首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Pepe  Giacomo  Cevasco  Andrea  Piazza  Michele  Macciò  Roberto  Arrighetti  Fabio  Casagli  Nicola 《Landslides》2021,18(12):3799-3820
Landslides - This study presents the employment of automatic deep drainage systems to stabilize the Mendatica landslide, one of the largest relict landslides of western Liguria (north-western...  相似文献   

2.
On 15 February 2010, a landslide of great dimensions occurred at Maierato (Calabria, Southern Italy) after a long rainy period. Although the zone was continuously affected by ground movements especially during the wet seasons, no monitoring system was installed before the occurrence of the landslide. However, many photos and two videos were taken during the failure process of the slope. In the present study, the available images are used to reconstruct the kinematics of the landslide. In addition, a finite element analysis is performed to define the main factors of triggering and to interpret the failure mechanism of the slope. This analysis is also based on the data from a site investigation carried out after the landslide to characterise the involved soils from a geotechnical viewpoint. The analysis also accounts for the strain-softening behaviour of some soils. The results have shown that the Maierato landslide was the reactivation of a pre-existing landslide body, which was caused by a significant increase in groundwater level.  相似文献   

3.
Mass movements varying in type and size, some of which are periodically reactivated, affect the urban area of Avigliano. The disturbed and remoulded masses consist of sandy–silty or silty–clayey plastic material interbedded with stone fragments and conglomerate blocks. Five landslides that were markedly liable to rainfall-associated instability phenomena were selected.

The relationships between landslides and rainfall were investigated using a hydrological and statistical model based on long-term series of daily rainfall data. The model was used to determine the return period of cumulative daily rainfall over 1–180 days. The resulting hydrological and statistical findings are discussed with the aim of identifying the rainfall duration most critical to landslides.

The concept of a precipitation threshold was generalized by defining some probability classes of cumulative rainfall. These classes indicate the thresholds beyond which reactivation is likely to occur. The probability classes are defined according to the return period of the cumulative rainfall concomitant with landslide reactivation.  相似文献   


4.
5.
In this paper, the updating of the landslide inventory of Tuscany region is presented. To achieve this goal, satellite SAR data processed with persistent scatter interferometry (PSI) technique have been used. The updating leads to a consistent reduction of unclassified landslides and to an increasing of active landslides. After the updating, we explored the characteristics of the new inventory, analysing landslide distribution and geomorphological features. Several maps have been elaborated, as sliding index or landslide density map; we also propose a density-area map to highlight areas with different landslide densities and sizes. A frequency-area analysis has been performed, highlighting a classical negative power-law distribution. We also explored landslide frequency for lithology, soil use and several morphological attributes (elevation, slope gradient, slope curvature), considering both all landslides and classified landslide types (flows, falls and slides).  相似文献   

6.
7.
The Ca’ Lita landslide is a large and deep-seated mass movement located in the northern Apennines, about 70 km west of Bologna (Northern Italy). It consists of a composite landslide that affects Cretaceous to Eocene flysch rock masses and chaotic complexes. Many of the sectors making up the landslide have resumed activity between 2002 and 2006, threatening some villages and an important road connecting several key industrial facilities located in the upper watershed. This paper presents the management of the emergency, dealing with the investigation campaigns (geological, geomorphological and LiDAR surveys, borehole drillings, seismic surveys), with the monitoring (in situ instrumentation) and with the design and construction of mitigation measures. The whole process, from landslide reactivation to date, has been modelled on a numerical basis with the finite difference code FLAC 2D, to assess the efficiency of the mitigation system and to propose further countermeasure works in different scenarios.  相似文献   

8.
Detection of local magnetic field perturbations has often been proposed for monitoring the modifications within the volcanic edifice of the stress field or of the thermodynamic state and providing a tool for prediction of eruptions. In order to evaluate the suitability of magnetic monitoring on Mt. Etna, we analysed two historic series of magnetic data recorded there: i) during the 1981 eruption and ii) immediately after 1989 eruption. Moreover, we examined time series associated with the intense explosive activity of Etna in 1995 summer provided by the present permanent magnetic network which was set up between 1994 and 1995.  相似文献   

9.
On the basis of geological and geomorphological surveys, landslide phenomena are analysed on a slope along a stretch of the Adriatic coast, near Petacciato (Molise, Italy).

