首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The distribution and anomalies of rare earth elements(REEs) of granitic regolith were studied in Inner Mongolia and Hainan Island, China. One profile showed slight REE enrichment of an upper layer and no obvious light REE/heavy REE(LREE/HREE) fractionation(La_N/Yb_N of 0.9). The second profile was significantly enriched in REEs and enriched in LREEs in the upper portion(La_N/Yb_N1.8). Eu, Ce, and Gd anomalies of the two profiles are different. Slightly negative Eu, Ce, and Gd anomalies in NMG-3-1 indicate slow dissolution of primary minerals and little secondary products; in contrast, a positive Eu anomaly in HN-2 suggests the vegetation cycle may contribute to soil. The Ce anomaly of HN-2 reflects oxidation of Ce and coprecipitation by Fe-and Mn-oxides and organic matter. Correlation between Ce and Gd anomalies in HN-2 suggests Ce and Gd are both influenced by redoxreduction.  相似文献   

2.
Here we report a detailed trace element study of the cherts from Liuchapo Formation, which is a terminal Ediacaran (551-542 Ma) succession in South China deposited in deep-water basinal setting. The REE of Liuchapo cherts shows similar features as observed for anoxic modern seawater (but not for hydrothermal fluids), characterized by positive La anomaly (LaN/CeN = 0.83–1.91, average 1.37), moderately negative Ce anomaly (0.53–1.1, average 0.73), positive Gd anomaly (average 1.08), positive Y anomaly (average 1.21), and depleted LREE and MREE. In addition, the Liuchapo cherts have low ΣREE (3.36–56.13 ppm, average 20.6 ppm), low Al2O3, Ti, Th and Zr concentrations, and high Y/Ho ratios (up to 43.9). The redox-sensitive trace elements concentrations in the cherts do not correlate with detrital input proxies. All of these features suggest that the redox-sensitive trace elements in the cherts were authigenically concentrated in water column and their concentrations thus are excellent indicators of ancient redox conditions. Very low Th/U ratios, high V/(V+Ni) and Fe/Al ratios, enrichments of redox-sensitive trace elements (U, V, Mo), and low concentration of Mn in the cherts imply anoxia in the deep seawater. Our data reveal that the terminal Ediacaran ocean was not completely oxidized and the deep ocean was still anoxic, at least in South China. We propose that although the oxidative events existed in the terminal Ediacaran oceans, decomposition of organic matter prolonged anoxia in the deep ocean. Supported by National Natural Science Foundation of China (Grants Nos. 40532012, 40873007, 40603021) and Chinese Academy of Sciences (Grant No. KZCX3-SW-141)  相似文献   

3.
Rare earth patterns of surface and groundwaters near big cities often show anthropogenic Gd (Gdant) anomalies in addition to geogenic Ce and Y anomalies. The Gdant anomaly is caused by very stable organic complexes, one of which is gadopentetic acid, Gd‐DTPA. Derivatives of this and similar compounds are used as contrast agents in magnetic resonance imaging (MRI) of the human blood system. The organic Gd complexes are stable enough to pass nearly unaffected through sewage treatment plants and are, thereafter, discharged into surface water systems. Water of the rapidly flowing Isarco/Eisack and Adige/Etsch rivers (Provinces of Trento and Bolzano/Bozen, NE Italy) and their tributaries show remarkable variations in anthropogenic Gd contents (Gdant). Low Gdant values are found on Monday and Tuesday, whereas high values are observed during the remaining weekdays. Reliable Gdant balances are calculated for the river system at the confluence of the Adige and its tributaries. At two places local decrease of Gdant indicates exfiltration of groundwater. It is demonstrated that Gdant can be used as a reliably conservative tracer to study the water budget in rapidly flowing alpine river systems. The studied different river waters show considerable negative Ce and positive Y anomalies. Negative Ce anomalies are caused by scavenging of Ce(III) by FeO(OH) precipitates and subsequent oxidation to CeO2. Y anomalies are attributed to less sorption of Y than REE onto particulate matter. Thus, Y moves faster than REE. Both, Ce and Y anomalies, are of geogenic origin.  相似文献   

