getting cloud free data during the season has resulted in the use of microwave data. A feasibility study was taken up for early forecasting of the rabi rice area using microwave data. Hierarchical decision rule classification technique was used for the identification of the different land cover classes. Land preparation, puddling and transplantation were the reasons for the specific backscatter of rice growing areas. The increase or decrease in the SAR backscatter due to progress in the crop phenology or due to delayed sowing respectively forms the basis for identifying the rice areas. In addition the potential of optical data of a later date has been utilized in the form of various indices from bands including MIR to distinctly separate the late sown areas and also the puddled areas from other areas. This study emphasizes the synergistic use of SAR and optical data for delineating the rabi rice areas which is of immense use in giving an early forecast.  相似文献   

11.
The results emerged out of the studies on spectral reflectance under normal and nitrogen and phosphorus stress condition in soybean (Glycine max L.) conducted at Marathwada Agricultural University experimental farm, Parbhani duringkharif 2004–05 showed that crop growth and bio-physiological parameters viz., Height, chlorophyll, leaf area index and total biomass influenced by pest and disease and nutrient stress resulted in detectable spectral reflectance variation. Poor crop growth, reduced canopy cover, chlorophyll content and biomass production are the effects observed in nutrient deficient crops. These above changes in soybean crop were related to spectral indices (RVI and NDVI) that are resulted in discrimination of stressed and normal (non-stressed) soybean crop.  相似文献   

12.
The paper presents a detailed understanding of nitrogenous fertilizer use in Indian agriculture and estimation of seasonal nitrogen loosses from rice crop in Indo-Gangetic plain region, the ‘food bowl’ of the Indian sub-continent. An integrated methodology was developed for quantification of different forms of nitrogen losses from rice crop using remote sensing derived inputs, field data of fertilizer application, collateral data of soil and rainfall and nitrogen loss coefficients derived from published nitrogen dynamics studies. The spatial patterns of nitrogen losses in autumn or ‘kharif’ and spring or ‘rabi’ season rice at 1 × 1 km grid were generated using image processing and GIS. The nitrogen losses through leaching in form of urea-N, ammonium-N (NH4-N) and nitrate-N (NO3-N) are dominant over ammonia volatilization loss. The study results indicate that nitrogen loss through leaching in kharif and rabi rice is of the order of 34.9% and 39.8% of the applied nitrogenous fertilizer in the Indo-Gangetic plain region. This study provides a significant insight to the role of nitrogenous fertilizer as a major non-point source pollutant from agriculture.  相似文献   

13.
In order to improve the prognostics of yield forecasts two approaches have been explored using NDVI-based growth profiles for wheat crop of 1987-88 and 1990-91 seasons for some districts of Punjab and Haryana. Correlation of yield with variables based on profile area segments and with product of profile segment area and time to peak occurrence of growth cycle have been investigated. While the correlations are low and inconsistent for area variables, the îndex time product moment (IIPM) variable shows consistent and significant correlations and advances the date of forecast by 45-50 days over other approaches.  相似文献   

14.
Hyperspectral remote sensing, because of its large number of narrow bands, has shown possibility of discriminating the crops. Current study was carried out to select the optimum bands for discrimination among pulses, cole crops and ornamental plants using the ground-based Hyperspectral data in Patha village, Lalitpur district, Uttar Pradesh state and Kolkata, West Bengal state. The field observations of reflectance were taken using a 512-channel spectroradiometer with a range of 325–1075 nm. The stepwise discriminant analysis was carried out and separability measures, such as Wilks’ lambda and F-Value were used as criteria for identifying the narrow bands. The analysis showed that, the best four bands for pulse crop discrimination lie mostly in NIR and early MIR regions i.e. 750, 800, 940 and 960 nm. Within cole crops discrimination is primarily determined by the green, red and NIR bands of 550, 690, 740, 770 and 980 nm. The separability study showed the bands 420,470,480,570,730,740, 940, 950, 970, 1030 nm are useful for discriminating flowers.  相似文献   

