首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Oligocene and Lower Miocene sediments from High Folded Zone of Iraqi Zagros have been studied paleontologically at south of Sulaimaniyah, Kurdistan Region, NE Iraq. The identified fauna are consisted of (25) genera and species of benthonic and (16) species of planktonic foraminifera. The fauna comprises relatively abundant foraminiferal assemblages of moderate diversity. Based on the stratigraphic distribution of these species, two biozones have been recognized which are NummulitesRotalia and Globoquadrina dehiscens zones. These biozones indicate that the studied sections of Basara and Khewata are of Late Oligocene–Early Miocene age. Based on the microfossils, it has been found that the age of sediments is equivalent to or represents Anah and Serikagni Formations. Some previous studies described Oligocene rocks (Kirkuk Group) as interior sag basin. In the present study, the occurrence of the group inside High Folded Zone and its rich fauna content are used for the discussion of the sag basin versus normal marine water.  相似文献   

4.
A multicriteria approach in studying hydrodynamics of a multilayer aquifer system has been used in the Lomellina region (Northern Italy). It involves the reconstruction of the hydrogeological framework coupled to the definition of the hydrochemical and isotopic features of the aquifers. A shallow phreatic aquifer, reaching depths of about 60–80 m from the surface, and deeper aquifers containing confined groundwater, were distinguished. Groundwater generally shows mineralisation decreasing with depth; dissolved ions depict calcium-bicarbonate hydrochemical facies and stable isotopes define the recharge mechanisms, the origin of groundwater, and the hydraulic confinement of deep aquifers. The phreatic aquifer is fed by local infiltration and by streams and irrigation channels. Tritium and Carbon-14 groundwater dating indicate long residence times (on the order of thousands of years) for confined aquifers. The confined aquifers show essentially passive hydrodynamic conditions and maintain a higher piezometric level than the phreatic aquifer. This inhibits the possibility of recent water penetrating far below the surface. The hydrogeological setting of the Lomellina region displays features which are common to other sectors of the Po plain. As a consequence, the results of this study, although conducted on a restricted area, are highly illustrative of groundwater hydrodynamics in large sedimentary aquifers.  相似文献   

5.
Deep Quaternary groundwater is the main source for industrial, domestic, and agricultural water supply in the North China Plain (NCP). There is currently a regional decline of groundwater levels, deterioration of water quality and environmental geological problems induced by increasing exploitation of the NCP Quaternary aquifer system. To trace sources and transport processes of dissolved Cl in a regional aquifer system and to reveal hydrogeological characteristics of Quaternary complexes, δ37Cl, δ18O and δD, and chemical compositions (including F, Cl, Br) of the deep groundwater sampled from the northern flow system of the NCP were measured along the west–east groundwater flow paths. The measured δ37Cl values decreased from 0.39‰ to −2.22‰ (SMOC) along the groundwater flow direction, with increasing Cl concentrations. Marine aerosol input via rainfall is the main source of Cl in the deep groundwater near the recharge areas, and subsequent evaporation/evapotranspiration appears to be responsible for Cl accumulation. Mixing of recharge water with water of high-Cl and low-δ37Cl accounts for the pattern of δ37Cl and Cl concentration observed in Aquifer-3 along the west–east transect. The water with high-Cl and low-δ37Cl is likely from pore water released from compacted clays induced by over-exploitation of deep groundwater, suggesting that clay is a dominant subsurface source of Cl for groundwater where a regional depression cone is present in the Quaternary aquifers. The groundwater of Aquifer-4 in the Huang-Hua depression is potentially mixed with an upward flux of Cl from the Neogene aquifer through subvertical faults. Diffusion and ion filtration are two mechanisms invoked to explain the highly negative δ37Cl data for groundwater of Aquifer-4 in the Yanshan–Haixing areas, which provides new insight into solute migration and the hydraulic relationship in the strongly exploited groundwater system. This study using the conservative solute Cl provides additional important information for further investigations of the geochemistry of a wide range of reactive solutes in the Quaternary aquifer system, so guiding water resource management.  相似文献   

