首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Are there some relationships among species diversity and soil chemical properties of high altitude natural grasslands? Plant community composition and chemical properties of soil samples were compared to investigate the relationship between soil and species diversity, and the richness in Tibetan alpine grasslands. Results showed that species diversity was significantly positively related to soil organic matter (SOM), total nitrogen (TN), available nitrogen (AN), total phosphorus (TP), available phosphorus (AP), and available potassium (AK) in the high alpine grasslands. Margalefs species richness index was also significantly positively related to SOM, TN, AN, and TP. Most soil chemical properties showed significantly positive correlation with species diversity and Margalef's richness index. Our results suggested that higher plant species richness index and diversity occurred in more fertile soil habitats in high altitude natural grassland community. In practice, fertilization management for the restoration of degraded grassland should be conducted with reference to the nutrient levels ofnatural grassland without the additional artificial fertilizer and with higher species-diversity and richness index.  相似文献   

2.
Due to high intensity agricultural exploitation since the middle of the 20 th century, farmland gullies have become a pervasive form of water erosion in Northeast China. Yet few researches are concentrated on how topography and land use affect long-term gully development in this region. In this study, gully distribution in a village with an area of 24.2 km~2 in the central Mollisols area of Northeast China in different times were compared by Aerial photography(1968), Quickbird image(2009) and field survey, and factors affecting gully development including land use and topography were analyzed. The results showed that the total gully number decreased from 104 to 69, while occupying area rose from 34.8 ha to 78.4 ha from 1968 to 2009. Fundamental gully distribution had been formed by 1968 as most of 2009′s gullies were evolved from 1968′s gullies′ merge and width expansion process, and new gullies those initiated after 1968 occupied only 7% of total gully area in 2009. Gully area increasing ratio in grassland was the highest and that in forestland was the lowest. The threshold catchment area between simple and complex gully development was around 15 ha to 25 ha. This threshold value sets apart catchment areas that will develop simple or complex gullies in areas with similar environmental conditions. Gully control measurements were urgent because if appropriate gully control implements would not be applied, present gully erosion crisis could be doubled within 50 years.  相似文献   

3.
Gully erosion regionalization of black soil area in northeastern China   总被引:7,自引:0,他引:7  
Gully erosion is the frequent and main form of soil erosion in the black soil area of the northeastern China, which is one of the most important commodity grain production bases in China. It is encroaching upon the fertile farmland there. Regionalization of gully erosion can reveal the spatial distribution and regularity of the development of gully erosion. Based on the eco-geographical regional background features of the black soil area, this study combined the regionalization with influencing factors of the development of gully erosion. GIS spatial analysis, geostatistical analysis, spatial statistics, reclassification, debris polygon processing and map algebra methods were employed. As a result, the black soil area was divided into 12 subregions. The field survey data on type, length, volume and other characteristics indicators of gully erosion were used to calibrate the results. Then the features of every subregion, such as where the gully erosion is, how serious it is, and why it happens and develops, were expounded. The result is not only an essential prerequisite for gully erosion surveys and monitoring, but also an important basis for gully erosion prevention.  相似文献   

4.
The area of land utilized for growing vegetables in greenhouses has expanded rapidly on the Tibetan Plateau over recent decades. However, the effects of greenhouses on soil fertility as well as variations in these effects between the plateau and plain remain unclear on the Tibetan Plateau. This study assessed the effects of vegetable greenhouses in the vicinity of Lhasa, using open field soil as a control. A total of 92 plough layer(0-20 cm depth) soil samples including 54 from greenhouses and 38 from open fields were taken, and soil pH, electrical conductivity(EC), total soluble salt(TS), soil organic matter(SOM), total nitrogen(TN), available phosphorus(AP), and available potassium(AK) were measured. The results reveal that, soil pH was lower 1.0 units in greenhouses than that in open field. TS was higher 82% and AP was higher 160% overall. Similarly, SOM and TN were higher 32% and 46%, respectively, while AK changed slightly at a higher 1% rate. Results also show that soil properties varied depending on cultivation time and vegetable types. Overall, pH continuously decreased with cultivation time while other soil fertility indicators reached a maximum value after nine years of cultivation before starting to decrease. The effect of leafy vegetable planting on soil was slight overall, while the impact of fruits on soil was more serious. Compared with changes in plain greenhouse soil fertility measured across the eastern China, the effects of greenhouses on soil in Lhasa remain relatively limited; and the change in the degree of soil fertility was lower and the extreme values of soil fertility occurred later in Lhasa.  相似文献   

