首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
《Oceanologica Acta》1999,22(3):291-302
The time-course evolution of ammonium concentration has been examined in the flood water during the first 25 min of tidal inundation. The way this transport fluctuates with the tidal ranges and wind conditions was investigated. Flood water was collected at three sites, located along a transect from the lower to the upper intertidal area of the Tagus estuary. At spring and intermediate tides, the periods of air exposure vary slightly along the transect due to the high tidal amplitude and the flatness of the area, but the upper site remains uncovered at neap tide over the entire tidal cycle. At each site, sampling was performed at different tidal ranges covering the neap-spring tidal cycle and wind conditions. Ammonium was determined in the flood water at short time intervals: 1, 2, 3, 4, 5, 10, 15, 20 and 25 min. A clear pattern was observed along the transect: considerable quantities of ammonium were exported from the sediment to the water column at the beginning of the inundation, ranging from 0.2 to 4.8 mmol m−2 d−1. The highest transport was recorded at the lower intertidal site under spring tide conditions, which corresponds to the higher energetic situation and shorter emersion period. The lowest transport was observed at the upper intertidal site during the first inundation that followed three days of neap tide and continuous exposure of the sediment to the air. The value rates (0.2–4.8 mmol m−2 d−1) were one order of magnitude higher than those calculated from molecular diffusion (0.07 – 0.16 mmol m−2 d−1). This study points to the importance of the tidal flushing of ammonium from the intertidal sediments, and its spatial and tidal fluctuation.  相似文献   

2.
The temporal dynamics of two seagrass species, Zostera marina and Z. japonica, were monitored monthly in Dadae Bay, Geoje Island, on the southern coast of Korea. Plant morphological characteristics, shoot density, biomass, leaf production, reproductive effort, and environmental characteristics were monitored from July 2001 to July 2002. Zostera japonica occurred in the intertidal zone and Z. marina occurred in the subtidal zone from 0.5 to 2.5 m below the mean low water level. Shoots and rhizomes were significantly larger in Z. marina than in Z. japonica, whereas the shoot density was greater in Z. japonica than in Z. marina. Despite differences in morphology and shoot density, biomass did not differ significantly between the species. Reproduction occurred from April to June in Z. marina and from May to July in Z. japonica. The proportion of reproductive shoots was approximately three times higher in Z. marina than in Z. japonica. Seasonal variation in the biomass of Z. japonica was caused by changes in both shoot size and density, whereas that of Z. marina was mainly caused by changes in shoot length. Leaf production in Z. marina and Z. japonica showed clear seasonal variation, and leaf production in Z. marina (2.6 ± 0.2 g DW·m−2·day−1) was higher than that in Z. japonica (1.7 ± 0.2 g DW·m−2·day−1). The mean plastochrone interval was not significantly different between the two species, whereas the leaf lifetime of Z. marina was longer (69 ± 7.8 days) than that of Z. japonica (59 ± 8.3 days). Our results indicated that seasonal leaf growth patterns in Z. japonica are correlated with irradiance and temperature, whereas those in Z. marina respond most to irradiance. Seasonal changes in irradiance appeared to control the temporal variation in above‐ground biomass in both species.  相似文献   

3.
江苏小庙洪牡蛎礁的地貌-沉积特征   总被引:6,自引:3,他引:6  
利用卫星影象和野外实地勘察资料对江苏小庙洪牡蛎礁的地貌-沉积特征进行分析。结果表明,该牡蛎礁发育在强潮淤泥质潮坪上,造礁牡蛎主要是近江牡蛎和长牡蛎,表层的鲜活牡蛎为褶牡蛎。牡蛎礁区海水属盐度较高(27—30)的半成水,含沙量较大,为0.2—0.3g/L。活体牡蛎堆积体顶面高于周围潮间下带滩面1.0—1.5m。潮流较强,多在0.5—2.0m/s。海岸剖面可分为4个带,即礁后潮间带、潮沟、礁体生长带及礁前斜坡带。由于处于海岸侵蚀段,礁后潮坪缺失潮上带和大部分的潮间上带。礁后潮坪主要以粗粉砂为主,礁后潮沟冲淤变化较大,故礁体生长带时而为一沙洲,时而又与岸滩相连。礁体生长带分布在潮间下带,可看到独立的斑状礁体、带状礁体和大面积环状礁体群。环状礁的微地貌可以划分为礁塘(泻湖)、塘口和塘沟、塘口三角洲、礁墙和礁平台等。  相似文献   

