首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 284 毫秒
1.
2008年5 12四川汶川里氏8级地震,引发了大量崩塌滑坡。安县高川乡的大光包滑坡是规模最大的高山滑坡,总方量约10109m3。它的形成机制和运动学特征引起国内外学者的广泛关注。在前人调查研究的基础上,本课题组对滑坡的外形和结构特征及其所处地质环境作了较详细地现场调查,系统研究了滑坡的形成和演化过程,开展了室内实验及震动台物理模拟实验,通过与类似地区地质现象的对比分析,对滑坡获得以下认识: (1)大光包滑坡是一个巨型的楔型槽状滑落体,以下伏的震旦系白云岩层面为主滑面,以与层面近于正交的早期X构造裂隙面为侧滑面,两控制面交线倾向北北东,倾角12左右; (2)滑坡前缘的黄洞子沟是滑坡的剪出口位置,滑坡起动加速滑入黄洞子沟后受到沟道左侧山梁的阻挡而迅速制动,受阻的滑坡体上部高速越过山梁冲向山坡并发展为碎屑流; (3)作为滑坡主滑面的震旦系白云岩岩层,为一经历了强烈岩溶的白云岩沙化层,强烈地震引发沙化层因突然产生的超空隙压力而流态化,这可能是导致山体突然失稳的主要原因。大光包滑坡事件可能为我们提供了地震引发山体失稳的一种新的模式,在分析研究和评价山坡的演化和稳定性时具有重要意义。  相似文献   

2.
The 2000 Yigong landslide was one of the most catastrophic landslides worldwide, resulting in huge casualties and property losses. The dynamic process of the Yigong landslide was very complicated, especially for the initiation and entrainment mechanism during the landslide movement process. The topography, geological condition, traces left by the landslide, and distribution characteristics of the landslide deposits were determined by field investigations, combined with several years of monitoring the temperature and rainfall data in this region. The initiation mechanism of the Yigong landslide is presented. The main reasons for the landslide initiation are as follows: the strength reduction of rock masses (especially for the weak structural surface), the impact from years of freeze-thaw cycles, the superposition of glacier melting and heavy rainfall on the slope, and a slope that was almost at the limit state before the landslide. Laboratory tests and physical modeling experiments were carried out to study the entrainment process of this landslide. Combined with the topographic survey data and theoretical analyses, the entrainment mechanism during the movement process of the Yigong landslide is presented. The old landslide deposits on the lower slope collided with and were scraped by the high-speed debris avalanche, which resulted in the volume amplification of the landslide. The existence of water plays a key role during the landslide initiation and movement processes.  相似文献   

3.
Past landslides have been recognized in the Battice area in E-Belgium. In contrast to the other inactive landslides, the Manaihan landslide responded immediately to heavy rainfall events in the last two decades. This study aims to map its spatial extent and the dominant surface features; to measure surface displacement using GPS; to investigate subsurface structure with Cone penetration test (CPT) and corings; and to determine the depth of the shear surface by inclinometers. Results show a partial landslide reactivation. Surface velocities range between 20 and 40 cm/year and are strongly dependent on winter rainfall. CPT results give clear boundaries between the landslide mass and the undisturbed bedrock in the head scarp. Distinct shear surfaces have been determined with displacement rates up to 15.8 mm in 21 days. Further research should apply geophysical methods for two-dimensional information on the ground, investigate geotechnical properties of the landslide mass, model slope instability, and determine the influence of a sewage pipe crossing the central landslide mass as a potential cause for landslide activity.  相似文献   