5.
Understanding the relationship between hillslope soil loss with ephemeral gully and rainfall regime is important for soil loss prediction and erosion control. Based on 12-year field observation data, this paper quantified the rainfall regime impacts on soil loss at loessial hillslope with ephemeral gully. According to three rainfall parameters including precipitation (P), rainfall duration (t), and maximum 30-minute rainfall intensity (I 30), 115 rainfall events were classified by using K-mean clustering method and Discriminant Analysis. The results showed that 115 rainfall events could be divided into three rainfall regimes. Rainfall Regime 1 (RR1) had large I 30 values with low precipitation and short duration, while the three rainfall parameters of Rainfall Regime 3 (RR3) were inversely different compared with those of RR1; for Rainfall Regime 2 (RR2), the precipitation, duration and I 30 values were all between those of RR1 and RR3. Compared with RR2 and RR3, RR1 was the dominant rainfall regime for causing soil loss at the loessial hillslope with ephemeral gully, especially for causing extreme soil loss events. PI 30 (Product of P and I 30) was selected as the key index of rainfall characteristics to fit soil loss equations. Two sets of linear regression equations between soil loss and PI 30 with and without rainfall regime classification were fitted. Compared with the equation without rainfall regime classification, the cross validation results of the equations with rainfall regime classification was satisfactory. These results indicated that rainfall regime classification could not only depict rainfall characteristics precisely, but also improve soil loss equation prediction accuracy at loessial hillslope with ephemeral gully.  相似文献   

6.
On the basis of the soil environment investigation in Da'an City, Jilin Province, China, 40 soil samples from main land use types were obtained and tested by standard method. Soil organic matter (SOM), total N (TN), total P (TP), total K (TK), available N (AN), available P (AP) and available K (AK) were chosen as the evaluation factors. A regional soil nutrient evaluation model was developed based on the matter-element model. The results show that the soil samples with nutrient grade Ⅱ-Ⅴ respectively account for 10%, 30%, 32.5% and 27.5%, and those with grade Ⅳ and Ⅴ account for 60% in all samples. The relationship between soil nutrients and land types indicates that the nutrients of farmland are relatively good, with 41.7% of soil samples with the nutrient grade Ⅳ and Ⅴ. The nutrients of saline-alkali land and sandy land are the worst, with 100% of soil samples with the nutrient grade Ⅳ and Ⅴ. And the ratios of soil samples grade Ⅳ and Ⅴ in grassland and wasteland are respectively 62.5 % and 54.55%. Generally speaking, the soil nutrients status in Da'an City is poor, 60% of soil samples are in poor and extremely poor conditions, indicating that the soil has been severely eroded. Being a relatively superior evaluation method with more accurate resuits and spatial distribution consistency, matter-element analysis is more suitable for regional soil nutrient evaluation than previous models.  相似文献   