4.
The spatial variability of seagrass meadows in Arcachon Bay, was studied between 1988 and 2008 using a combination of mapping techniques based on aerial photographs for intertidal dwarf-grass (Zostera noltii) beds and acoustic sonar for permanently submerged eelgrass (Zostera marina) populations. The results show a severe decline over the period for both species, as well as an acceleration of the decline since 2005 for Z. noltii. The total surface regression over the studied period is estimated to be 22.8 km2 for Z. noltii and 2.7 km2 for Z. marina, which represent declines of 33 and 74% respectively.  相似文献   

5.
《Oceanologica Acta》1998,21(2):293-305
In the Urdaibai estuary, despite its small volume in relation to the tidal prism, phytoplankton grows massively in the upper and intermediate zones of the estuary during summer when rainfall is low to moderate. Data obtained in 23 sampling transects along the longitudinal axis of the estuary, undertaken in July 1993 and August 1994, showed three distinct zones in terms of the phytoplankton species composition: in the upper zone the phytoplankton assemblage was dominated by the diatoms Cyclotella spp., the dinoflagellate Glenodinium foliaceum, cryptophytes and euglenophytes; in the intermediate zone the diatom Chaetoceros ceratosporus, the dinoflagellates Peridinium quinquecorne and Prorocentrum minimum and cryptophytes were the most abundant; in the lower zone diatoms such as Leptocylindricus danicus and Skeletonema costatum together with the dinoflagellates Prorocentrum spp. were dominant. The distribution and abundance of these phytoplankton forms is discussed in relation to variations in salinity, water column stratification, nutrients and temperature, which in turn vary mainly as a function of meteorological conditions (i.e. rainfall, irradiance) and tidal amplitude. The longitudinal distribution of phytoplankton cells suggests that the diatoms Cyclotella spp. and Chaetoceros ceratosporus undergo a greater dispersion along the estuary during rain events than the flagellates, thus contributing to the transport of silica to the outer areas of the estuary.  相似文献   

6.
A numerical study of tidal asymmetry in Okatee Creek,South Carolina   总被引:1,自引:0,他引:1  
The Okatee River, South Carolina is characterized by a narrow tidal channel and an extensive area of intertidal salt marshes. Current measurements in the upstream portion Okatee Creek show that tidal flow features an asymmetric pattern: ebb current is stronger than flood current. The ebb dominance is mainly caused by deformation of the dominant astronomical tidal constituent M2. An unstructured grid, finite volume coastal ocean model (FVCOM) with wet-dry point treatment method is applied to examine physical mechanisms of M4 overtide generation. Model experiments show that mean absolute amplitude and phase errors are 3.1 cm and 1.7° for M2 elevation, 2.4 cm s−1 and 0.8° for M2 current major axis, 2.1 cm and 1.8° for M4 elevation, and 2.1 cm s−1 and 24.6° for M4 current major axis. The overall pattern of tidal asymmetry is qualitatively reproduced. Various sensitivity experiments suggest that the generation of M4 overtide is a result of nonlinear interaction of tidal currents with irregular creek geometry and bottom topography. Consistent with the classical view, the large volume of intertidal water storage is the major reason for ebb dominance in the creek. However, the zero-inertia assumption (i.e., negligible advective terms) is probably not valid for the entire tidal cycle. Besides the pressure gradient force and the bottom friction force, terms related to lateral shear of the along-estuary velocity (i.e., advective inertia and horizontal eddy viscosity) may also contribute in horizontal momentum balance. Exclusion of the flooding-draining processes over the intertidal zone will severely underestimate tidal currents in the river channel and make the tidal asymmetry less prominent.  相似文献   

