首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
Dissolution experiments in batch and flow-through reactors were combined with data on sediment composition and pore water silicic acid profiles to identify processes controlling the solubility of biogenic silica and the build-up of silicic acid in marine sediments. The variability of experimentally determined biogenic silica solubilities is due, in part, to variations in specific surface area and Al content of biosiliceous materials. Preferential dissolution of delicate skeletal structures and frustules with high surface areas leads to a progressive decrease of the specific surface area. This may cause a reduction of the solubility of deposited biosiliceous debris by 10–15%, relative to fresh planktonic assemblages. Dissolution of lithogenic (detrital) minerals in sediments releases dissolved aluminum to the pore waters. This aluminum becomes structurally incorporated into deposited biogenic silica, further decreasing its solubility. Compared to Al-free biogenic silica, the solubility of diatom frustules is lowered by as much as 25% when one out of every 70 Si atoms is substituted by an Al(III) ion.The build-up of silicic acid in pore waters of sediments with variable proportions of detrital matter and biogenic silica was simulated in batch experiments using kaolinite and basalt as model detrital constituents. The steady-state silicic acid concentrations measured in the experiments decreased with increasing detrital-to-opal ratios of the mixtures. This trend is similar to the observed inverse relationship between asymptotic pore water silicic acid concentrations and detrital-to-opal ratios in Southern Ocean sediments. Flow-through reactor experiments further showed that in detrital-rich sediments, precipitation of authigenic alumino-silicates may prevent the pore waters from reaching equilibrium with the dissolving biogenic silica. This agrees with data from Southern Ocean sediments where, at sites containing more than 30 wt.% detrital material, the pore waters remain undersaturated with respect to the experimentally determined in situ solubility of biogenic silica.The results of the study show that interactions between deposited biogenic silica and detrital material cause large variations in the asymptotic silicic acid concentration of marine sediments. The production of Al(III) by the dissolution of detrital minerals affects the build-up of silicic acid by reducing the apparent silica solubility and dissolution kinetics of biosiliceous materials, and by inducing precipitation of authigenic alumino-silicate minerals.  相似文献   

2.
An intense diatom bloom developed within a strong meridional silicic acid gradient across the Antarctic Polar Front at 61°S, 170°W following stratification of the water column in late October/early November 1997. The region of high diatom biomass and the silicic acid gradient propogated southward across the Seasonal Ice Zone through time, with the maximum diatom biomass tracking the center of the silicic acid gradient. High diatom biomass and high rates of silica production persisted within the silicic acid gradient until the end of January 1998 (ca. 70 d) driving the gradient over 500 km to the south of its original position at the Polar Front. The bloom consumed 30 to >40 μM Si(OH)4 in the euphotic zone between about 60 and 66°S leaving near surface concentrations <2.5 μM and occasionally <1.0 μM in its wake. Integrated biogenic silica concentrations within the bloom averaged 410 mmol Si m−2 (range 162–793 mmol Si m−2). Average integrated silica production on two consecutive cruises in December 1997 and January 1998 that sampled the bloom while it was well developed were 27.5±6.9 and 22.6±20 mmol Si m−2 d−1, respectively. Those levels of siliceous biomass and silica production are similar in magnitude to those reported for ice-edge diatom blooms in the Ross Sea, Antarctica, which is considered to be among the most productive regions in the Southern Ocean. Net silica production (production minus dissolution) in surface waters during the bloom was 16–21 mmol Si m−2 d−1, which is sufficient for diatom growth to be the cause of the southward displacement of the silicic acid gradient. A strong seasonal change in silica dissolution : silica production rate ratios was observed. Integrated silica dissolution rates in the upper 100–150 m during the low biomass period before stratification averaged 64% of integrated production. During the bloom integrated dissolution rates averaged only 23% of integrated silica production, making 77% of the opal produced available for export to depth. The bloom ended in late January apparently due to a mixing event. Dissolution : production rate ratios increased to an average of 0.67 during that period indicating a return to a predominantly regenerative system.Our observations indicate that high diatom biomass and high silica production rates previously observed in the marginal seas around Antarctica also occur in the deep ocean near the Polar Front. The bloom we observed propagated across the latitudinal band overlying the sedimentary opal belt which encircles most of Antarctica implying a role for such blooms in the formation of those sediments. Comparison of our surface silica production rates with new estimates of opal accumulation rates in the abyssal sediments of the Southern Ocean, which have been corrected for sediment focusing, indicate a burial efficiency of 4.6% for biogenic silica. That efficiency is considerably lower than previous estimates for the Southern Ocean.  相似文献   