4.
The Eoarchean Nulliak supracrustal rocks in the Saglek Block of northeastern Labrador, Canada, contain some of the world's oldest carbonate rocks. This work attempted to reveal the origin of the carbonate rocks and estimate the surface environmental conditions of the early Earth based on their occurrence and geochemistry. They occur together with mafic and ultramafic rocks in Pangertok Inlet and St. John's Harbour South, whereas they are interlayered with pelitic rock layers with quartzofeldspathic mineral assemblages in St. John's Harbour East and Big Island. The geological occurrence suggests that the formers were formed around hydrothermal fields, whereas the latters were deposited near a continental margin. Some carbonate rocks have high SiO2, Al2O3, and Zr contents, indicating that the silicification and involvement of detrital materials influenced their composition; thus, pure carbonate rocks were selected using a combined filter of the SiO2, TiO2, Al2O3, Zr, and Ba contents. The selected carbonate rocks have positive La, Eu, Gd, Y, U, Pb, and Sr anomalies, negative Nb, Zr, and Hf anomalies, and relatively small enrichment in heavy rare earth elements (HREEs). The La and Y anomalies suggest that they originated from chemical sediments precipitated from seawater. On the other hand, the small HREE-enrichment suggests that REEs were mainly dissolved as REE-carbonate complexes in seawater or that the riverine influxes were dominated by the detritus of Eoarchean continental crusts, presumably composed of HREE-depleted TTG. The U anomaly suggests that uranium was more dissolved than Th as U-bearing carbonate complexes in seawater. The Nulliak carbonate rocks also show a positive correlation between Y and Eu anomaly values, suggesting that the precipitation of iron-oxyhydroxide causing the Y anomaly was more significant near the hydrothermal fields than the continental margin, consistent with an alkaline hydrothermal model.  相似文献   

5.
Hroaki  Ishiga  Kotaro  Ishida  Kaori  Dozen Makoto  Musashino 《Island Arc》1996,5(2):180-180
Abstract Geochemical characteristics, mainly of major and trace elements and REE (rare earth elements) of bedded chert and shale/mudstone sequences, across the Permian/Triassic boundary in southwest Japan are examined. The boundary is characterized by the disappearance of bedded cherts, and the interval between the Upper Permian cherts and Lower Triassic (probably Smithian) cherts comprises siliceous shales and organic black mudstones. Bedded cherts are characterized by a gradual depletion of chemical elements from Middle to Upper Permian. However, overlying siliceous shales exhibit a clear enrichment in some elements, especially alkaline metals (such as K, Rb and Cs) and Ti, Th, Y, P2O5, and REE in comparison with elements of the PAAS (post Archean Australian shales). This indicates that average components of the upper continental crust were transported in the boundary interval, possibly caused by volcanic activity. Ce-negative shifting in NASC (North American Shales Composite)-normalized REE patterns is characteristic of this interval, and could be related to the deposition of siliceous rocks in Ce-depleted seawater. This was probably caused by an invasion of water mass with a Ce-negative anomaly into the previously existing water mass of the Paleo-Tethys. Weak negative Eu-anomalies in this interval are suggestive of plagioclase fractionation caused by acid volcanisms and the LREE/HREE ratios in the interval show a slightly light-REE enrichment. Organic black mudstones are characteristically intercalated in the interval. These rocks are usually regarded as a product of oceanic deterioration, but in pelagic conditions, organic materials were formed by high primary production that resulted from the active upwelling of ocean floor water currents with rich nutrients. This may have been caused by the inferred mixing of water masses of the Paleo-Tethys and of the Panthalassa in Early Triassic time which was regarded as an event synchronous with an increase in volcanic activity on highly matured island arcs and/or continents.  相似文献   