7.
Measurements of velocity profiles, bathymetry, and surface sediment characteristics across eelgrass (Zostera marina L.) meadows yielded information on community development processes and functional attributes of this ecosystem. Height/length ratios of the meadows were positively correlated with tidal current velocity. Low, medium, and high current regimes were separated by surface current velocities of approximately 50 and 90 cm s?1. Z. marina can tolerate approximately 120–150 cm/sec current velocities in the areas studied. Per cent silt-clay and organic matter content of the surface sediments are negatively associated with shear velocity, suggesting that meadows in high current areas are sources while meadows in low current areas are sinks of autochthonous detritus. Current velocity maintains seagrass meadows at different equilibrium levels (relative climaxes). We theorize these different equilibrium levels provide unequal habitat utilization potentials for the associated faunal community.  相似文献   

8.
The effect of blue mussel (Mytilus edulis) presence in eelgrass (Zostera marina) beds was studied from June 2004 to July 2005 in Flensborg fjord, Denmark. The field experiments were conducted at two stations, one with only Z. marina (Eelgrass station) present and one where M. edulis were present in the Z. marina beds (Mixed station). Zostera marina parameters were measured (growth of leaves, shoot density, leaf length, and nutrient content) in combination with epiphyte cover and sediment parameters (sulphate reduction rates, sediment nutrient fluxes, organic content, C, N and P content) to examine possible positive and negative effects of the mussels on eelgrass performance. The fluxes of ammonium from the sediments were stimulated at all sampling dates at the Mixed station, and possibly stimulated epiphyte growth at this station. Further 15N signals in epiphytes from the Mixed station suggested that excretion products from the mussels were important nitrogen sources at this station. Sulphate reduction rates were enhanced at the Mixed station and also sediment sulphide concentrations increased under mussel influence, which may have resulted in sulphide toxicity and decreased growth of Z. marina at this station. The study indicates that for Z. marina beds in Flensborg Fjord the effects of M. edulis in seagrass beds are primarily negative, and raises the question whether this leads to negative effects on the stability and expansion of Z. marina beds.  相似文献   

9.
Among the seagrasses that occur along the coast of Korea, Zostera asiatica inhabits the deepest depth; however, to date, there is limited information on its ecology. This study presents the first quantitative data on the seasonal growth dynamics of Z. asiatica in Korea. We measured seasonal growth and morphological characteristics, as well as environmental factors, including underwater irradiance, water temperature, salinity and nutrient concentrations of the water column and sediment pore water, bimonthly from July 2012 to May 2015. Underwater irradiance showed clear seasonal trends, increasing in the spring and summer and decreasing in the fall and winter, ranging from 2.4 ± 0.2 mol photons m-2 d-1 in November 2012 to 12.8 ± 1.3 mol photons m-2 d-1 in July 2014. Water temperature also followed a strong seasonal trend similar to underwater irradiance, ranging from 9.8 ± 0.1°C in January 2013 to 20.5 ± 0.2°C in September 2013. Nutrient availability fluctuated substantially, but there was no evidence of distinct seasonal variations. Shoot density, biomass, leaf productivity, and morphological characteristics of Z. asiatica exhibited significant seasonal variations: maximum values of these variables occurred in summer, and the minima were recorded in winter. Total shoot density was highest (218.8 ± 18.8 shoots m-2) in July 2012 and lowest (106.3 ± 6.3 shoots m-2) in January 2013. Total biomass ranged from 182.6 ± 16.9 g dry weight (DW) m-2 in January 2015 to 310.9 ± 6.4 g DW m-2 in July 2014.Areal leaf production was highest (4.9 ± 0.0 g DW m-2 d-1) in July 2012 and lowest (1.4 ± 0.2 g DW m-2 d-1) in January 2013. The optimum water temperature for the growth of Z. asiatica was between 16-19°C. Growth of Z. asiatica was more strongly correlated with underwater irradiance than water temperature, suggesting that light is the most important factor determining seasonality of Z. asiatica at the study site.  相似文献   