3.
Distribution of silicic acid (Si(OH)4) in bottom water was investigated in the central Seto Inland Sea under stratified conditions in summer. Water samples were collected at 10 stations on April 24 and 25 and July 7 and 8, 2012. In July, stratification progressed, and a cold water mass (dome) of <20 °C appeared. In response to the cold dome, low oxygen content was observed in the bottom layer of the eastern part of Hiuchi-Nada. In this water mass site, apparent oxygen utilization values calculated from dissolved oxygen (DO) concentrations increased, coinciding with increase of Si(OH)4 concentrations from April to July. This suggests that increase of Si(OH)4 [dissolution of biogenic silica (diatom frustules)] was accompanied by DO consumption due to degradation of organic matter such as plankton soft tissue. These findings suggest that a bacterial degradation of the organic matrix that covers diatom frustules could accelerate the dissolution of biogenic silica in bottom water under stratified conditions.  相似文献   

4.
In this study, we demonstrate that dissolved silica obtained from mineral (crystalline quartz), biogenic amorphous (diatomaceous earth) and artificial amorphous sources (Aerosil) influence the growth rate of two marine diatoms, Chaetoceros sp. and Skeletonema marinoi. Diatoms were reared in four different experimental conditions in artificial seawater containing either dissolved silica previously obtained through dissolution of the mineral crystalline quartz or two amorphous substrates, biogenic diatomaceous earth or artificial Aerosil silica. Sodium metasilicate was used as control. When the silica in the different media reached concentrations higher than 107 μm , particles were eliminated by filtration and the diatom cells were inoculated. Maximum cell density, growth and silica assimilation rates of both species in the presence of dissolved silica derived from crystalline quartz and metasilicate were higher than those obtained with the other silica sources. These results are discussed against the background of previous geochemical studies that have shown that silica–water interactions are strictly dependent on the silica polymorphs involved and on the ionic composition of the solution. Our results demonstrate that the soluble silicon compounds generated in seawater by crystalline sources are highly bioavailable compared with those generated by biogenic and amorphous materials. These findings are potentially of considerable ecological importance and may contribute to clarifying anomalous spatial and temporal distributions of siliceous organisms with respect to the presence of lithogenic or biogenic silica sources in marine environments.  相似文献   

5.
To elucidate the origin of the silicic acid (DSi) anomaly observed along the 4000 isobath on the Congo margin, we have established a benthic Si mass balance and performed direct measurements of biogenic silica (bSiO2) dissolution in the deep waters and in the sediments. Results strongly suggest that the anomaly originates from the sediments; the intensity of DSi recycling is consistent with the degradation of organic matter, as observed from Si:O2 ratios in the benthic fluxes compared to that ratio observed in the anomalies. Strong imbalances, observed in both the Si and C mass balances, suggest that the biogenic matter that degrades and dissolves in these sediments near 4000 m does not come from pelagic sedimentation. It is probably not coming also from the deep channel, because observations were similar in the deep channel vicinity (site D) and further south, far from its influence (site C). The composition of the sediments, with an Si:C ratio close to that observed on continental shelves, suggests that this matter is coming from downslope transport. A first estimate of the magnitude of this flux at global scale, close to 12 T mol Si yr−1, suggests that it may be an important path for transferring Si from land to ocean.  相似文献   