Locally, a blue clay sequence of Pleistocene outcrops, stratified with silty-sandy layers; bedding dips 3–8°NE and the slope has a similar attitude. This sequence evolves upwards to sands and conglomerates, with thickness of up to 40 m, on which the built-up area is located.

Several episodes of landslide reactivation occurred in the past century, involving the zone between the built-up area and the sea, along a coastal slope of over 2000 m long and 200 m high. Important roads and railway lines have been heavily damaged as well as the town itself.

The typology of the movement is a rotational–translational slide; the displacement reaches tens of centimetres at each reactivation episode along the entire coastal slope, extending well beyond the shore line.

Detailed studies already exists, but different mechanism failures have been proposed to explain the landslide phenomena. In this study, a new failure mechanism is proposed, (sudden spreading of Terzaghi, K., Peck, R.B., 1948. Soil Mechanics in Engineering Practice. Wiley and Sons New York) and analytical approaches have been adopted to evaluate the slope stability, based on the geotechnical and monitoring data and the geometrical and geological features of the slope.  相似文献   


10.
This paper presents an image analysis method for automated quantification of charcoal total area, focusing on the charcoal fractions less than 160 μm observed on 14 pollen slides from Grotta Reali samples. Four fire signals were recorded with 4 high values in the microcharcoal concentration curve. On the basis of modern microcharcoal study, mean length/width ratio of the microcharcoal particles was applied in an archeological context as an indicator of vegetal type (wood, grass or leaves). Therefore, the 4 fire signals were separated into two types: high concentration with high length/width ratio, and high concentration with low length/width ratio. Two fire signals might be interpreted as anthropic fire based on hearth or combustion areas, as inferred from archeological remains.  相似文献   

11.
安徽霍邱铁矿是一个大型BIF铁矿田,矿体均赋存于一套晚太古代中高级变质作用的含铁建造,为南北向海槽条带状硅铁建造,大地构造位置位于嵩箕-砀山古陆核南缘东西向凹陷区。主要矿体自下而上可分为A+B矿带和D矿带:前者为变粒岩-片岩-磁铁石英岩建造;后者为片岩-大理岩-赤铁(镜)铁石英岩建造。本文对该矿田的地质背景、矿体赋存条件、构造型式进行深入分析,推测矿区周边及深部构造与控矿因素,综合相关地质情况,我们推测其周边还可能存在新的隐伏矿床,该研究对霍邱铁矿的外围成矿规律研究与找矿预测具有参考价值。  相似文献   

12.
《Gondwana Research》2014,25(2):764-774
The Marsili Seamount (MS) is an about 3200 m high volcanic complex measuring 70 × 30 km with the top at ~ 500 m b.s.l. MS is interpreted as the ridge of the 2 Ma old Marsili back-arc basin belonging to the Calabrian Arc–Ionian Sea subduction system (Southern Tyrrhenian Sea, Italy). Previous studies indicate that the MS activity developed between 1 and 0.1 Ma through effusions of lava flows. Here, new stratigraphic, textural, geochemical, and 14C geochronological data from a 95 cm long gravity core (COR02) recovered at 839 m bsl in the MS central sector are presented. COR02 contains mud and two tephras consisting of 98 to 100 area% of volcanic ash. The thickness of the upper tephra (TEPH01) is 15 cm, and that of the lower tephra (TEPH02) is 60 cm. The tephras have poor to moderate sorting, loose to partly welded levels, and erosive contacts, which imply a short distance source of the pyroclastics. 14C dating on fossils above and below TEPH01 gives an age of 3 ka BP. Calculations of the sedimentation rates from the mud sediments above and between the tephras suggest that a formation of TEPH02 at 5 ka BP MS ashes has a high-K calcalkaline affinity with 53 wt.% < SiO2 < 68 wt.%, and their composition overlaps that of the MS lava flows. The trace element pattern is consistent with fractional crystallization from a common, OIB-like basalt. The source area of ashes is the central sector of MS and not a subaerial volcano of the Campanian and/or Aeolian Quaternary volcanic districts. Submarine, explosive eruptions occurred at MS in historical times: this is the first evidence of explosive volcanic activity at a significant (500–800 m bsl) water depth in the Mediterranean Sea. MS is still active, the monitoring and an evaluation of the different types of hazards are highly recommended.  相似文献   