4.
浅层滑坡在我国广泛分布,但在区域范围内分布规律性较差,且具有突发性、隐蔽性和破坏性强等特点。湘西武陵山区地质条件复杂、降雨丰沛、人类工程活动强烈,突发性地质灾害频发,尤以降雨诱发的浅层滑坡为主。文章以湘西地区慈利县陈溪峪滑坡为例,开展了降雨量、基质吸力、地下水位和地表变形等的监测;结合滑坡的现场调查及监测成果,分析滑坡的形成条件和变形机理;在此基础上,考虑基质吸力对边坡稳定性的贡献,将强度折减有限元法推广到非饱和土边坡,计算得到了不同降雨工况下滑坡稳定性。结果表明:当强降雨降落到滑坡体上时,坡内基质吸力值均迅速减小,直至一定值后(9.5 kPa左右)不再变化;坡内地下水位受季节性降雨影响显著,短时强降雨引起地下水变化幅度不如长时间降雨对地下水位造成的影响大;陈溪峪滑坡的地质力学成因为蠕滑推移式土质滑坡,运动形式为沿基覆界面的浅层滑坡;短时强降雨是诱发滑坡变形的最关键因素。陈溪峪滑坡在持续降雨条件下的降雨量预警值约为280 mm,在短时强降雨条件下的降雨强度预警值约为240 mm/d。  相似文献   

5.
6.
北川县白什乡老街后山滑坡位于四川省绵阳市北川县城以西, 该滑坡发现时已处于变形发展较快的状态, 前缘多处崩塌, 坡面张拉裂缝密布。为了准确地判断滑坡的稳定性现状, 预测预报滑坡的下滑时间指导避险, 对滑坡开展了专业监测, 专业监测工作持续到了滑坡失稳下滑。本文对滑坡从监测到下滑的变形演化阶段进行了划分, 对各变形阶段滑坡的监测成果及变形破坏特征进行了分析研究。随后在此基础上分析滑坡形成演变过程及失稳机制, 通过分析认为白什乡滑坡形成演变模式为弯曲-拉裂(倾倒)变形模式, 滑坡形成后失稳机制为推移式和牵引式复合型。根据监测成果及宏观变形迹象对滑坡进行了分区, 判断出滑坡失稳下滑的关键控制部位是滑坡前缘Ⅰ-3区, 因此Ⅰ-3区监测数据是准确预测预报滑坡下滑时间的关键数据。  相似文献   

7.

当前滑坡滑面运动特征获取多采用接触式手段,费时费力、成本高昂,且仅能获取稀疏点位滑面运动状态。因此,本文提出一种非接触式滑坡滑面运动特征获取方法,其基本思路是:基于位错理论建立滑坡表面形变与滑面运动间的关系模型,同时引入滑面运动平滑约束条件,最终以InSAR等技术获取的地表形变为约束,反演获得滑面运动特征。本文选择四川省汶川县布瓦村滑坡作为研究对象,以时序InSAR技术获取的滑坡坡面升降轨形变数据为约束,基于发展的理论方法反演获得布瓦村滑坡滑面几何与运动学参数,并结合野外勘查、Lidar观测以及模型残差较好地验证了反演结果的可靠性,其中反演升降轨模型残差仅3.1 mm ·a-1和3.4 mm ·a-1。反演结果显示,布瓦村滑坡滑面位于坡表以下平均~15.0 m深度处,滑面整体以沿坡向运动为主,最大运动量级达~80 mm ·a-1,同时在坡体西侧中下部发现微量的垂直坡向运动。本文提出方法可方便、快速的获取空间连续的滑坡滑面运动特征,为滑坡灾害预警和失稳风险评估提供更为直接可靠的科学参考。

  相似文献   

8.
位于四川省丹巴县梭坡乡的哑喀则滑坡是一大型松散土质边坡。鉴于该滑坡的严重变形和可能失稳造成严重灾害后果,所以选择进行高精度GPS监测。并且阐述了应用GPS监测滑坡时对监测点位选择、数据处理等方法。2007年至今的GPS监测结果显示主滑坡体上监测点平均位移速率达每年0.6~0.9m,表明该滑坡变形严重。结合地表裂缝和植被等地表特征,发现降雨量和坡脚大渡河的冲刷、浸泡对滑坡今后的发育趋势有着决定作用,建议加强监测做好预警预报工作。本文还特别指出在监测期内监测到的地震(2008年5月12日)和人类工程活动对滑坡造成的影响。  相似文献   