6.
The majority of opal produced by diatoms dissolves during their sedimentation to the seafloor, but spatial and temporal variability of dissolution rates are large. Controlled laboratory experiments using live phytoplankton or phyto-detritus may help identify the different processes, including those that are biologically mediated or physico-chemically driven, that impact the dissolution of frustules and the aforementioned variability. Results of eight bSiO2 dissolution experiments, seven of which were conducted at low temperatures (<6 °C) are presented within the context of earlier similar studies, and different phases of dissolution dynamics characterized. TEP concentration, aggregation and the physiological status of the diatoms determined the period during which diatoms may maintain the protective membrane that surrounds their frustule and effectively reduces or completely inhibits (lag period) dissolution for some time. Once diatoms loose the capability to maintain their protective membrane, bacterial activity compromises it. Physico-chemical dissolution, which depends on frustule structure and abiotic environmental conditions, begins once the protective membrane is damaged. The ability of diatoms to maintain their membrane, the bacterial composition and activity governing its degradation, and the physico-chemical dissolution dynamics of exposed frustules are all impacted by temperature. In our experiments instantaneous dissolution rates were not dependant on bSiO2 concentration at low temperatures, although such a relationship was observed under otherwise identical conditions at 15 °C, implying that biotic factors rather than physico-chemical processes initially dominated dissolution at polar temperatures. Since inhibition of bSiO2 dissolution at low temperatures was inhibited to a greater extent than organic matter degradation, we postulate that it was not reduced bacterial activity but the enhanced ability of diatoms to maintain their membrane and thus withstand microbial attack that caused the low initial dissolution rates at <6 °C. In situ, interactions between the different biotic and abiotic processes impacting dissolution combined with differences in sinking velocity of diatom aggregates and grazing effects could easily explain high spatial and temporal variability in the accumulation of diatoms on the seafloor. Simple calculations based on our experimental results suggest that Fragilariopsis kerguelensis, for example, would be appreciably more likely to reach the seafloor than Chaetoceros debilis if both grow at low growth rates, e.g. under growth limiting conditions. However, dissolution behavior of Chaetoceros debilis during sedimentation may differ under conditions where this species forms large blooms.  相似文献   

7.
A 1-D coupled physical-biogeochemical model is used to study the seasonal cycles of silicon and nitrogen in two High Nutrient Low Chlorophyll (HNLC) systems, the Antarctic Circumpolar Current (ACC) and the North Pacific Ocean, and a mesotrophic system, the North Atlantic Ocean. The biological model consists of nine compartments (diatoms, nano-flagellates, microzooplankton, mesozooplankton, two types of detritus, nitrate, ammonium and silicic acid) forced by irradiance, temperature, mixing and deep nitrate and silicic acid concentrations. At all sites, nanophytoplankton standing crop variations are low, in spite of variations in primary production, because of a “top–down” control by microzooplankton. Although nanophytoplankton sustain more than 60% of the annual primary production in these areas, their contribution to the export production does not exceed 1% of the total. The differences in the seasonal plankton cycle among these regions come mainly from differences in the dynamics of large phytoplankton (here diatoms). In the ACC, the chlorophyll maximum remains <1.5 mg m−3, as an unfavourable light/mixing regime and a likely trace-metal limitation keep diatoms from blooming. In the northeast Pacific, trace-metal limitation seems to keep diatoms from blooming throughout the year. In both these systems, light or iron limitations induce high Si/N uptake ratios. Incidentally these high Si/N uptake ratios lead to a net excess of silicic acid utilization over nitrate, and to a subsequent silicic acid limitation during the summertime. In the North Atlantic, under favourable light/mixing regime and nutrient-replete conditions at the onset of the growing period, diatoms outburst and sustain a bloom >3.5 mg Chl-a m−3. Thereafter, mesozooplankton grazing pressure and silicic acid limitation induce the collapse of the chlorophyll maximum and the persistence of lower chlorophyll concentrations in summer. Although the ACC and the North Pacific show HNLC features, they support a high biogenic silica production (1.9 and 1.07 mol Si m−2 yr−1) and export flux (0.79 and 0.61 mol Si m−2 yr−1), compared to the North Atlantic (production: 0.23 mol Si m−2 yr−1, export: 0.12 mol Si m−2 yr−1). The differences in Si production and export between the HNLC systems and the mesotrophic North Atlantic come from both higher Si concentrations and Si/N uptake ratios in the HNLC areas compared to the North Atlantic. Also, the low dissolution rate of biogenic silica compared to nitrogen degradation rate, and the inhibition of nitrate uptake by ammonium, reinforce the net excess of silicic acid utilization over nitrate. As a result, the model also illustrates the efficiency of the silica pump for the three sites: about 50% of the biogenic silica synthesized in the euphotic layer is exported out of the first 100 m, while only 4–11% of the particulate organic nitrogen escapes recycling in the surface layer.  相似文献   