6.
In China, most Precambrian banded iron formations(BIFs) are situated in the North China Craton. The Yuanjiacun iron deposit, located in the Lüliang area, is arguably the most representative Superior-type BIF. This iron deposit is coherent with the sedimentary rock succession of the Yuanjiacun Formation in the lower Lüliang Group, and was interpreted to be deposited at 2.3–2.1 Ga, based on ages of overlying and underlying volcanic strata. This age overlaps with the time range of the Great Oxidation Event(GOE, 2.4–2.2 Ga). The Yuanjiacun BIF consists mainly of subhedral-xenomorphic magnetite and quartz and rarely other minerals with a lower degree of metamorphism, from greenschist to lower amphibolite facies. The geochemical characteristics of this BIF are similar to those of Superior-type BIFs. Prominent positive La, Y, and Eu anomalies normalized by the Post Archean Australian Shale(PAAS) indicate that the primary chemical precipitate is a result of solutions that represent mixtures of seawater and high-T hydrothermal fluids. The contamination from crustal detritus found is negligible based on low abundances of Al2O3 and TiO2(0.5%) and of trace elements such as Th, Hf, Zr, and Sc(1.5 ppm), as well as the lack of co-variations between Al2O3 and TiO2. In particular, the Yuanjiacun BIF samples do not display significant negative Ce anomalies like those of the Archean iron formations, but rather, the Yuanjiacun BIF samples exhibit prominent positive Ce anomalies, low Y/Ho ratios, and high light to heavy REE((Pr/Yb)SN) ratios, which are essentially consistent with the late Paleoproterozoic(2.0 Ga) BIFs around the world. These characteristics of the Yuanjiacun BIF samples imply that the ancient ocean(2.3–2.1 Ga) was redox-stratified from oxic shallow water to deeper anoxic water. The specific redox conditions of the ancient ocean may be related to the GOE, which gave rise to the oxidation of Ce and Mn in the upper water, and to the presence of a Mn oxide shuttle in the ocean, resulting in varying REE patterns due to the precipitation and dissolution of this Mn oxide shuttle under different redox states. Therefore, the Yuanjiacun BIF appears to have formed near the redoxcline and lower-level reduced marine water.  相似文献   

7.
This paper considers the geochemistry of volcanogenic mineralization in the northeastern segment of the Pacific Ore Belt (Northeast Russia). We give new evidence for the compositions and concentrations of trace and rare-earth elements (REE) in the ores of volcanogenic fields: Au-Ag epithermal (of various types and ages), Cu-Mo-Au porphyritic, Au-Bi related to granitoidal intrusions, Sn-Ag subvolcanic and kies polymetallic enriched in Au and Ag, as well as REEs in alkaline volcanic rocks. Geochemical signatures have been compiled for 17 formation types of volcanogenic fields. It was found that the ore-forming fluids in most fields belonged to an NaCl-H2O hydrothermal system that was enriched in Cl relative to F; the values of Y/Ho in the ores of nearly all types correspond with the interval of ratios characteristic for present-day hydrothermal fluids in backarc basins; most of the ores that we studied had near-chondrite spectra with configurations similar to those of the REE spectra in volcanic rock sequences of the andesite-diorite series. Comparative analysis of REE spectra in the distribution of trace elements over classes of gold concentration shows synchronous enrichment of ores in similar sets of trace elements. The high Co/Ni ratio in volcanogenic ores probably reflects the superposition of a later magmatic fluid upon an earlier mineralization. Samples from ores of volcanogenic fields, except for Kuroko, show δCe and δEu varying from negative to mildly positive values, thus indicating low-oxidizing conditions during deposition. It was found for Au-Ag epithermal ores that they are enriched in a wide range of trace elements; they have low concentrations of REEs, the light REEs are more abundant than the heavy ones, and the Eu anomalies vary considerably from small negative to low and high positive values. The results provide evidence of an exhalation hydrothermal origin of the Khotoidokh field. It has been shown that the REEs in the ores of the Bol’shoe field are of the type that is most valuable to industry. The results can be used to deal with practical problems: determining the formation type and evaluating the industrial value of a field; detecting accessory components in ores; and discriminating between the types of geochemical anomalies (in rocks or in soil) and stray fluxes as to the potential of a field.  相似文献   