10.
The objectives of this study were to determine the distribution and abundance of Zostera marina (eelgrass) in relation to the distribution of the mat forming bacteria Beggiatoa spp., and the levels of sulfide and organic material (wood waste) in the sediment. Underwater videography and intertidal surveys were used to map the distribution and abundance of Z. marina beds and Beggiatoa in the nearshore area of Commencement Bay, WA (USA), a location that has a long history of sawmill activity. Zostera marina occurred from the intertidal to ?6 m mean lower low water (MLLW) on sandy substrates in areas with low levels of sulfide (<50 μm ) and organic material (<5 % total volatile solids). Areas with high sulfide levels (>200 μm ) occurred where there were significant amounts of organic material in the sediments, which was found to be wood waste that had been discarded from sawmills. Zostera marina was absent from the intertidal and occurred at lower densities in areas with high sulfide levels. In contrast, mats of Beggiatoa were only found in areas where the sulfide levels were >1000 μm and there were significant deposits of wood. Thus, the negative correlation between the distribution and abundance of Z. marina and Beggiatoa suggests that the presence of Beggiatoa mats could be used as a biological indicator of inhibiting levels of hydrogen sulfide in the marine environment.  相似文献   

11.
A 24 hour time series survey was carried out during a spring tide (tidal range ca.2 m) of May 1995 on a tidal estuary in the Seto Inland Sea, Japan, in the context of an integrated program planned to quantify the dynamics of biophilic elements (carbon, nitrogen and phosphorus) and the roles played by the macrobenthos on the processes. Three stations were set along a transect line of about 1.4 km, which linked the river to the rear to the innermost part of the subtidal zone. Every hour, at each station, measurements were made of surface water temperature, salinity and dissolved oxygen concentration, and surface water was collected for the determination of nutrients [NH4 +−N, (NO3 +NO2 )−N, PO4 3−−P and Si (OH)4−Si]. During the ebb flow, riverine input of silicate and nitrate+nitrite significantly increased the concentrations of both the intertidal and the subtidal stations. Conversely, during the high tide, river nutrient concentrations were lowered by the mixing of fresh water with sea water. As a result, best (inverse) correlations were found at the river station for salinity against silicate (y=-2.9 Sal.+110.7,r 2=0.879) and nitrate+nitrite (y=-1.3 Sal.+48.4,r 2=0.796). In contrast, ammonium nitrogen concentrations were higher at intermediate salinities. Indeed, no significant correlation was found between salinity and ammonium. The effect of the macrobenthos, which is abundant on the intertidal flat, is discussed as a biological component that influences the processes of nutrient regeneration within the estuary. The effect of the tidal amplitude is an important one in determining the extent of the variations in nutrient concentrations at all three stations, which were stronger between the lower low tide and the higher high tide.  相似文献   