8.
Within the framework of the EU-funded BENGAL programme, the effects of seasonality on biogenic silica early diagenesis have been studied at the Porcupine Abyssal Plain (PAP), an abyssal locality located in the northeast Atlantic Ocean. Nine cruises were carried out between August 1996 and August 1998. Silicic acid (DSi) increased downward from 46.2 to 213 μM (mean of 27 profiles). Biogenic silica (BSi) decreased from ca. 2% near the sediment–water interface to <1% at depth. Benthic silicic acid fluxes as measured from benthic chambers were close to those estimated from non-linear DSi porewater gradients. Some 90% of the dissolution occurred within the top 5.5 cm of the sediment column, rather than at the sediment–water interface and the annual DSi efflux was close to 0.057 mol Si m−2 yr−1. Biogenic silica accumulation was close to 0.008 mol Si m−2 yr−1 and the annual opal delivery reconstructed from sedimentary fluxes, assuming steady state, was 0.065 mol Si m−2 yr−1. This is in good agreement with the mean annual opal flux determined from sediment trap samples, averaged over the last decade (0.062 mol Si m−2 yr−1). Thus ca. 12% of the opal flux delivered to the seafloor get preserved in the sediments. A simple comparison between the sedimentation rate and the dissolution rate in the uppermost 5.5 cm of the sediment column suggests that there should be no accumulation of opal in PAP sediments. However, by combining the BENGAL high sampling frequency with our experimental results on BSi dissolution, we conclude that non-steady state processes associated with the seasonal deposition of fresh biogenic particles may well play a fundamental role in the preservation of BSi in these sediments. This comes about though the way seasonal variability affects the quality of the biogenic matter reaching the seafloor. Hence it influences the intrinsic dissolution properties of the opal at the seafloor and also the part played by non-local mixing events by ensuring the rapid transport of BSi particles deep into the sediment to where saturation is reached.  相似文献   

9.
The mesogenetic dissolution is well developed in the middle Ordovician Yijianfang formation (O2yj) limestone, and the dissolution pores are very important for petroleum accumulation in the south slope area of the Tahe oilfield which lies in the north of the Tarim basin, northwestern China. Mottled, dotted or laminar dissolution can be observed in the O2yj limestone. Under microscope, the grains, lime matrix and all stages of calcite cements (including oil-inclusion-bearing blocky calcite cements) can all be found dissolved ubiquitously. The stylolites in the limestone were enlarged and rounded because of dissolution. Some dolomite rhombs, precipitated along stylolites in burial environment, were found dissolved as well. The dissolution of the blocky calcite cements and dolomite rhombs and the enlarging of stylolites demonstrate that the dissolution took place in the mesogenetic environment. Concentration of trace elements, including REEs, of the eroded part of the O2yj limestone is intermediate between that of the uneroded part and that of the underlying lower Ordovician limestone hydrocarbon source rocks. Both δ13CPDB and δ18OPDB values of the eroded part are less than those of the uneroded part, respectively. The geochemical characteristics indicate that the eroding fluids are hydrocarbon-bearing fluids coming from the underlying hydrocarbon source rocks.  相似文献   

10.
We investigated biogenic silica, several biological components, and silicate in pore-water in the abyssal sediment to determine silicon flux of western North Pacific during several cruises. The surficial sediment biogenic silica content was high at high latitudes with the boundary running along the Kuroshio Extension, and maximum values (exceeding 20%) were found in the Oyashio region. In the subtropical region to the south, most stations showed less than 5% biogenic silica content. This distribution pattern reflected primary production and ocean currents in the surface layer very well. Pore-water samples were collected from 4 stations along the east coast of Japan. The highest asymptotic silicic acid concentration (670 μmol L?1) in pore-water was observed at the junction of Kuroshio and Oyashio, followed by samples from the Oyashio region. It is at the southern station that the lowest value (450 μmol L?1) was observed, and the primary production is low under the influence of Kuroshio there. The diffusive flux followed the same geographic trend as the asymptotic silicic acid concentrations did, ranging 77–389 mmol m?2 yr ?1. Multiple sampling of pore-water was conducted throughout the year at one station at high latitude. The average annual biogenic silica rain flux observed using sediment traps was 373 mmol m?2 yr?1; the diffusive flux and burial flux at the sediment–water interface were 305 and 9 mmol m?2 yr?1, respectively. We concluded that most of the settling silica particles dissolved and diffused at the sediment–water interface and approximately 3% only were preserved in this area. In addition, the obvious time lag observed between the peak rain flux and the maximum diffusive flux suggested that primary production in the surface layer has a great influence on the sedimentation environment of abyssal western North Pacific. These transitions of Si flux at the sediment–water interface were considerably greater in northwestern North Pacific than in southwestern North Pacific. In addition, a station in the Philippine Sea indicated high biogenic silica content because of Ethmodiscus ooze, which are scattered randomly on the sea floor in the subtropical region.  相似文献   