15.
Sodicland reclamation in the Indo-Gangetic plains is being done on a large scale in the states of Uttar Pradesh, Punjab and Haryana in India. However, in certain areas, the reclamation has been reported to be unsustainable and the soils are reverting back to sodicity condition. A study was conducted in one of the reclamation sites of Etawah district for sustainability assessment of sodic land reclamation using remote sensing, Geographic Information system (GIS) and ancillary ground information. Multitemporal satellite data were used for delineation of reclaimed sodiclands and reverted sodic land. Field survey was conducted to find out the various causative factors. Groundwater level information and detailed field survey data were analysed in GIS environment. Results showed that in the reclamation site covering 3,905 ha. in 57 villages of the district, about 27 per cent of reclaimed lands were reverted to sodicity. High water table condition, improper drainage, nearness to canal (within 500 m), and hard pan in the sub-soil were found to be the reasons for unsustainability of reclamation.  相似文献   

16.
Impact assessment of watershed development activity assumes greater importance in present day agriculture. Considering the ability of remote sensing technology in watershed monitoring and impact assessment, a study was carried out to investigate the Impact Assessment of Karnataka Watershed Development Project (DANIDA) in Koralahallihalla Sub watershed in Sindagi taluk of Bijapur district in Northern Karnataka using satellite data of two periods i.e., IRS 1?C, LISS-III data of 30 December, 1997 (pre-treatment) and IRS P6, LISS-III data of 17 December, 2004 (post-treatment). The land use/land cover map was derived from the supervised classification. The results revealed that there has been no major shift in cropping patterns over a period of 7?years (1997?C2004). However, rabi cropped area has decreased drastically (187?ha), which might be due to the continuous droughts that occurred during the implementation period. On the other hand, kharif and double cropped area have increased marginally (103?ha and 96?ha, respectively). Increase in double cropped area showed that there was increase in irrigated land, which were earlier being used as rainfed and wastelands turned in to cultivated lands as seen in scrub lands and rabi cropped areas of the sub watershed. Wastelands in the sub-watershed has decreased marginally (36?ha). The vegetation vigour of the sub-watershed has been derived from the NDVI maps of both the periods. These NDVI maps indicate that there was a significant change in biomass status of the sub watershed. The vegetation vigour of the area was classified into three classes using NDVI. Substantial increase in the area under high and low biomass levels was observed (319?ha and 77?ha, respectively). The benefit-cost analysis indicates that the use of remote sensing technology was 2 times cheaper than the conventional methods. Thus, the repetitive coverage of the satellite data provides an excellent opportunity to monitor the land resources and evaluate the land cover changes through comparison of images for the watershed at different periods.  相似文献   

17.
An attempt has been made to generate crop growth profiles using multi-date NOAA AVHRR data of wheat-growing season of 1987–88 for the districts of Punjab and Haryana states of India. A profile model proposed by Badhwar was fitted to the multi-date Normalised Difference Vegetation Index (NDVI) values obtained from geographically referenced samples in each district. A novel approach of deriving a set of physiologically meaningful profile parameters has been outlined and the relation of these parameters with district wheat yields has been studied in order to examine the potential of growth profiles for crop-yield modelling. The parameter ‘area under the profile’ is found to be the best estimator of yield. However, with such a parameter time available for prediction gets reduced. Combination of different profile parameters shows improvement in correlation but lacks the consistency for individual state data.  相似文献   

18.
A functional form of crop spectral profile suggested by Badhwar was applied to district-wise wheat Normalised Difference Vegetation Index (NDVI) values relatively normalised by Pseudo-Invariant Feature (urban and built-up) NDVI values, derived from Wide Field Sensor (WiFS) onboard Indian Remote Sensing Satellites (IRS) for 17 dates during 1999–2000 rabi season. The goodness of overall profile fitting and the three basic parameters i.e., crop emergence date (To), and crop specific parameters (a and P) was found to be statistically significant. While a corresponds to profile progressive growth rate, β corresponds to profile decay rate. A comparison with earlier studies in Punjab using NOAA-AVHRR indicated improvement in relation between peak NDVI and wheat yield. The estimated time of spectral emergence and profile-derived peak NDVI follow the observed behaviour of shortened crop pre-anthesis period with delayed sowing.  相似文献   