9.
Landslides are mainly triggered by decrease in the matric suction with deepening the wetting band by rainfall infiltrations. This paper reports rainfall-induced landslides in partially saturated soil slopes through a field study. A comprehensive analysis on Umyeonsan (Mt.) landslides in 2011 was highlighted. The incident involves the collapse of unsaturated soil slopes under extreme-rainfall event. Fundamental studies on the mechanism and the cause of landslides were carried out. A number of technical findings are of interest, including the failure mechanism of a depth of soil and effect of groundwater flow, the downward movement of wetting band and the increase of groundwater level. Based on this, an integrated analysis methodology for a rainfall-induced landslide is proposed in this paper that incorporates the field matric suction for obtaining hydraulic parameters of unsaturated soil. The field matric suction is shown to govern the rate of change in the water infiltration for the landslide analysis with respect to an antecedent rainfall. Special attention was given to a one-dimensional infiltration model to determine the wetting band depth in the absence of the field matric suction. The results indicate that landslide activities were primarily dependent on rainfall infiltration, soil properties, slope geometries, vegetation, and groundwater table positions. The proposed methodology has clearly demonstrated both shallow and deep-seated landslides and shows good agreement with the results of landslide investigations.  相似文献   

10.
Research on monitoring and forecasting technology for slope stability is important for ensuring railway operation. This paper presents field investigation of force and displacement within a strata slope using a real-time remote monitoring system. Based on the interactions of the landslide body, the landslide bed and the monitoring anchor of slope, the mechanical principle of relative movement between the landslide body and the landslide bed can be found. This paper puts forward stress data obtained from a monitoring anchor as the main criterion for landslide stability. The stress will change continually inside the slope mass before the occurrence of a landslide. When the sliding force is larger than the anti-sliding force, deformation and landslides will occur; thus, the change in stress occurs before the change in displacement. In this study, the internal stress, deep displacement and surface strain of a railway slope were measured by a real-time remote-monitoring system, and a vibration metre was installed on the surface of the railway slope to study the influence of the train vibration load on the stability of the slope. The monitoring results are synthetically analysed temporally and spatially, then a railway slope forecasting model is proposed. According to the railway slope field application, the forecasting model makes successful predictions.  相似文献   

11.
In the last 20 years, major efforts have been made to investigate shallow flow-type landslides. Such phenomena are usually rainfall-induced and in the geological context of Campania (Southern Italy) occur in pyroclastic soils resting on steep slopes mainly constituted by carbonate or volcanic bedrock and by flysch deposits. They are generally complex landslides with an early soil slide and a subsequent flow evolution. In this paper, a database of flowslides occurring in recent years within the flysch deposits of Avellino (Campanian Apennines) is first discussed and then the case study of Bosco de’ Preti landslide on March 4, 2005, is described. The geological and geotechnical characteristics of the soils involved are described and the monitoring of the groundwater heads collected over 1 year from June 2005 to June 2006 is also shown. The last part of the paper illustrates the results of numerical modelling of the landslide triggering to gain insights into such phenomena. Slope stability analyses are preceded by hydrological modelling of the slope based on the monitoring data. Numerical analysis demonstrated that the rainfall during the 2 months preceding the event was able to fully saturate the pyroclastic cover and to establish positive pore water pressure at the depth of the surface of rupture, a soil condition never witnessed in carbonatic contexts. Hence, a combination of antecedent (predisposing factors) and single rainfall events (triggering factors) led to slope failure, as usually happens in pyroclastic soils in carbonatic and volcanic contexts. Finally, analysis of the historical landslides together with detailed investigation of the Bosco de’ Preti case study permitted comparison between flow-type landslides in pyroclastic soils on carbonatic/volcanic bedrock and those on flysch.  相似文献   