7.
The Middle Mountains is one of the regions of Nepal most vulnerable to water erosion, where fragile geology, steep topography, anomalous climatic conditions, and intensive human activity have resulted in serious soil erosion and enhanced land degradation. Based on the 137Cs tracing method, spatial variations in soil erosion, organic carbon, and total nitrogen (TN) in terraced fields lacking field banks and forestland were determined. Soil samples were collected at approximately 5 m and 20 m intervals along terraced field series and forestland transects respectively. Mean 137Cs inventories of the four soil cores from the reference site was estimated at 574.33 ± 126.22 Bq m-2 (1 Bq (i.e., one Becquerel) is equal to 1 disintegration per second (1 dps)). For each terrace, the 137Cs inventory generally increased from upper to lower slope positions, accompanied by a decrease in the soil erosion rate. Along the entire terraced toposequence, 137Cs data showed that abrupt changes in soil erosion rates could occur between the lower part of the upper terrace and the upper part of the immediate terrace within a small distance. This result indicated that tillage erosion is also a dominant erosion type in the sloping farmland of this area. At the same time, we observed a fluctuant decrease in soil erosion rates for the whole terraced toposequence as well as a net deposition at the toe terrace. Although steep terraces (lacking banks and hedgerows) to some extent could act to limit soil sediment accumulation in catchments, soil erosion in the terraced field was determined to be serious. For forestland, with the exception of serious soil erosion that had taken place at the top of slopes due to concentrated flows from a country road situated above the forestland site, spatial variation in soil erosion was similar to the “standard” water erosion model. Soil organic carbon (SOC) and TN inventories showed similar spatial patterns to the 137Cs inventory for both toposequences investigated. However, due to the different dominant erosion processes between the two, we found similar patterns between the <0.002 mm soil particle size fraction (clay sized) and 137Cs inventories in terraced fields, while different patterns could be found between 137Cs inventories and the <0.002 mm soil particle size fraction in the forestland site. Such results confirm that 137Cs can successfully trace soil erosion, SOC and soil nitrogen dynamics in steep terraced fields and forestland in the Middle Mountains of Nepal.  相似文献   

8.
沟蚀是土壤侵蚀研究的主要内容之一,地形地貌是沟蚀的一个重要影响因子。本文以安塞纸坊沟流域作为研究区域,选择土地利用方式、土壤类型、坡度坡长因子、平面曲率、坡向和地形湿度指数6个因子,通过因子内切沟所占比重/整个研究区切沟所占比重计算各个因子的权重值,通过空间叠加分析土壤侵蚀敏感性,并通过重分类的方法把土壤侵蚀敏感性分为基本无侵蚀、轻度侵蚀、中度侵蚀、强度侵蚀、剧烈侵蚀5个等级,来研究切沟侵蚀与地形的关系。结果表明:切沟多发生在坡度坡长较大、地表湿度较高的林草地区域和更容易发生侵蚀的黄绵土区域,并且多分布在阴坡的凹面;对比分析切沟侵蚀和土壤侵蚀敏感性,切沟大多分布在中等侵蚀敏感性以上的区域,约占总切沟的90%;实验权重值对验证区冲沟的响应精度为82.43%(中度侵蚀及其以后阶段),与实际值90.53%相差不大,说明此种方法对黄土丘陵沟壑区具有一定适用性,对黄土丘陵沟壑区水土保持工作有重要意义。  相似文献   

9.
Soil type maps at the scale of I Z 1 000 000 are used extensively to provide soil spatial distribution information for soil erosion assessment and watershed management models in China. However, the soil property maps produced through conventional direct linking method usually suffer low accuracy as well as the lack of spatial details within a soil type polygon. This paper presents an effective method to produce detailed soil property map based on representative samples which were extracted from each polygon on the 1 : 1 000 000 soil type map. The representative sample of each polygon is defined as the location that can represent the largest area within the polygon. The representativeness of a candidate sample is determined by calculating the soil-forming environment condition similarities between the sample and other locations. Once the representative sample of each polygon has been chosen, the property values of the existing typical samples are assigned to the corresponding representative samples with the same soil type. Finally, based on these representative samples, the detailed soil property map could be produced by using existing digital soil mapping methods. The case study in XuanCheng City, Anhui Province of China, demonstrated the proposed method could produce soil property map at a higher level of spatial details and accuracy: 1) The soil organic matter (SOM) map produced based on the representative samples can not only depict the detailed spatial distribution of SOM within a soil type polygon but also largely reduce the abrupt change of soil property at the boundaries of two adjacent polygons. 2) The Root Mean Squared Error (RMSE) of the SOM map based on the representative samples is 1.61, and it is 1.37 for the SOM map produced by using conventional direct linking method. Therefore, the proposed method is an effective approach to produce spatial detailed soil property map with higher accuracy for environment simulation models.  相似文献   