8.
The Caledonian North Qilian orogenic belt lies between the North China plate and the Qaidam mi-croplates, and resulted from the collision among the Qaidam microplate, mid-Qilian block and the North China plate. The orogen initiated from the rifting of the Late Proterozoic Rodinia, and then it experi-enced stages of Cambrian rift basin and Ordovician archipelagic oceanic basin, and foreland basin during Silurian to Early-Middle Devonian. The average ratios of Al/(Al Fe Mn), Al/(Al Fe), δ Ce, Lan/Ybn and Lan/Cen from cherts of Cambrian Heicigou Formation are 0.797, 0.627, 1.114, 0.994 and 1.034 re-spectively. In the NAS standardized REE distribution pattern, the cherts from Xiangqianshan is slightly HREE enriched, and the cherts from Ganluci and Shiqingdong are plane. All of these features indicated that Cambrian cherts of the Heicigou Formation originated from a continental margin rift background. On the contrary, the average ratios of Al/(Al Fe Mn), Al/(Al Fe), δ Ce, Lan/Ybn, Lan/Cen of the Ordovician chert from Dakecha, Cuijiadun, Shihuigou, Laohushan, Heicigou, Maomaoshan, Bianmagou, Da-chadaban, Baiquanmen, Jiugequan and Angzanggou, are respectively 0.72, 0.58, 0.99, 1.09 and 0.96 respectively. Their NAS standardized REE distribution patterns of most Ordovician cherts are plane mode or slightly HREE enriched. The REE distribution pattern of few samples of cherts are slightly LREE enriched. Characteristics of sedimentary geochemistry and tectonic evolution demonstrated that the Cambrian-Ordovician cherts, associated with rift, oceanic, island arc and back-arc volcanic rocks, was not formed in a typical abyssal oceanic basin or mid-oceanic ridge. On the contrary, they formed in a deepwater basin of continental margin or a archipelagic ocean tectonic setting. Several Early Paleo-zoic ophiolite belts in North Qilian and adjacent periphery Qaidam microplate imply that an archipelagic ocean during Ordovician existed in the east of Pro-Tethys.  相似文献   

9.
Four layers of cherts were found for the first time in the Yangla copper deposit, western Yunnan Province. The cherts possessed the following geochemical characteristics: 1 Low TiO2 and Al2O3 contents, but high ore-forming element (e.g. Cu, Au, Ag) contents; 2 low total REE contents and clear negative Eu anomalies when normalized to chondrite similar to the REE contents and distribution patterns of associated massive sulfide ores; 3 silicon isotopic compositions of cherts in the Yangla deposit being the same as cherts and geyserite of hot-water sedimentary origin; 4 lead and sulfur isotopic compositions of cherts in the Yangla deposit being similar to those of the massive sulfide ores in the Yangla deposit; 5 Rb-Sr isochron age of cherts from the Yangla deposit being identical with that of host strata. Hence, we conclude that the cherts in the Yangla deposit are of hot-water sedimentary origin, which have a close relationship with the massive sulfide ores. The discovery of hydrothermal cherts from the Yangla copper deposit provides further evidence for the hydrothermal exhalative origin of the massive sulfide deposits.  相似文献   

10.
Marine limestones from southern Germany were analysed by the non-destructive neutron activation/Ge(Li) spectrometric method for La, Ce, Sm, Eu, Tb, Yb, Lu, Sr, Ta, U, Sc, Th, Cr, Hf, Cs, Fe and Rb. On the basis of carbonate and non-carbonate portions of the rock, the elements could be divided into (1) those associated with clastic material (Sc, Cr, Hf, etc.), (2) those which were partly associated with authigenic material (REE), and (3) those with pronounced diagenetic history (Sr, U). The calculated effective REE distribution coefficient (Di,eff) between CaCO3 and seawater varied from about 1400 for La to about 460 for Lu suggesting fractionation of the lighter and the heavier REE's in favour of the former.  相似文献   

11.
Rare earth element (REE) plus yttrium (Y) patterns of modern seawater have characteristic features that can be used as chemical fingerprints. Reliable proxies for marine REE+Y chemistry have been demonstrated from a large geological time span, including Archaean banded iron formation (BIF), stromatolitic limestone, Phanerozoic reef carbonate and Holocene microbialite.Here we present new REE+Y data for two distinct suites of early Archaean (ca. 3.7-3.8 Ga) metamorphosed rocks from southern West Greenland, whose interrelationships, if any, have been much debated in recent literature. The first suite comprises magnetite-quartz BIF, magnetite-carbonate BIF and banded magnetite-rich quartz rock, mostly from the Isua Greenstone Belt (IGB). The REE+Y patterns, particularly diagnostic anomalies (Ce/Ce*, Pr/Pr*), are closely related to those of published seawater proxies. The second suite includes banded quartz-pyroxene-amphibole±garnet rocks with minor magnetite from the so-called Akilia Association enclaves (in early Archaean granitoid gneisses) of the coastal region, some 150 km southwest of the IGB. Rocks of this type from one much publicised and highly debated locality (the island of Akilia) have been identified by some workers [Nature 384 (1996) 55; Geochim. Cosmochim. Acta 61 (1997) 2475] as BIF-facies, and their 13C-depleted signature in trace graphite interpreted as a proxy for earliest life on Earth. However, REE+Y patterns of the Akilia Association suite (except for one probably genuine magnetite-rich BIF from Ugpik) are inconsistent with a seawater origin. We agree with published geological and geochemical (including REE) work [Science 296 (2002) 1448] that most of the analysed Akilia rocks are not chemical sediments, and that C-isotopes in such rocks therefore cannot be used as biological proxies.Application of the REE+Y discriminant for the above two rock suites has been facilitated in this study by the use of MC-ICP technique which yields a more complete and precise REE+Y spectrum than was available in many previous studies.  相似文献   