13.
The article deals with a tool for landslides susceptibility assessment as a function of the hydrogeological setting at different scales. The study has been applied to a test area located in Southern Italy. First, a 3D groundwater flow model was implemented for a large-scale area. The simulation of several groundwater conditions compared with the landslide activity map allows drawing a hydrogeological susceptibility map. Then, a slope scale analysis was carried out for the Cavallerizzo landslide. For this purpose, a 2D groundwater parametrical modeling was coupled with a slope stability analysis; the simulation was carried out by changing the values of the main hydrogeological parameters (recharge, groundwater supply level, etc.). The results enabled to connect the slope instability to some hydrogeological characteristics that are easy to survey and to monitor (e.g., rainfall, piezometrical level, and spring discharge), pointing out the hazard thresholds with regards to different triggering phenomena.  相似文献   

14.
15.
Recently, Global Positioning System (GPS) surveying techniques have been increasingly employed to monitor landslide movement. Here we present an application of GPS to monitor the La Valette landslide, located in the Ubaye Valley in the southern French Alps. This complex landslide is composed by an upper rotational part, a central part with generally translational movement and a lower part, which occasionally transforms into mud flows during intense rainfall events. Displacement rates average a few centimeters per month, with velocity peaks of some centimeters per day during periods of strong activity. GPS data presented in this study were acquired with two single-frequency GPS receivers Magellan connected to multipath-resistant antennas. The data were processed with the Magellan software MSTAR. Nine points have been set in the studied area, seven of them in the moving area, one in a stable area near the landslide and one on the facing slope, which is used as reference point. For each observation, one GPS receiver is placed on the reference point for the whole day and the second one is placed on each monitored point for 1-h sessions. The distance between the base and monitored point ranges from 480 to 1660 m. Eight survey campaigns were made between October 2000 and October 2002, to follow the evolution of the surface displacements. The maximum cumulative 3-D displacement observed in the area was about 21 m during the period in the center part of the landslide, corresponding to an average rate of movement of about 3 cm/day. The accuracy achieved during the GPS measurements has been evaluated to be about 2.4 cm in E–W direction, about 11 cm in N–S direction and about 7.4 cm in elevation in the worst case. The GPS results have been compared with traditional surveying techniques (EDM) carried out on the same site by RTM Service (Restauration des Terrains en Montagne). The velocities obtained by the two methods are similar. The advantage of the GPS technique is the collection of data for the three spatial coordinates (x, y, z) of each point, which allow to calculate the 3-D displacement vector. These measurements have been combined with SAR interferometric data in order to analyse the temporal evolution of the different landslide sectors.  相似文献   

16.
The analysis of gaseous compositions from Solfatara (Campi Flegrei, South Italy) fumaroles since the early 1980s, clearly reveals a double thermobarometric signature. A first signature at temperatures of about 360 °C was inferred by methane-based chemical-isotopic geoindicators and by the H2/Ar geothermometer. These high temperatures, close to the critical point of water, are representative of a deep zone where magmatic gases flash the hydrothermal liquid, forming a gas plume. A second signature was found to be at around 200-240 °C. At these temperatures, the kinetically fast reactive species (H2 and CO) re-equilibrate in a pure vapor phase during the rise of the plume. A combination of these observations with an original interpretation of the oxygen isotopic composition of the two dominant species, i.e. H2O and CO2, shed light on the origin of fumarolic fluids by showing that effluents are mixture between fluids degassed from a magma body and the vapor generated at about 360 °C by the vaporization of hydrothermal liquids. A typical ‘andesitic’ water type (δD ∼ −20‰, δ18O ∼10‰) and a CO2-rich composition (XCO20.4) has been inferred for the magmatic fluids, while for the hydrothermal component a meteoric origin and a CO2 fugacity fixed by fluid-rock reaction at high temperatures have been estimated. In the time the fraction of magmatic fluids in the fumaroles increased (up to ∼0.5) at each seismic and ground uplift crisis (bradyseism) which occurred at Campi Flegrei, suggesting that bradyseismic crises are triggered by periodic injections of CO2-rich magmatic fluids at the bottom of the hydrothermal system.  相似文献   