11.
The diatom species composition of settling biogenic silica particles collected in sediment traps was compared with the underlying sediment to determine the preservation of the various diatom species and to investigate the potential of biogenic silica as an indicator for changes in paleo-upwelling intensity. During the Netherlands Indian Ocean Programme (NIOP), settling particles were collected at two sampling sites off Somalia (NW Indian Ocean) for 9 months, from June 1992 to February 1993. One sediment trap array was deployed on the Somali slope directly below one of the main upwelling gyres, and a second array, meant as a reference site to reflect pelagic sedimentation, was moored in the Somali Basin away from direct coastal upwelling influence. At both sites diatoms represented over 90% of the total opal microorganisms. On the Somali slope, total annual diatom flux was 12.6×109 valves m−2, 76% of which was collected during the 112 d of the southwest monsoon, with peak fluxes in October, the end of the upwelling season. In the Somali Basin, the total annual flux was lower, 4.8×109 valves m−2, and only 39% was collected during the SW monsoon period (98 d). At both sampling sites, a distinct seasonal diatom species succession of ‘pre-upwellers’, ‘upwellers’ and ‘oceanic species’ was apparent. Although only a small part of the diatom assemblage escaped dissolution at the sediment–water interface, two species, Thalassionema nitzschioides and Chaetoceros resting spores, were preserved in the sediment, indicating that they are resistant to dissolution at the sediment–water interface. Eighty one percent of the deposition of Thalassionema nitzschioides and 78% of the deposition of Chaetoceros occurred during the upwelling period. Since these two species are the dominant component of the diatom assemblage in the sediments, and thus determine the biogenic silica content, we conclude that this preserved biogenic silica reflects the upwelling in the surface layer of the water column. On the Somali Margin, variations in biogenic silica flux as inferred from sedimentary records can therefore be used as an indicator for changes in paleo-upwelling intensity.  相似文献   

12.
Census data of a major Cenozoic calcareous nannofossil genus (Discoaster) have been acquired from Site U1338, located near the Equator in the eastern Pacific Ocean and drilled in 2009 during Integrated Ocean Drilling Program (IODP) Expedition 321. The investigated 147.53 m thick upper Miocene sediment sequence is primarily composed of biogenic carbonate and biogenic silica. Diatom biostratigraphic data were used to develop a revised biomagnetostratigraphic age model, resulting in more variable late Miocene sedimentation rates. Carbonate content variations mainly reflect dilution by biogenic silica production, although intense carbonate dissolution affects a few shorter intervals. Abundance variations of discoasters show no distinct correlation with either carbonate or biosilica contents. The two dominant Discoaster taxa are D. brouweri and D. variabilis, except for a 12 m thick interval where D. bellus outnumbers the sum of all other discoasters by a factor of 4.6. Data presented indicate that first D. hamatus and then D. berggrenii both evolved from D. bellus. Three unusual morphotypes, here referred to as Discoaster A, B and C, increase in relative abundance during episodes of enhanced biosilica production in the upper half of the investigated sequence (Messinian). Strikingly similar morphotypes have been observed previously in Messinian age sediments from the Mediterranean, characterized by alternating deposition of biogenic carbonate and biosilica. This suggests a species-specific response among some of the late Miocene discoasters to broader oceanographic and climatic forcing that promoted episodes of enhanced deposition of biogenic silica.  相似文献   

13.
Diatoms are major actors in the export of organic carbon out of the euphotic zone. Yet, the processes linking biogenic silica and carbon sedimentation fluxes to deep oceanic layers remain unclear. Analysing organic fractions in biominerals is challenging because efficient cleaning often led to structural alteration of organic molecules. Hence, although lipids are widely used as biogeochemical markers in ocean flux study, few studies have dealt with the lipids that are associated with frustules. In the present study, a protocol was set up to extract and quantify the fatty acids associated to the frustule of the diatom species Thalassiosira weissflogii. The protocol involves solvent extraction of diatom external lipids, followed by clean frustule dissolution by 4% NaOH during 1 h at 95 °C and subsequent solvent re-extraction of frustule-associated lipids. Results confirmed that this protocol was efficient first, to isolate the frustule from the rest of the cellular organic carbon and second to extract and quantify fatty acids (FA) associated to frustules of this species. FA composition of the frustules was significantly different from that of the whole cells consisting primarily of 14:0, 16:0 and 18:0 FA, as well as a smaller portion of 16:1 and 18:1 unsaturated FA. Frustule-associated FA constituted 7% of the total FA and 1.8% of the total POC. The 30 days T. weissflogii degradation/dissolution experiment suggested that frustule FA 14:0 and 16:0 were mainly associated with the bSiO2 phase dissolving slowly as no degradation of this pool was measured despite 78% frustule dissolution. At the end of the degradation experiment, this pool constituted 5.8% of the remaining total POC suggesting an effective protection by the frustule through strong interaction with the biogenic silica which is consistent with the correlation observed at depth between Si and POC sedimentation fluxes.  相似文献   