12.
Above- and below-ground productivities and tissue N content were measured monthly to quantify N incorporation to sustain eelgrass growth in Koje Bay on the south coast of Korea from January to December 2002. N acquisition was also estimated through measurements of N uptake kinetics, tissue biomass, and in situ inorganic N concentrations in water column and sediments. Above- and below-ground productivities were highest in summer and lowest in late fall and winter. Leaf tissue N content was highest in December and lowest in July, while rhizome tissue N content was highest in October and lowest in April. Estimated monthly N incorporation by leaf tissues based on the leaf productivity and N content ranged from 0.4 g N m?2 month?1 in November to 2.0 g N m?2 month?1 in May. N incorporation by below-ground tissues ranged from 0.1 g N m?2 month?1 in February to 0.2 g N m?2 month?1 in October. Annual whole plant N incorporation was 14.5 g N m?2 y?1, and N incorporation by leaf tissues accounted for about 87 % of total N incorporation. Maximum uptake rate (V max ) and half saturation constant (K m ) of leaf NH4 + uptake were significantly lower than those of root NH4 + uptake. Above- and below-ground biomass ranged from 20.8 g DW m?2 and 8.6 g DW m?2 in winter to 350.0 g DW m?2 and 81.3 g DW m?2 in spring, respectively. NH4 + concentrations varied from 0.2 to 4.3 mM in water column and from 93.0 to 551.7 mM in sediment pore water. Based on these measurements, annual N acquisition by root tissues contributed slightly higher than that by leaf tissues to total plant N acquisition. During winter, monthly leaf N acquisition was lower than monthly leaf N incorporation. This implies that Z. marina has internal nitrogen retention system to offset the shortage and excess of nitrogen.  相似文献   

13.
Photosynthetic characteristics of intertidal Zostera capricorni were measured under different tidal conditions in Whangapoua Harbour on the eastern Coromandel Peninsula, New Zealand, and compared with permanently submerged seagrass beds. Photosynthetic characteristics were measured using pulse amplitude modulated (PAM) fluorom‐etry and oxygen (O2) electrode techniques. Gross light saturated photosynthesis measured as oxygen exchange averaged 5.74 and 5.36 mg O2 g–1 dry weight (DW) h–1 and leaf respiration rates averaged 1.22 and 1.38 mg O2 g–1 DW h–1, for intertidal and subtidal plants respectively. Photosynthesis of both intertidal and shallow subtidal plants was light saturated at between 195 and 242 μmol photons m 2 s–1, suggestive of acclimation to a high light environment. Despite the period of exposure at low tide clearly being an important time for photosynthetic gains for intertidal plants, when water clarity was sufficiently high, maximum rates of photosynthesis were also possible when the beds were submerged. If average water clarity was at the clearer end of a range measured for this site (Kd = 0.85 m–1) then it was calculated that for intertidal seagrass beds growing at mean sea level in Whangapoua, c. 50% of above‐ground production could occur while plants were submerged.  相似文献   

14.
The concentrations of Pb, Cu, Cd and Zn were determined in above- and belowground parts of eelgrass (Zostera marina L.) at forty stations in a shallow, brackish water area (the Limfjord, Denmark). The concentrations of the trace metals were significantly elevated near the cities of Aalborg (Pb, Cu) and Struer (Cd). Trace metal concentrations in above and belowground parts of eelgrass were log-normal distributed and the concentrations of Cd, Cu and Zn in aboveground parts were significantly higher than in belowground parts. Furthermore, a significant correlation between trace metal concentrations in above- and belowground parts was found. The background level of trace metal concentrations in eelgrass in the Limfjord was estimated.The application of eelgrass as a monitoring organism is discussed; it is suggested that the concentration of some trace metals in above- and belowground parts of eelgrass may be used as a measure of the bioavailable fraction of these trace metals in ambient and interstitial water (sediment), respectively.  相似文献   