10.
Quantification of soil spatial and temporal variability at watershed scale is important in ecological modeling, precision agriculture, and natural resources management. The spatio-temporal variations of soil nitrogen under different land uses in a small watershed (12.10 km2) in the hilly area of purple soil at the upper reaches of the Yangtze River in southwestern China were investigated by using conventional statistics, geostatistics, and a geographical information system in order to provide information for land management and control of environmental issues. A total of 552 soil samples (0 to 15 cm) from 276 sites within the watershed were collected in April and August of 2011, and analyzed for soil total nitrogen (STN) and nitrate nitrogen (NO3-N). We compared spatial variations of STN and NO3-N under different land uses as well as the temporal variations in April (dry season) and August (rainy season). Results showed that STN contents were deeply affected by land-use types; median STN values ranged from 0.94 to 1.27 g·kg?1, and STN contents decreased in the following order: paddy field > forestland > sloping cropland. No significant difference was found for STN contents between April and August under the same land use. However, NO3-N contents were 23.26, 10.58, and 26.19 mg·kg?1 in April, and 1.34, 8.51, and 3.00 mg·kg?1 in August for the paddy field, sloping cropland and forestland, respectively. Nugget ratios for STN indicated moderate spatial dependence in the paddy field and sloping cropland, and a strong spatial dependence in forestland. The processes of nitrogen movement, transformation, absorption of plant were deeply influenced by land use types; as a result, great changes of soil nitrogen levels at spatial and temporal scales were demonstrated in the studied watershed.  相似文献   

11.
Accelerated soil erosion and land degradation represent major environmental problems for agricultural lands.Reliable information on the rates of soil loss is urgently needed.The traditional techniques for documenting rates of soil loss may meet this need,but face many limitations.The fallout radionuclides,especially 137 Cs and 210 Pb ex,are increasingly used as effective tracers to quantify soil erosion rates,and they represent a valuable complement to the existing classical methods.This paper aims to introduce the basis for assessing soil erosion rates on cultivated and uncultivated slopes by using 137 Cs and 210 Pb ex measurements,to compare the 137 Cs and 210 Pb ex reference inventories,and to report several case studies undertaken in the hilly area of Sichuan Basin and the Three Gorges area of China.  相似文献   

12.
Four soil types(peat, marsh, meadow, and sandy) in the Zoige Plateau of China are associated with the severity of wetland degradation. The effects of wetland degradation on the structure and abundance of fungal communities and cellulase activity were assessed in these 4 soil types at 3 depths using DGGE(Denatured Gradient Gel Electrophoresis), q PCR(Quantitative Real-time PCR),and 3,5-dinitrosalicylic acid assays. Cellulase activity and abundance of the fungal community declined in parallel to the level of wetland degradation(from least to most disturbed). DGGE analysis indicated a major shift in composition of fungal communities among the4 soil types consistent with the level of degradation.Water content(WC), organic carbon(OC), total nitrogen(TN), total phosphorus(TP), available nitrogen(AN), and available phosphorus(AP) were strongly correlated with cellulase activity and the structure and abundance of the fungal community.The results indicate that soil physicochemical properties(WC, OC, TN, TP, AN, and AP), cellulase activity, and diversity and abundance of fungal communities are sensitive indicators of the relative level of wetland degradation. WC was the major factorinvolved in Zoige wetland degradation and lower WC levels contributed to declines in the abundance and diversity of the fungal community and reduction in cellulase activity.  相似文献   