14.
Data on the carbonate system of the Northwestern Indian Ocean obtained on a cruise of F.S. Meteor during SW monsoon in July/August 1995 were compared with those of George et al. [George, M.D., Kumar, M.D., Naqvi, S.W.A., Banerjee, S., Narvekar, P.V., de Sousa, S.N., Jayakumar, D.A., 1994. A study of the carbon dioxide system in the northern Indian Ocean during premonsoon. Mar. Chem. 47, 243–254] collected during intermonsoon. In general, deep water values agreed well between the two expeditions. Surface waters, however, showed a substantial increase in dissolved inorganic carbon (CT) in the coastal regions due to strong upwelling in the SW monsoon. This was also accompanied by very high CO2 partial pressures in surface waters. The north–south gradients in vertical profiles of the measured parameters in the Arabian Sea are discussed by comparing profiles from the oligotrophic equatorial region with those from the highly productive central Arabian Sea. The effect of denitrification on regenerated CT and AT is minor, with contributions of <9 and <8 μmol kg−1, respectively, to the total amount regenerated also utilizing oxygen. The dissolution of biogenic carbonates is discussed; different approaches to define the depth, where the dissolution starts (lysocline(s), carbonate critical depth (CCrD)), are compared together with the calculation of saturation depth from carbonate concentrations. It is shown, that small differences in measured CT and AT (found between our data and those measured during GEOSECS) and different calculation approaches to the CO2 system (different dissociation constants for species involved and taking into account phosphate and silicate concentrations) can produce pronounced differences in the calculated saturation depths. However, CT and AT data suggest substantial dissolution of biogenic carbonate in the water column even above the calcite lysocline, irrespective of the procedures followed to calculate this horizon.  相似文献   

15.
Vertical and seasonal characteristics of biogenic silica (BSi) dissolution in seawater were investigated by multiple dissolution experiments using seawater collected from surface and mesopelagic layers in Suruga Bay during the period 2002–2004. The dissolution rate coefficients calculated based on temporal changes of BSi concentration varied with the season of sample collection. They ranged from 0.023–0.057 day− 1 for surface samples and 0.0018–0.0025 day− 1 for mesopelagic samples for temperatures approaching in situ conditions. Experiments at various temperatures confirmed that BSi dissolution depends on temperature in natural seawater. Dissolution rate coefficient (day− 1) of BSi correlated significantly with temperature (°C), and Q10 was 2.6. Addition of bioavailable organic matter to low-bioactivity seawater enhanced the protease activity and abundance of bacteria, and increased BSi dissolution rate by a factor of 1.4–2.0. There is clear evidence that BSi dissolution is accelerated by bacterial activity and potentially limited by bioavailable organic matter in natural seawater. Dissolution rates and total decreases of BSi concentration were lower during experiments using mesopelagic samples than in those using surface samples. This suggests that dissolution of BSi varies with depth and that BSi in the mesopelagic water is more resistant to the dissolution than that in the surface water. This lower dissolution rate was caused by lower temperature and lower bacterial activity due to less bioavailable organic matter in mesopelagic water. Our results provide a mechanistic understanding of variations in silica cycling within the seasonally and vertically differing marine environment.  相似文献   