12.
New rare earth element (REE) data, Rb and Sr analyses and Sr isotope measurements are presented for pumice clasts collected from some North Chilean ignimbrites of dacite and rhyolite composition. The samples are light-REE enriched with chondrite-normalised Ce (CeN) of 17–98, YbN of 4–14 and CeN/YbN of 2.6–15. While some samples have no Eu anomalies, others do have anomalies with inferred Eu/Eu* values of down to ca. 0.4. Eleven samples have present-day87Sr/86Sr ratios between 0.7053 and 0.7100, and noting that some samples are up to 12 Ma old, initial87Sr/86Sr ratios are below ca. 0.709. These trace element and Sr isotope characteristics resemble those of contemporaneous andesite and dacite lavas, suggesting a common origin for all these rock types. The higher Rb/Sr ratios and larger Eu anomalies in most of the dacitic and rhyolitic ignimbrites are consistent with an origin by plagioclase-dominated fractional crystallization of mantle-derived andesite magma.  相似文献   

13.
Ferromanganese nodules from the Bauer Basin of the south equatorial Pacific are unlike virtually all oceanic nodules so far analyzed in showing negative Ce anomalies in their REE abundance patterns. In comparison with similarly Cu-Ni-enriched nodules from the north equatorial Pacific they are depleted in REE by 50–80% and are heavy REE enriched relative to intermediate REE. The REE patterns can be accounted for by the input of hydrothermal iron oxyhydroxides and associated REE to the Bauer Basin and the transfer of the REE to the nodules because of diagenetic reactions in the sediment. The excess iron input also is reflected in lower Cu/Ni ratios in the nodules as compared with nodules from the north equatorial zone, apparently because of the larger proportions of a residual Fe phase in the nodules relative to todorokite. Cerium anomalies of the Bauer Basin nodules range from ?0.17 to ?0.29 as compared with +0.33 to +0.07 in the north equatorial Pacific but show a parallel sensitivity of Ce anomaly to Mn/Fe ratios of the nodules. Nodules with the more positive anomalies within each group have the smallest Mn/Fe ratios and have been subjected to the greatest seawater influence whereas nodules with the more negative anomalies have the largest Mn/Fe ratios and have been subjected to the greatest diagenetic influence.  相似文献   

14.
At the top of the Lower Permian Maokou Formation limestones are developed carbonaceous cherts(Plm3),which constitute the dominant seleniferous layer of the Yutangba Se deposit.The cherts contain as much Se as 1646×10?6 on average.In addition,they are rich in organic carbon,Al2O3,Si2O,but poor in S.In addition to Se,as well as Mo,Cd,V,and Co,etc are also highly enriched in the cherts.The chert samples are characterized by low ?REE,slight LREE enrichment,relatively heavy Si isotope enrichment,and insignificant variations in ? 30Si value within the range of 1.1‰-1.2‰.Generally,it can be judged from the major element,trace element and REE data and the Si isotopic characteristics that the Yutangba seleniferous cherts were formed in the shallow sea to semi-deep sea anoxic environments and their formation is controlled chiefly by bio-chemical processes.  相似文献   