6.
随着表面热离子质谱(TIMS)和多接收器电感耦合等离子体质谱(MC-ICP-MS)的广泛应用以及同位素分析方法的改进,近10年来非传统稳定同位素(Cu、Zn、Fe、Se、Mo、Cr、Hg等)的研究得到迅速发展.其中,由于Mo同位素的分馏明显受氧化还原条件的控制,使其在指示古环境及古气候的变化方面有独特的地球化学指示意义.同时,Mo同位素在指示成矿物质来源和海洋Mo循环等方面也取得较大成果.因此,Mo同位素地球化学研究已成为国际地学领域的一个前沿和热点.本文综合前人的研究成果,结合近期自己的工作,论述了Mo同位素地球化学研究领域的一些重要进展,详细介绍了Mo同位素的化学分离、提纯和质谱分析技术,并对其应用前景进行了展望.  相似文献   

7.
Hydrogeology Journal - The Quaternary sequences in the Phrae Basin, northern Thailand, can be classified into three aquifers based on depth. The groundwater dynamics and recharge of these aquifers...  相似文献   

8.
《Applied Geochemistry》2001,16(1):109-122
The purpose of this study was to elucidate the processes controlling the distribution and behavior of the longer-lived Ra isotopes in continuous Paleozoic carbonate aquifers of parts of Missouri, Kansas, and Oklahoma. Activities of (228Ra) and (226Ra) were analyzed in fresh and saline ground waters, brines, and rocks. The fluids have a wide salinity range (200–250,000 mg l−1 total dissolved solids). The (226Ra) activity ranges from 0.66–7660 dpm kg−1 and correlates with salinity and other alkaline earth element (Ca, Sr, and Ba) concentrations. The range of (228Ra:226Ra) ratios in the fluids (0.06–1.48) is similar to that in the aquifer rocks (0.21–1.53). The relatively low mean fluid (228Ra:226Ra) ratio (0.30) reflects the low Th:U ratio of the predominant carbonate aquifer rock. Radium occurs mostly (≥77%) as Ra2+ species in the fluids. Salinity-dependent sorption–desorption processes (with log K values from 100–104 and negatively correlated with salinity), involving Th-enriched surface coatings on aquifer flow channels, can explain the rapid solid–fluid transfer of Ra isotopes in the system and the correlation of Ra with salinity.  相似文献   

9.
The watershed in the central Guizhou Province (Guizhou Province is called simply Qian) (CQW) is a karstic area. Rare earth elements (REEs) of dissolved loads, suspended particulate material (SPM) and sediments of riverbed are first synthetically reported to investigate REE geochemistry in the three phases in karstic watershed during the high-flow season. Results show that the low dissolved REE concentrations in the CQW are attributed to these rivers draining carbonate rocks. The dissolved REE have significant negative Eu anomaly and coexistence of middle and light REE (MREE??PAAS-normalized La N /Sm N and Gd N /Yb N ; LREE??PAAS-normalized La N /Yb N )-enrichment, which are due to the dissolution of impure Triassic carbonates. REE concentrations in most of SPM exceed that of sediments in the CQW and the average continental crust (UCC). The SPM and the sediments show some common features: positive Eu, Ce anomalies, and MREE enrichment. The controls on the patterns seem to be from weathering profiles: the oxidation state, the REE-bearing secondary minerals (cerianite, potassium feldspar and plagioclase), which are also supported by the evidence of Y/Ho fractionations in the three phases.  相似文献   