15.
In this study, a three-way factorial experimental design was used to investigate the diurnal changes of photosynthetic activity of the intertidal macroalga Sargassum thunbergii in response to temperature, tidal pattern and desiccation during a simulated diurnal light cycle. The maximum (Fv/Fm) and effective (ΦPSII) quantum yields of photosystem II (PSII) were estimated by chlorophyll fluorescence using a pulse amplitude modulated fluorometer. Results showed that this species exhibited sun-adapted characteristics, as evidenced by the daily variation of Fv/Fm and ΦPSII. Both yield values decreased with increasing irradiance towards noon and recovered rapidly in the afternoon suggesting a dynamic photoinhibition. The photosynthetic quantum yield of S. thunbergii thalli varied significantly with temperature, tidal pattern and desiccation. Thalli were more susceptible to light-induced damage at high temperature of 25 °C and showed complete recovery of photosynthetic activity only when exposed to 8 °C. In contrast with the mid-morning low tide period, although there was an initial increase in photosynthetic yield during emersion, thalli showed a greater degree of decline at the end of emersion and remained less able to recover when low tide occurred at mid-afternoon. Short-term air exposure of 2 h did not significantly influence the photosynthesis. However, when exposed to moderate conditions (4 h desiccation at 15 °C or 6 h desiccation at 8 °C), a significant inhibition of photosynthesis was followed by partial or complete recovery upon re-immersion in late afternoon. Only extreme conditions (4 h desiccation at 25 °C or 6 h desiccation at 15 °C or 25 °C) resulted in the complete inhibition, with little indication of recovery until the following morning, implying the occurrence of chronic PSII damage. Based on the magnitude of effect, desiccation was the predominant negative factor affecting the photosynthesis under the simulated daytime irradiance period. These results may explain the distribution pattern of this species in natural habitats, where it is generally restricted to tide pools in the intertidal zone of wave-swept rocky shores which could provide shelter from desiccation stress during low tide.  相似文献   

16.
The diurnal variation of nitric oxide (NO) emission fluxes from a Kandelia obovata and Avicennia marina mangrove wetland were studied in the Zhangjiang River Estuary Mangrove National Nature Reserve using a dynamic chamber-based technique and a chemiluminescent analyzer. Results from field experiments show that NO emission from K. obovata and A. marina sampling sites reached maximal values of 1.07 ng N m−2 s−1 and 1.23 ng N m−2 s−1, respectively after the night tide. Meanwhile NO emission maintained at a steady lower level in daytime for both wetland sites. In laboratory experiments, NO emission from the mangrove wetland soil samples treated with simulated tides in the darkness exhibited higher values than those in the light, therefore it seems that tides and darkness could increase NO emission from mangrove wetlands, while intensive light, high temperature, and dryness in the daytime decreased NO emission. Compared with K. obovata soil samples, the diurnal average NO emission rate of the A. marina site was significantly higher, which was closely related to relatively higher diurnal average CO2 emission rate, soil available nitrogen content and soil net nitrification rate of the A. marina site. Moreover, soil samples of the A. marina site were more responsive to simulated tides and the addition of nitrogen than those of the K. obovata site.  相似文献   

17.
We deployed hydroponic eelgrass, Zostera marina L., to test its use as a sentinel accumulator and indicator of the source of water-borne lead (Pb) contamination in the marine environment. Eelgrass was deployed unrooted in the water column in the vicinity of the Portsmouth Naval Shipyard, located on Seavey Island in Portsmouth Harbor of New Hampshire and Maine, offshore from seepage sites near the Jamaica Island landfill (JIL). Deployed eelgrass, water samples from seepage sites, and sediment from the deployment sites were analyzed for Pb concentration and stable Pb isotopic composition. Isotopic composition was used to distinguish recent anthropogenic Pb inputs from background Pb in the estuary. Isotope ratios indicated that two groundwater seeps were a source of recent anthropogenic Pb (i.e. industrial Pb from the landfill) to Jamaica Cove. The eelgrass that showed the strongest presence of industrial Pb (having the lowest 206Pb/207Pb) was closest to a high volume seep that drained from the JIL and had a similar isotope signature as well as elevated Pb concentrations. These data confirm a source of water-borne industrial Pb in the estuary and show that eelgrass can function as a sentinel accumulator of Pb from anthropogenic sources.  相似文献   