15.
The REE geochemistry of accessory allanites, sphenes. apatites and zircons from a range of granitic, sedimentary and hydrothermally altered rocks from Skye has been investigated using the electron microprobe. Allanites and sphenes in Skye Tertiary granites are extremely LREE enriched (CeN/YN= 40–100) and may contain up to 50% of whole rock LREE (La-Nd). These phases are late crystallisation products of redidual magmatic fluids. Earlier-formed apatites (CeN/YbN = 7.33) and zircons (CeN/YbN = 0.05) contain insufficient REE to have influenced the REE geochemistry of the Western Red Hills granites by crystal fractionation. However, Y-, Th- and HREE-rich zircons (CeN/YbN = 0.03–0.12, ΣREE + Y = 16,500–49,500ppm) occur both as detrital grains in Skye Torridonian sediments and in the Coire Uaigneich Granophyre (CUG), suggesting bulk involvement of these sediments in CUG petrogenesis. Hydrothermal allanites in altered Tertiary igneous rocks from Skye are LREE enriched (CeN/YN = 16–920), whilst allanites formed during alteration of Torridonian arkoses have less fractionated REE patterns (CeN/YN = 4.4–1.0), as the instability of metamict HREE-rich detrital zircons buffered the hydrothermal fluids in these rocks to more HREE-rich compositions. This buffering indicates that within unveined rocks the scale of REE mobility during hydrothermal alteration was small, even though the occurrence of allanite in hydrothermal veins on Skye suggests that LREE may have been transported for some distance by meteoric-hydrothermal fluids. Zoning of the REE within individual hydrothermal and metamorphic allanites (e.g. coreCeN/YN = 97.56, rim CeN/YN = 0.22) suggests evolution of their parent geological fluids to more HREE-rich compositions during allanite growth.  相似文献   

16.
Major element, trace element and Sr, Nd, Pb and O isotopic data for a Franciscan Mn-deposit suggest an origin by seafloor hydrothermal circulation. Based onQ-mode factor analysis the cherts and Mn-lenses of the Blue Jay mine formed from a combination of 4 components representing 1 biogenic, 1 hydrothermal, and 2 detrital sources. RbSr, UThPb and O isotopic systematics in the Mn-lenses were affected by input from the hydrothermal circulation of material leached from the underlying basalts. Nd isotopic compositions in both cherts and Mn-lenses are identical and within the range measured for Pacific Ocean water suggesting the REE were not mobilized by hydrothermal activity. Correlation of δ18O with SiO2 and MnO2 in the Mn-lenses implies the lenses formed by simple mixing of hydrothermally derived Mn-oxides with seawater and biogenic silica. δ18O of the cherts is both uniform and depleted relative to DSDP Jurassic cherts but similar to microquartz-bearing cherts of the Monterey Formation: this suggests that diagenetic activity exerted more control on oxygen isotope compositions then hydrothermal alteration or metamorphism. Finally, a well defined RbSr isochron of158 ± 5Myr was obtained for these cherts and opens the possibility of determining absolute radiometric ages for similar cherts throughout the geologic record.  相似文献   

17.
Eleven samples of Skye granites, two samples of Torridonian sandstone and one sample of Lewisian gneiss have been analysed for ten rare earth elements (REE) by neutron activation analysis. The granites are representative of the main granite centres and compositional types. All granites have sub-parallel light-REE-enriched patterns with chondrite-normalised Ce(CeN) = 78–263,YbN = 16–60and CeN/YbN = 2.9–8.0. REE patterns for the Lewisian gneiss and Torridonian sandstone are similar to each other, withCeN = 32–61,YbN = 3–5and CeN/YbN = 8–18. These two rock types as well as the Glamaig granite have negligible Eu anomalies (Eu/Eu* > 0.9), and the other granites have Eu/Eu* in the range 0.83-0.34. The REE evidence suggests that Lewisian gneiss or Torridonian sandstone arenot suitable materials from which the granites could be derived by partial melting. The Western Red Hills granite intrusions show a systematic relation of REE content with Eu/Eu*. We suggest that the Glamaig granite is the most primitive, and was derived from a source with no Eu anomaly by fractional crystallization of a more basic magma. The later Western Red Hills granites might then have resulted from further fractional crystallization of magma with a composition like that of the Glamaig granite. The Coire Uaigneich and Eastern Red Hills granites may also be products of fractional crystallization, but from different magmas to those parental to the Western Red Hills granites. The basaltic parent magmas of the Skye granites may be “continental” tholeiites derived by interaction of basalt magma with Lewisian gneiss.  相似文献   