12.
滑坡失稳后的危害范围是危险区划分的重要依据, 也是开展滑坡预测和防治的基础。本文结合具体滑坡实例, 建立大型离散元3DEC数值模型对麻窝滑坡危害范围进行模拟分析。结果表明:麻窝滑坡变形破坏后的危害范围在滑体左侧(面向坡外)105m, 滑体右侧65m, 距滑坡纵向水平距离345m。从速度监测数据显示, 滑体通过剪出口后, 其横向运动的速度量值不大, 滑体总体的运动趋势是向下与向前。相比滑坡前缘和后缘, 中部速度更大, 更有可能远距离滑动。该研究成果可对当地防灾减灾决策提供理论依据, 因此, 建议位于滑坡下游缓坡段248~315m麻窝凼村庄搬迁或修建拦石墙等支挡措施。  相似文献   

13.
Numerical modeling of water infiltration in slopes under rainfall conditions, especially under rainstorm conditions, is a fundamental problem for slope stability assessment. To obtain representative results, surface water–groundwater flow models are incorporated in the simulation. Based on finite element representation of Richards’ equation and of kinematic wave equations, an integrated 2D numerical model (IMCR2D) of the surface water–groundwater system was established. The model has a symmetrical matrix that modifies the flux boundary according to the runoff solution on the slope. IMCR2D was verified using two laboratory experiments, and it showed good agreement with numerical and experimental results. Additional numerical examples were used to study the effect of flux supply from runoff on infiltration. In comparison with SimMd (an existing method), IMCR2D displayed advantages in cases where surface runoff develops in an upper low-permeability section of the slope and flows down into a high-permeability section of the slope. To illustrate the advantages of the new method, the seepage field and stability condition of a case study in the Three Gorges Hydroelectric Reservoir were analyzed using IMCR2D and SimMd. The deformation of a landslide in part reflects its stability, and therefore, we also used displacement monitoring data to estimate the variation of stability conditions from that aspect. Comparison of the two numerical models indicated that flux supply greatly affects the seepage field, and that rainfall plays an important role in landslide stability evaluation, but only when considering flux supply from upper slope surface runoff.  相似文献   

14.
滑坡的变形破坏行为与内在机理   总被引:2,自引:0,他引:2  
许强 《工程地质学报》2012,20(2):145-151
自20世纪60年代日本学者斋藤借助于蠕变试验成果进行滑坡预测预报以来,人们就一直不停地对斜坡变形破坏行为和滑坡预报方法进行研究和探索,先后提出了数十种滑坡预测预报模型和方法。随着滑坡变形监测实例的不断增多,其变形监测资料越来越丰富,各式各样的变形-时间曲线相继产生。斜坡变形-时间曲线的类型、特征以及形成这些变形-时间曲线的力学条件等诸多问题都是滑坡预警预报必须查明的最基本科学问题。本文通过对各类滑坡变形破坏行为和变形-时间曲线的分析总结,结合岩土体流变试验成果,根据斜坡变形-时间曲线特征,将滑坡分为稳定型、渐变型、突发型3类,并给出了产生这3类变形行为的力学条件。同时,从细观力学的角度分析认为,斜坡产生宏观变形破坏行为的主要原因是岩土体细观尺度颗粒的"流动"和"微破裂",但在不同岩性组成的斜坡和同一斜坡的不同变形阶段,"流动"和"微破裂"将分别发挥不同的作用。  相似文献   

15.
Evaluating cut slope failure by numerical analysis—a case study   总被引:3,自引:3,他引:0  
Slope failure is very common phenomenon in hilly regions, especially in young techno active mountainous like Himalayas. It is hazardous because of the accompanying progressive movement of the slope-forming material. In order to minimize the landslide effects, slope failure analysis and stabilization requires in depth understanding of the process that governs the behavior of the slope. The present article mainly deals with the analysis of the stability of road cut slopes of Rudraprayag Area, Uttarakhand, India. The area experiences local as well as regional slides every year. Extensive field study was carried out along the road cut slopes. Laboratory experiments were conducted to determine the various Physio-mechanical properties of rock mass. These properties have been used as input parameters for the numerical simulation of slope using FLAC3D (Fast Lagrangian Analysis of Continua) including geological discontinuities. The computed deformations and the stress distribution along the failure surface are compared with the field observations. The study indicates that the overall slope is unstable except at the location E where slope is critically stable. The effects of instability have been thoroughly considered and remedial measures have been recommended.  相似文献   