17.
Statistical and deterministic methods are widely used in geographic information system based landslide susceptibility mapping. This paper compares the predictive capability of three different models, namely the Weight of Evidence, the Fuzzy Logic and SHALSTAB, for producing shallow earth slide susceptibility maps, to be included as informative layers in land use planning at a local level. The test site is an area of about 450 km2 in the northern Apennines of Italy where, in April 2004, rainfall combined with snowmelt triggered hundreds of shallow earth slides that damaged roads and other infrastructure. An inventory of the landslides triggered by the event was obtained from interpretation of aerial photos dating back to May 2004. The pre-existence of mapped landslides was then checked using earlier aerial photo coverage. All the predictive models were run on the same set of geo-environmental causal factors: soil type, soil thickness, land cover, possibility of deep drainage through the bedrock, slope angle, and upslope contributing area. Model performance was assessed using a threshold-independent approach (the ROC plot). Results show that global accuracy is as high as 0.77 for both statistical models, while it is only 0.56 for SHALSTAB. Besides the limited quality of input data over large areas, the relatively poorer performance of the deterministic model maybe also due to the simplified assumptions behind the hydrological component (steady-state slope parallel flow), which can be considered unsuitable for describing the hydrologic behavior of clay slopes, that are widespread in the study area.  相似文献   

18.
Long runout landslides involve a massive amount of energy and can be extremely hazardous owing to their long movement distance, high mobility and strong destructive power. Numerical methods have been widely used to predict the landslide runout but a fundamental problem remained is how to determine the reliable numerical parameters. This study proposes a framework to predict the runout of potential landslides through multi-source data collaboration and numerical analysis of historical landslide events. Specifically, for the historical landslide cases, the landslide-induced seismic signal, geophysical surveys, and possible in-situ drone/phone videos (multi-source data collaboration) can validate the numerical results in terms of landslide dynamics and deposit features and help calibrate the numerical (rheological) parameters. Subsequently, the calibrated numerical parameters can be used to numerically predict the runout of potential landslides in the region with a similar geological setting to the recorded events. Application of the runout prediction approach to the 2020 Jiashanying landslide in Guizhou, China gives reasonable results in comparison to the field observations. The numerical parameters are determined from the multi-source data collaboration analysis of a historical case in the region (2019 Shuicheng landslide). The proposed framework for landslide runout prediction can be of great utility for landslide risk assessment and disaster reduction in mountainous regions worldwide.  相似文献   

19.
Franceschini  Rachele  Rosi  Ascanio  Catani  Filippo  Casagli  Nicola 《Landslides》2022,19(4):841-853
Landslides - Nowadays, several systems to set up landslide inventories exist although they rarely rely on automated or real-time updates. Mass media can provide reliable info about natural hazard...  相似文献   

20.
The large-scale deformation of high mountain slopes finds its origin in many phenomena (inherent parameters, external stresses) with very different time constants (instantaneous to geological scale). Gravitational effect, tectonic forces and water infiltration are generally the principal causes of slope instability. However, it can be very difficult to distinguish which cause is dominant and which are their respective effects. To gain a better understanding of the complex processes taking place during the evolution of an unstable slope and separate the causes responsible of the landslide dynamic, an observational study based on geodetic, meteorological, seismological and electrical data has been performed on the La Clapière rockslide (Southern French Alps). This deep-seated landslide (DSL) is known for many years as one of the largest and fastest rock slide in Europe (60 million m3 of highly weathered metamorphic material, moving at 1 to 3 m year?1). The set-up of the “Observatoire Multidisciplinaire des Instabilités de Versants” (OMIV, http://omiv.osug.fr) in 2011 has allowed the production and availability of an important and original data set over several years of accurate monitoring. Thus, for the first time, the long-term study of geodetic data permitted us to highlight acceleration phases in the general movement of the landslide that affect its dynamic. These modifications are associated with variations of the velocity by a factor 3 to 6. The characterization of the origin of these variations was possible due to the comparison with meteorological, electrical and seismological data. Based on these various signals, we were able to establish correlations and contributions of meteorological water infiltration in the dynamic evolution of the La Clapière slope. We determine several response times to the meteorological stress for seismic endogenous events (mainly rockfalls), the resistivity of the ground (quasi-instantaneous) and the kinematics of the slope (from 2 weeks to 2.5 months). Moreover, our results strongly suggest the existence of rainfall threshold of 3.5?±?1 mm day?1 from which the number of seismic endogenous events is highly increased.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号