18.
《Oceanologica Acta》2003,26(5-6):457-471
Merja Zerga lagoon, located on the Moroccan Atlantic coast, is a site of international value (Ramsar Site) in terms of its ornithological diversity. However, the lagoon is heavily exploited for its clams and fishes. In an effort to further understanding of lagoon ecosystems, and thus to facilitate the management and conservation of their resources, an ecological survey of its benthic component was carried out. Benthos is a valuable food source for birds, fishes and humans. This work involved identifying the macrozoobenthic communities in the lagoon and assessing their spatial distribution. The study was based on monthly sampling of the intertidal zone and seasonal sampling in subtidal zone, over a one-year period. In the intertidal zone, salinity and median diameter and silt content of the sediment exhibited a gradient extending from the entrance to the inner lagoon, according to tidal flow. Sediment grain size characteristics reflected a gradual decrease of tidal currents from the lagoon entrance towards the inner parts of the lagoon, i.e. silt content increased with distance from the entrance. In the subtidal zone, the tidal currents were fairly strong throughout the lagoon, leading to the presence of coarser sediments than in the intertidal zone. Based on these physical, chemical and substratum characteristics, three communities were identified: (i) Cerastoderma edule and (ii) Scrobicularia plana communities were located in both the intertidal and subtidal zones; and (iii) a Tapes decussata community that was only found in the subtidal zone. The assemblages in the subtidal zone were more diverse and the mean abundances of the constituent species were higher than in the intertidal zone, which is an interesting feature for a lagoon environment. Communities were distributed along an ecological gradient, without showing a discontinuity or ecotone. The lagoon functioned like an estuary in which the community structure was controlled by edaphic factors in the intertidal zone, and by the hydrological factors in the subtidal zone.  相似文献   

19.
Seagrasses require a large amount of nutrient assimilation to support high levels of production, and thus nutrient limitation for growth often occurs in seagrass habitats. Seagrasses can take up nutrients from both the water column and sediments. However, since seagrasses inhabiting in the intertidal zones are exposed to the air during low tide, the intertidal species may exhibit significantly different carbon (C) and nitrogen (N) dynamics compared to the subtidal species. To examine C and N dynamics of the intertidal seagrass, Zostera japonica, C and N content and stable isotope ratios of above- and below-ground tissues were measured monthly at the three intertidal zones in Koje Bay on the southern coast of Korea. The C and N content and stable isotope (δ13C and δ15N) ratios of seagrass tissues exhibited significant seasonal variations. Both leaf and rhizome C content were not significantly correlated with productivity. Leaf δ13C values usually exhibited negative correlations with leaf productivity. These results of tissue C content and δ13C values suggest that photosynthesis of Z. japonica in the study site was not limited by inorganic C supply, and sufficient inorganic C was provided from the atmosphere. The tissue N content usually exhibited negative correlations with leaf productivity except at the upper intertidal zone, suggesting that Z. japonica growth was probably limited by N availability during high growing season. In the upper intertidal zone, no correlations between leaf productivity and tissue elemental content and stable isotope ratios were observed due to the severely suppressed growth caused by strong desiccation stress.  相似文献   

20.
A hydrographic survey and a 25-hour stationary observation were carried out in the western part of Suo-Nada in the summer of 1998 to elucidate the formation mechanism of the oxygen-deficient water mass. A steep thermocline and halocline separated the upper layer water from the bottom water over the observational area except for near the Kanmon Strait. The bottom water, in comparison with the upper layer water, indicated lower temperature, higher salinity, lower dissolved oxygen, higher turbidity, and higher chlorophyll a. Turbidity in the upper layer water changed with semi-diurnal period while the bottom water turbidity showed a quarter-diurnal variation, though the M2 tidal current prevailed in both waters. From the turbidity distribution and the current variation, it is revealed that the turbidity in the upper layer water is controlled by the advection due to the M2 tidal current. On the other hand, the quarter-diurnal variation in the bottom water turbidity is caused by the resuspension of bottom sediments due to the M2 tidal current. The steep thermocline and halocline were maintained throughout the observation period in spite of the rather strong tidal currents. This implies an active intrusion of the low temperature and high salinity water from the east to the bottom of Suo-Nada. Based on the observational results, a hypothesis on the oxygen-deficient water mass formation was proposed; the periodical turbidity variation in the bottom water quickly modifies the oxygen-rich water in the east to the oxygen-deficient bottom water in Suo-Nada in a course of circulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号