16.
Microbial mediation of benthic biogenic silica dissolution   总被引:1,自引:1,他引:0  
Pore water profiles from 24 stations in the South Atlantic (located in the Guinea, Angola, Cape, Guyana, and Argentine basins) show good correlations of oxygen and silicon, suggesting microbially mediated dissolution of biogenic silica. We used simple analytical transport and reaction models to show the tight coupling of the reconstructed process kinetics of aerobic respiration and silicon regeneration. A generic transport and reaction model successfully reproduced the majority of Si pore water profiles from aerobic respiration rates, confirming that the dissolution of biogenic silica (BSi) occurs proportionally to O2 consumption. Possibly limited to well-oxygenated sediments poor in BSi, benthic Si fluxes can be inferred from O2 uptake with satisfactory accuracy. Compared to aerobic respiration kinetics, the solubility of BSi emerged as a less influential parameter for silicon regeneration. Understanding the role of bacteria for silicon regeneration requires further investigations, some of which are outlined. The proposed aerobic respiration control of benthic silicon cycling is suitable for benthic–pelagic models. The empirical relation of BSi dissolution to aerobic respiration can be used for regionalization assessments and estimates of the silicon budget to increase the understanding of global primary and export production patterns.  相似文献   

17.
Silica cycling in the upper 175 m of the North Pacific Subtropical Gyre was examined over a two year period (January 2008-December 2009) at the Hawaii Ocean Time-series (HOT) station ALOHA. Silicic acid concentrations in surface waters ranged from 0.6 to 1.6 ??M, exhibiting no clear seasonal trends. Biogenic silica concentrations and silica production rates increased by an order of magnitude each summer following stratification of the upper 50 m reaching values of 157 nmol Si L−1 and 81 nmol Si L−1 d−1, in 2008 and 2009, respectively. Sea surface height anomalies together with analyses of variability in isothermal surfaces at 150-175 m indicated that the summer periods of elevated biogenic silica were associated with anticyclonic mesoscale features during both years. Lithogenic silica concentrations increased in the spring during the known period of maximum atmospheric dust concentrations with maximum values of 36 nmol Si L−1 in the upper 10 m. Dust deposition would enhance levels of dissolved iron in surface waters, but there was no response of diatom biomass or silica production to increases in near-surface ocean lithogenic silica concentrations suggesting iron sufficiency of diatom silica production rates.Low ambient silicic acid concentrations restricted silica production rates to an average of 43% of maximum potential rates. Si sufficiency only occurred during the summer period when diatom biomass was elevated suggesting that bloom diatoms are adapted to exploit low silicic acid concentrations. Annual silica production at HOT is estimated to be 63 mmol Si m−2 a−1 with summer blooms contributing 29% of the annual total. Diatoms are estimated to account for 3-7% of total phytoplankton primary productivity, but 9-20% of organic carbon export confirming past suggestions that diatoms are relatively minor contributors to primary productivity and autotrophic biomass, but important contributors to new and export production in oligotrophic open-ocean ecosystems.Annual silica production at HOT is nearly 4-fold lower than estimates at the Bermuda Atlantic Time-series Study (BATS) site in the Sargasso Sea from the 1990s, but annual silica export at the base of the euphotic zone is similar between the two gyres indicating very different balances between silica production and its loss in surface waters. On a relative basis, BATS is a more productive system with respect to silica, where biogenic silica is recycled with high efficiency in surface waters; in contrast the NPSG is a lower productivity system with respect to silica, but where lower recycling efficiency leads to a much higher fraction of new silica production. The two gyres show contrasting long-term trends in diatom biomass as biogenic silica concentrations at HOT have been increasing since 1997, but they have been decreasing at BATS suggesting very different forcing of decadal trends in the contribution of diatoms in carbon cycling between these gyres. Combining the data from both gyres indicates that globally subtropical gyres produce 13 Tmol Si a−1, which is only 51% of previous estimates reducing the contribution of subtropical gyres to 5-7% of global annual marine silica production.  相似文献   

18.
信业宏  商晓梅  孙军 《海洋科学》2019,43(3):98-105
硅藻是一类在全世界水环境中都有发现的单细胞真核藻类,其特有的硅质壁使其成为海洋生物硅的最大贡献者,它们在全球碳/硅元素的生物地球化学循环中扮演至关重要的角色。亲硅蛋白(silaffins)是一种分离于硅藻硅质壁,并与其硅质化密切相关的蛋白。亲硅蛋白可以在体外硅酸溶液中沉淀二氧化硅(SiO_2),这种活性来自其特有的蛋白序列和翻译后修饰调节。基于对亲硅蛋白结构的理解,多种与其相似的仿生多肽被应用到人工SiO_2的合成中。本文综述了硅藻亲硅蛋白的分离鉴定、功能以及其在生物技术和生物医药方面的应用,为亲硅蛋白基础研究和应用潜力提供基础。  相似文献   