13.
Soil carbon and nutrient contents and their importance in advancing our understanding of biogeochemical cycling in terrestrial ecosystem, has motivated ecologists to find their spatial patterns in various geographical area. Few studies have focused on changes in the physical and chemical properties of soils at high altitudes. Our aim was to identify the spatial distribution of soil physical and chemical properties in cold and arid climatic region. We also tried to explore relationship between soil organic carbon (SOC) and total nitrogen (TN), total phosphorus (TP), available nitrogen (AN), available phosphorus (AP), soil particle size distribution (PSD). Samples were collected at 44 sites along a 300 km transect across the alpine grassland of northern Tibet. The study results showed that grassland type was the main factor influencing SOC, TN and TP distribution along the Gangdise Mountain-Shenzha-Shuanghu Transect. SOC, TN and TP contents were significantly higher in alpine meadow than alpine steppe ecosystems. SOC, TN, TP and AN contents in two soil layers (0-15 cm and 15-30 cm) showed no significant differences, while AP content in top soil (0-15 cm) was significantly higher than that in sub-top soil (15-30 cm). SOC content was correlated positively with TN and TP content (r = 0.901 and 0.510, respectively). No correlations were detected for clay content and fractal dimension of particle size distribution (D). Our study results indicated the effects of vegetation on soil C, N and P seem to be more important than that of rocks itself along latitude gradient on the northern Tibetan Plateau. However, we did not found similar impacts of vegetation on soil properties in depth. Inaddition, this study also provided an interesting contribution to the global data pool on soil carbon stocks.  相似文献   

14.
The effect of land use change on soil and water quality in northern Iran   总被引:1,自引:1,他引:0  
Rapid urbanization has led to extensive land-use changes,particularly in developing countries.This research is aimed to investigate the role of land use and its effect on soil and water quality in Ziarat watershed focusing on four land uses:forest,pasture,cultivated and urban development.Soil samples were taken from a depth of 0-30 cm on each land use and were analyzed by completely randomized split-plot design in two geographical directions.Results showed that bulk density(BD),electrical conductivity(EC),pH,calcium carbonate equivalent(CCE),and soil particle density(DS) of the soil samples in pastures,cultivated and urban areas increased and the mean weight diameter(MWD),soil porosity(F),organic carbons(OC),total nitrogen(TN),exchangeable cations(Ca 2+,Mg 2+,K +,Na +),cation exchange capacity(CEC) and soil microbial respirations(SMR) decreased,respectively in comparison with the forest soils.For water quality evaluations,sodium adsorption ratio(SAR),electrical conductivity(EC),pH,total dissolved solids(TDS),bicarbonate(HCO 3),chloride(Cl),total hardness(TH),calcium(Ca 2+),potassium(K +),sodium(Na +) and magnesium(Mg 2+) were investigated in two areas:Nahrkhoran and Abgir stations.Results showed that the concentration of TDS,EC and HCO 3 in Naharkhoran station is higher than that in Abgir station.On the other hand,the concentration of TDS,EC and HCO 3 in Abgir station are the relatively higher due to its location.Total hardness had the same trend during the study years except in the last three years;however,TH showed an increase of 25% TH in Naharkhoran for the last two years.Cl,K + and SAR in Naharkhoran station increased by 61%,22%,78% and 56% respectively,in comparison with Abgir station.This study demonstrated that the trend of soil degradation and mismanagement of land use may increase the frequency of urban floods and human health problems.  相似文献   