18.
REE, Zr, Nb concentrations and Sr, Nd isotope compositions have been measured in Copley basalts and andesites, Balaklala rhyolites, and Mule Mountain trondhjemites (northern California) which represent the deep layers of a well preserved intra-oceanic island arc of Siluro-Devonian age.87Sr/86Sr is shifted towards high values (up to 0.707) whereas Ce is preferentially removed from rhyolites. A large proportion of the analyzed samples including some acidic rocks shows a pronounced depletion in light REE. The εNd(T) values of most Copley, Balaklala, and Mule Mountain rocks fall in the range +6 to +8 which suggests that they originated from a normal MORB-type source (εNd(T) ≈ +9) contaminated with either sediments or an OIB-type component.In modern island arcs, only the shallow levels are accessible: comparison with the Copley-Balaklala-Mule Mountain Series suggests that, at depth, an immature island arc is likely to comprise thick layers of LILE-depleted tholeiites and rhyolites intensely altered by pervasive circulation of seawater. Least-square solutions of trace element models suggest that rhyolites and trondhjemites represent remelting of mafic volcanics from the arc basement rather than residual melts of basalt-andesite differentiation.  相似文献   

19.
The REE content and isotopic composition of Sr and Nd have been determined in fish teeth ranging in age from the Trias to the present and from various localities mostly around the Atlantic. These measurements have been carried out on Selachian and Teleost remains from the same locality in Togo and show no appreciable difference, which suggests, with the help of a mass balance calculation of the Ce anomaly, that diagenetic effects are not responsible for the REE enrichment of biogenic phosphates.One group of fossil teeth has about 3 times the REE abundances of shale and a shale-normalized pattern with a minimum at Sm: it is thought to reflect deposition in the open-sea environment. A second group has REE concentration about 10 times higher than the first group with either a regular light REE enrichment or, more frequently, a maximum in the middle REE, both being probably indicative of deposition in estuarine or near-shore conditions. The shape of the REE spectra and the size of the Ce anomaly can be used semi-quantitatively to determine the depth of deposition. The results presented here on Late Cretaceous/Eocene fish teeth samples from Morocco reflect an increasing influx of deep waters with a lowLa/Yb ratio and strong negative Ce anomaly, which agrees well with the evolution of sediment chemistry and microfauna associations.In contrast, Nd is typical of the water mass in which the fish debris decayed. Examples of nearly isolated basins identified with Nd isotopes include the South Atlantic prior to the Lutetian (Nd ≈ −13.5), the Miocene Persian Gulf (Nd = −3.1), and Bolivia during the Late Cretaceous (Nd = −12.8). Togo and Guinea-Bissau results suggest that, in the South Atlantic, the meridional oceanic circulation had not started before 45 Ma ago.Combination of REE andNd data suggests that the assignment of Jurassic-Cretaceous samples measured so far to open-sea water masses is still ambiguous.  相似文献   

20.
High precision trace element data obtained by inductively coupled plasma mass spectrometry and Sr–Nd isotope analyses are presented for mafic volcanic rocks from Gough Island, South Atlantic. The new data reveal negative Ce anomalies, with Ce/Ce? values in Gough lavas extending down to ~ 0.92. Ce is only fractionated from other rare earth elements (REE) due to formation of Ce4+ under oxidizing conditions of near-surface environments while other REE remain trivalent. Ce anomalies in convergent margin magmas have been shown to indicate a contribution of a subducted sediment component. In contrast, Ce anomalies in intra-plate basalts have been attributed to weathering processes, but can be excluded here based on element–element systematics indicating magmatic trends rather than weathering-induced element mobility. Shallow-level contamination by local marine sediments with negative Ce anomaly inherited from seawater can be excluded because Gough lavas with increasingly negative Ce anomalies do not trend towards low Ce/Pb ratios characterizing such sediments. Rather, it is argued that the negative Ce anomalies in Gough Island lavas are consistent with variable amounts of a sediment component in the mantle plume source. Mixtures between estimates of subducting sediment columns with negative Ce anomaly and mantle capable of giving rise to Gough Island magmas without Ce anomalies reproduce the Gough compositional array with the exception of highly fluid-mobile elements. The calculated trace element composition of the deeply recycled sediment in the Gough plume source is depleted in fluid-mobile elements such as Ba and Pb relative to the composition of some present-day subducting sediments. This loss is attributed to the dehydration or flushing of sediment in the subduction factory, consistent with constraints from arc magmas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号