16.
在分析矿区地形地貌、地层岩性、水文地质条件和影响排土场稳定因素的基础上,结合区内2#排场的监测资料,采用FLAC3D模拟软件和刚体极限平衡法中的毕肖普条分法,对排土场边坡变形、破坏的主要影响因素进行了分析,揭示了其滑坡机理;对3#排土场的稳定性做出预测,认为排土场边坡变形破坏模式是上部排弃物沿圆弧滑面剪切滑移与下部沿粉土、粉质粘土平面滑移的圆弧—平面组合滑移形式;基底土层的内摩擦角对排土场允许排高较为敏感,是决定允许排高的内在因素,基底粉质粘土的极限承载力是决定排土场允许排高的外在因素;基底土体极限承载力所决定的排土场的允许排高为90.60~91.60m。提出了填沟压脚、降低第一排台阶高度和基底排水等措施来满足排土场边坡稳定的要求。  相似文献   

17.
Because of terrain, geological structure, river down-incising and human activities, the upriver Minjiang Valley in Sichuan Province, Southwest China, constitutes a disaster area prone to frequent landslides. During the roadway rebuilding periods, the Xiaozongqu landslide reactivated on the G213 Roadway in Maoxian District of Sichuan Province. From the September to November in 2002, the landslide sped up, reaching a maximum movement rate of 32 mm/d. The rapid slide seriously threatened the road. To stabilize the landslide and eliminate the damage of landslide to the road, remedying its damage and monitoring further developments are crucial. Based on its kinematic behaviour, remediation was implemented in two phases from November 2002 to October 2003. Systematic monitoring has been carried out since 18 June 2003 to determine kinematic variations of the landslide during the post-remediation period and to assess the effects of remediation and the potential of the landslide for further destructive influences on the roadway.  相似文献   

18.
19.
20.
The landslide can destroy all kinds of constructions, and seriously hinder people's production and life as well as the development of national economy. Bolt is one of the main methods for slope treatment, but it is difficult to monitor its construction quality and anchoring effect directly. With the rise and development of MEMS (Micro-electro mechanical system) technology, MEMS sensors, with the advantages of small size, low cost and high precision, quickly come out from the conventional monitoring methods and provide new possibilities for the monitoring field in geological engineering. In this paper, based on MEMS sensors, a model test was designed to explore the stability of the slope after treatment by bolts. Natural river sands were used to prepare slopes with angle of 45° through the air-plluviation method. In addition, the tests were divided into two groups (with or without bolts). MEMS sensors were set up in the slope to wirelessly and continually capture the acceleration, angular velocity and angle of slope sliding triggered by simulated rainfall in real-time. It was found that: with no treatment, the acceleration and angle in the interior and the bottom of the slope gradually changed during rainfall, while those parameters in the rear and the surface of the slope had no significant change, which indicated that the slope creep mainly occurred in the interior and the bottom of the slope before failure. When landslides occurred, the movement monitoring indexes in the interior and the bottom of the slope suddenly changed, followed by those in the rear and the surface of the slope, which means that when the sandy slope slides, the interior and the bottom of the slope slides first, and then the rear and the surface of the slope surface fail. This is a typical retrogressive landslide. After the slope was treated by bolts, only creep could be observed during long-term rainfall, and the acceleration and angle in the bottom, interior and surface of the slope gradually changed, while almost no change was found in the rear of the slope, which shows that under rainfall conditions, overall creep occurs for the slope after reinforcement, the slope angle decreases, and there is no landside. The experimental results prove that MEMS sensors can realize low-cost, high-precision, continuous real-time monitoring of slope, and can capture gradual changes of movements before failure and the sudden change when landslide occurs. It should play a certain role in the study of landslide mechanism and landslide warning, and has a broad application in the field of geological engineering monitoring.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号