15.
The water erosion prediction project(WEPP) model is a popular water erosion prediction tool developed on the basis of the physical processes of water erosion.Although WEPP has been widely used around the world,its application in China is still insufficient.In this study,the performance of WEPP used to estimate the runoff and soil loss on purple soil(Calcaric Regosols in FAO taxonomy) sloping cropland was assessed with the data from runoff plots under simulated rainfall conditions.Based on measured soil properties,runoff and erosion parameters,namely effective hydraulic conductivity,inter-rill erodibility,rill erodibility,and critical shear stress were determined to be 2.68 mm h-1,5.54 × 106 kg s-1 m 4,0.027 s m 1 and 3.5 Pa,respectively,by using the recommended equations in the WEPP user manual.The simulated results were not good due to the low Nash efficiency of 0.41 for runoff and negative Nash efficiency for soil loss.After the four parameters were calibrated,WEPP performed better for soil loss prediction with a Nash efficiency of 0.76.The different results indicated that the equations recommended by WEPP to calculate parameters such as erodiblity and critical shear stress are not suitable for the purple soil areas,Sichuan Province,China.Although the predicted results can be accepted by optimizing the runoff and erosion parameters,more research related to the determination of erodibility and critical sheer stress must be conducted to improve the application of WEPP in the purple soil areas.  相似文献   

16.
Gully feature mapping is an indispensable prerequisite for the motioning and control of gully erosion which is a widespread natural hazard. The increasing availability of high-resolution Digital Elevation Model (DEM) and remote sensing imagery, combined with developed object-based methods enables automatic gully feature mapping. But still few studies have specifically focused on gully feature mapping on different scales. In this study, an object-based approach to two-level gully feature mapping, including gully-affected areas and bank gullies, was developed and tested on 1-m DEM and Worldview-3 imagery of a catchment in the Chinese Loess Plateau. The methodology includes a sequence of data preparation, image segmentation, metric calculation, and random forest based classification. The results of the two-level mapping were based on a random forest model after investigating the effects of feature selection and class-imbalance problem. Results show that the segmentation strategy adopted in this paper which considers the topographic information and optimal parameter combination can improve the segmentation results. The distribution of the gully-affected area is closely related to topographic information, however, the spectral features are more dominant for bank gully mapping. The highest overall accuracy of the gully-affected area mapping was 93.06% with four topographic features. The highest overall accuracy of bank gully mapping is 78.5% when all features are adopted. The proposed approach is a creditable option for hierarchical mapping of gully feature information, which is suitable for the application in hily Loess Plateau region.  相似文献   

17.
The Revised Universal Soil Loss Equation(RUSLE) was applied to assess the spatial distribution and dynamic properties of soil loss with geographic information system(GIS) and remote sensing(RS) technologies.To improve the accuracy of soil-erosion estimates,a new C-factor estimation model was developed based on land cover and time series normalized difference vegetation index(NDVI) datasets.The new C-factor was then applied in the RUSLE to integrate rainfall,soil,vegetation,and topography data of different periods,and thus monitor the distribution of soil erosion patterns and their dynamics during a 30-year period of the upstream watershed of Miyun Reservoir(UWMR),China.The results showed that the new C-factor estimation method,which considers land cover status and dynamics,and explicitly incorporates within-land cover variability,was more rational,quantitative,and reliable.An average annual soil loss in UWMR of 25.68,21.04,and 16.80 t ha-1a-1was estimated for 1990,2000 and 2010,respectively,corroborated by comparing spatial and temporal variation in sediment yield.Between 2000 and 2010,a 1.38% average annual increase was observed in the area of lands that lost less than 5 t ha-1a-1,while during 1990-2000 such lands only increased on average by 0.46%.Areas that classified as severe,very severe and extremely severe accounted for 5.68% of the total UWMR in 2010,and primarily occurred in dry areas or grasslands of sloping fields.The reason for the change in rate of soil loss is explained by an increased appreciation of soil conservation by developers and planners.Moreover,we recommend that UWMR watershed adopt further conservation measures such as terraced plowing of dry land,afforestation,or grassland enclosures as part of a concerted effort to reduce on-going soil erosion.  相似文献   