19.
A new approach to predict biogenic particle fluxes to the seafloor is presented, which is based on diffusive oxygen uptake and, in particular, opal fluxes to the seafloor. For this purpose, we used a recently published empirical equation coupling benthic silica to oxygen fluxes, and showing a clear negative correlation between Si and O2 fluxes. Dissolution of biogenic silica mediated by aerobic microbial activity has been inferred at 24 sites along the African and South American continental margins. Based on the assumption that these findings hold essentially for the entire Southern Atlantic Ocean, we applied the silica to oxygen flux ratio to a basin-wide grid of diffusive oxygen uptake extracted from the literature. Assuming that the silica release across the sediment-water interface equals the particulate flux of biogenic opal to the seafloor, we estimated minimum opal rain rates. We combined these calculations with published relationships between aerobic organic carbon mineralization and dissolution rates of calcite above the hydrographical lysocline, thereby assessing the calcite rain rate and particulate organic carbon flux to the seafloor. The addition of the buried fraction completes our budget of biogenic particulate rain fluxes. The combination of such empirical equations provides a powerful and convenient tool which greatly facilitates future investigations of biogenic particle fluxes to the seafloor.  相似文献   

20.
Particulate organic carbon (POC) is vertically transported to the oceanic interior by aggregates and their ballasts, mainly CaCO3 and biogenic opal, with a smaller role for lithogenic aerosols through the mesopelagic zone. Diel migrating zooplankton communities effect vertical transport and remineralization of POC in the upper layers of the ocean. Below 1.5 km, the presence of zooplankton is reduced and thus the aggregates travel mainly by gravitational transport. We normalized the fluxes of POC, CaCO3, and biogenic opal from data published on samples collected at 134 globally distributed, bottom-tethered, time-series sediment trap (TS-trap) stations to annual mole fluxes at the mesopelagic/bathypelagic boundary (m/b) at 2 km and defined them as Fm/bCorg, Fm/bCinorg, and Fm/bSibio. Using this global data set, we investigated (1) the geographic contrasts of POC export at m/b and (2) the supply rate of ∑CO2 to the world mesopelagic water column. Fm/bCorg varies from 25 (Pacific Warm Pool) to 605 (divergent Arabian Sea) mmolC m−2 yr−1; Fm/bCinorg varies from >8 (high latitude Polar Oceans) or 15 (Pacific Warm Pool) to 459 (divergent Arabian Sea) mmolC m−2 yr−1; and Fm/bSibio, the most spatially/temporally variable flux, ranges from 6 (North Atlantic Drift) to 1118 (Pacific Subarctic Gyre) mmolSi m−2 yr−1. The oceanic region exhibiting the highest POC flux over a significantly large region is the area of the North Pacific Boreal Gyres where the average Fm/bCorg = 213, Fm/bCinorg = 126, and Fm/bSibio = 578 mmol m−2 yr−1. Fm/bCorg and Fm/bCinorg are particularly high in large upwelling margins, including the divergent Arabian Sea and off Cape Verde. One of the data sets showing the lowest flux over a significant region/basin is Fm/bCorg = 39, Fm/bCinorg = 69, and Fm/bSibio = 22 mmol m−2 yr−1 in the North Pacific subtropical/tropical gyres; Pan-Atlantic average fluxes are similar except Fm/bSibio fluxes are even lower. Where Corg/Cinorg and Sibio/Cinorg are <1 defines the “Carbonate Ocean”, and where these ratios are ?1 defines the “Silica Ocean”. The Carbonate Ocean occupies about 80% of the present world pelagic ocean between the two major oceanographic fronts, the North Pacific Polar Front and the Antarctic Polar Front, and the Silica Ocean is found on the polar sides of these fronts. The total global annual fluxes of Fm/bCorg, Fm/bCinorg, and Fm/bSibio at m/b calculated by parameterizations of the export flux data from 134 stations are surprisingly similar; 36.2, 33.8, and 34.6 teramol yr−1 (120, 112, and 114 mmol m−2 yr−1), respectively, resulting in a near uniform binary ratio between the above three elements of about one. The global ternary % ratios estimated from 152 TS-trap samples of the three elements are 35:32:33. From our global Fm/bCorg and a published model estimate of the global export production, we estimate the regeneration rate of CO2 through the mesopelagic zone by the biological pump is 441 teramolC yr−1. Based on our global Fm/bCinorg and recently estimated global primary production of PIC, 36-86 teramolC yr−1 of PIC is assumed to be dissolved within the upper 2 km of the water column.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号