19.
Satellite-based measurements of aerosols are one of the most effective ways to understand the role of aerosols in climate in terms of spatial and temporal variability. In the present study, we attempted to analyse spatial and temporal variations of satellite derived aerosol optical depth (AOD) over Indian region using moderate resolution imaging spectrometer over a period of 2001–2011. Due to its vast spatial extent, Indian region and adjacent oceanic regions are divided into different zones for analysis. The land mass is sub divided into five different zones such as Indo Gangetic Plain (IGP), Indian mainland, North Eastern India (NE), South India-1 (SI-1), South India-2 (SI-2). Oceanic areas are divided into Arabian Sea and Bay of Bengal. Arabian Sea is further divided as three zones viz. Northern AS (NAS), Central AS (CAS) and Eastern AS (EAS) zones. Bay of Bengal is divided as North BoB (NBoB), West BoB (WBoB), Central BoB (CBoB), and East BoB (EBoB). The study revealed that among all the land regions, IGP showed the highest peak AOD value (0.52 ± 0.17) while SI-2 showed the lower values of AOD in all the months compared to all India average. The maximum AOD is observed during premonsoon season for all regions. During the winter, average AOD levels were substantially lower than the summer averages. Peak of aerosol loading (0.35 ± 0.159) is observed in March over NE region, whereas in all other regions, peak is observed during May. Frequency distribution of long term AOD (<0.2, 0.3–0.5, >0.5) shows a shift of frequency distribution of AOD from <0.3 to 0.3–0.5 during the study period in all regions except IGP. In IGP shift of frequency of AOD values occurs from 0.3–0.5 to >0.5. Oceanic areas also shows seasonal variation of AOD. Over Arabian Sea, high AOD values with greater variations were observed in summer monsoon season while in Bay of Bengal it is observed during winter monsoon. This is due to the high wind speed prevailing in Arabian Sea during monsoon season which results in production of more sea salt aerosol. Highest AOD values are observed over NAS during monsoon season and over NBOB during winter season. Lowest AOD values with its lower variations observed in both the central region of Arabian Sea and Bay of Bengal.  相似文献   

20.
Abstract

While data like HJ-1 CCD images have advantageous spatial characteristics for describing crop properties, the temporal resolution of the data is rather low, which can be easily made worse by cloud contamination. In contrast, although Moderate Resolution Imaging Spectroradiometer (MODIS) can only achieve a spatial resolution of 250 m in its normalised difference vegetation index (NDVI) product, it has a high temporal resolution, covering the Earth up to multiple times per day. To combine the high spatial resolution and high temporal resolution of different data sources, a new method (Spatial and Temporal Adaptive Vegetation index Fusion Model [STAVFM]) for blending NDVI of different spatial and temporal resolutions to produce high spatial–temporal resolution NDVI datasets was developed based on Spatial and Temporal Adaptive Reflectance Fusion Model (STARFM). STAVFM defines a time window according to the temporal variation of crops, takes crop phenophase into consideration and improves the temporal weighting algorithm. The result showed that the new method can combine the temporal information of MODIS NDVI and spatial difference information of HJ-1 CCD NDVI to generate an NDVI dataset with both high spatial and high temporal resolution. An application of the generated NDVI dataset in crop biomass estimation was provided. An average absolute error of 17.2% was achieved. The estimated winter wheat biomass correlated well with observed biomass (R 2 of 0.876). We conclude that the new dataset will improve the application of crop biomass estimation by describing the crop biomass accumulation in detail. There is potential to apply the approach in many other studies, including crop production estimation, crop growth monitoring and agricultural ecosystem carbon cycle research, which will contribute to the implementation of Digital Earth by describing land surface processes in detail.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号