18.
Soil erosion and associated off-site sedimentation are threatening the sustainable use of the Three Gorges Dam.To initiate management intervention to reduce sediment yields,there is an increasing need for reliable information on soil erosion in the Three Gorges Reservoir Region(TGRR).The purpose of this study is to use 137 Cs tracing methods to construct a sediment budget for a small agricultural catchment in the TGRR.Cores were taken from a pond and from paddy fields,for 137 Cs measurements.The results show that the average sedimentation rate in the pond since 1963 is 1.50 g cm-2 yr-1 and the corresponding amount of sediment deposited is 1,553 t.The surface erosion rate for the sloping cultivated lands and the sedimentation rate in the paddy fields were estimated to be 3,770 t km-2 yr-1 and 2,600 t km-2 yr-1,respectively.Based on the estimated erosion and deposition rates,and the area of each unit,the post 1970 sediment budget for the catchment has been constructed.A sediment delivery ratio of 0.5 has been estimated for the past 42 years.The data indicate that the sloping cultivated lands are the primary sediment source areas,and that the paddy fields are deposition zones.The typical land use pattern(with the upper parts characterized by sloping cultivated land and the lower parts by paddy fields) plays an important role in reducing sediment yield from agricultural catchments in the TGRR.A 137 Cs profile for the sediment deposited in a pond is shown to provide an effective means of estimating the land surface erosion rate in the upstream catchment.  相似文献   

19.
Soil nitrogen(N) is critical to ecosystem services and environmental quality. Hotspots of soil N in areas with high soil moisture have been widely studied, however, their spatial distribution and their linkage with soil N variation have seldom been examined at a catchment scale in areas with low soil water content. We investigated the spatial variation of soil N and its hotspots in a mixed land cover catchment on the Chinese Loess Plateau and used multiple statistical methods to evaluate the effects of the critical environmental factors on soil N variation and potential hotspots. The results demonstrated that land cover, soil moisture, elevation, plan curvature and flow accumulation were the dominant factors affecting the spatial variation of soil nitrate(NN), while land cover and slope aspect were the most important factors impacting the spatial distribution of soil ammonium(AN) and total nitrogen(TN). In the studied catchment, the forestland, gully land and grassland were found to be the potential hotspots of soil NN, AN and TN accumulation, respectively. We concluded that land cover and slope aspect could be proxies to determine the potential hotspots of soil N at the catchment scale. Overall, land cover was the most important factor that resulted in the spatial variations of soil N. The findings may help us to better understand the environmental factors affecting soil N hotspots and their spatial variation at the catchment scale in terrestrial ecosystems.  相似文献   

20.
《山地科学学报》2021,18(10):2742-2760
The gully is the most dynamic and changeable landform unit on the Loess Plateau, and the characteristics of gully landforms are key indicators of gully evolution. Different gully profiles are connected and combined through runoff nodes. Thus, it is necessary to cluster gully profiles into a gully profile combination(GPC) to reveal the spatial variation in gully landforms throughout the Loess Plateau. First, the gradient and gully evolution index(GEI) of two sample areas in Changwu and Suide in Shaanxi Province, China are calculated and analysed based on GPC. Then, the gradient and GEI are calculated by using 90-m-resolution digital elevation model(DEM) data for the severe soil erosion area with the basin as the research unit. On this basis, the spatial variation in the development degree is analysed with Getis-Ord Gi*. The results show that the degree of gully undercutting decreases from southeast to northwest under the influence of rainfall. Due to the soil properties, the loess in the northwest is more prone to collapse, resulting in the decrease of GEI from northwest to southeast. The development degree of gullies is closely related to rivers. The strong erosive capacity of rivers leads to greater differences in gullies within the basin. At the same time, the skewness and kurtosis of the gully index in the basin are correlated; when the distribution of the gully index in the basin is less normal, the distribution of the gully index is more concentrated. These results reveal the spatial variation characteristics of the Loess Plateau based on GPC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号