10.
 Aquifers above high-extraction underground coal mines are not affected by mine drainage, but they may still exhibit changes in groundwater chemistry due to alterations in groundwater flow induced by mine subsidence. At two active longwall mine sites in Illinois, USA, glacial-drift aquifers were largely unaffected by mining, but the geochemistry of the bedrock aquifers changed during the post-mining water-level recovery. At the Jefferson site, brackish, high-sulfate water present in the upper bedrock shale briefly had lower values of total dissolved solids (TDS) after mining due to increased recharge from the overlying drift, whereas TDS and sulfate increased in the sodium-bicarbonate water present in the underlying sandstone due to downward leakage from the shale and lateral inflow of water through the sandstone. At the Saline site, sandstones contained water ranging from brackish sodium-chloride to fresh sodium-bicarbonate type. Post-mining recovery of the potentiometric levels was minimal, and the water had minor quality changes. Longwall mining affects geochemistry due to subsidence-related fracturing, which increases downward leakage from overlying units, and due to the temporary potentiometric depression and subsequent recovery, whereby water from surrounding areas of the aquifer recharges the affected zone above and adjacent to the mine. Received, December 1998 / Revised, August 1999 / Accepted, August 1999  相似文献   

11.
稀有气体与轻稳定同位素气体地球化学的应用研究   总被引:3,自引:0,他引:3  
马锦龙  陶明信 《地质通报》2004,23(4):329-335
稀有气体与CO2、CH4、N2等气体及其同位素的结合研究是近年迅速发展的研究体系。本文综述了2种体系的同位素指标以及CO2/3He、CH4/3He、N2/Ar等比值指标在地质领域的研究与应用情况,简述了N2、O2等气体与稀有气体在探索地球大气演化模式方面的概况。  相似文献   

12.
The fluvial geochemistry of the Subarnarekha River and its major tributaries has been studied on a seasonal basis in order to assess the geochemical processes that explain the water composition and estimate solute fluxes. The analytical results show the mildly acidic to alkaline nature of the Subarnarekha River water and the dominance of \(\hbox {Ca}^{2+}\) and \(\hbox {Na}^{+}\) in cationic and \(\hbox {HCO}_{3}^{-}\) and \({\hbox {Cl}}^{-}\) in anionic composition. Minimum ionic concentration during the monsoon and maximum concentration in the pre-monsoon seasons reflect concentrating effects due to decrease in the river discharge and increase in the base flow contribution during the pre-monsoon and dilution effects of atmospheric precipitation in the monsoon season. The solute acquisition processes are mainly controlled by weathering of rocks, with minor contribution from marine and anthropogenic sources. Higher contribution of alkaline earth \((\hbox {Ca}^{2+}{+}\,\hbox {Mg}^{2+})\) to the total cations \((\hbox {TZ}^{+})\) and high \((\hbox {Na}^{+}+\hbox {K}^{+})/\hbox {Cl}^{-}\), \((\hbox {Na}^{+}+\hbox {K}^{+})/\hbox {TZ}^{+}\), \(\hbox {HCO}_{3}^{-}/(\hbox {SO}_{4}^{2-}+\hbox {Cl}^{-})\) and low \((\hbox {Ca}^{2+}+\hbox {Mg}^{2+})/(\hbox {Na}^{+}+\hbox {K}^{+})\) equivalent ratios suggest that the Subarnarekha River water is under the combined influence of carbonate and silicate weathering. The river water is undersaturated with respect to dolomite and calcite during the post-monsoon and monsoon seasons and oversaturated in the pre-monsoon season. The pH–log \(\hbox {H}_{4}\hbox {SiO}_{4}\) stability diagram demonstrates that the water chemistry is in equilibrium with the kaolinite. The Subarnarekha River annually delivered \(1.477\times 10^{6}\) ton of dissolved loads to the Bay of Bengal, with an estimated chemical denudation rate of \(77\hbox { ton km}^{-2}\hbox { yr}^{-1}\). Sodium adsorption ratio, residual sodium carbonate and per cent sodium values placed the studied river water in the ‘excellent to good quality’ category and it can be safely used for irrigation.  相似文献   

13.
Interaction between surface water represented by the Euphrates River, natural springs, and Sawa Lake with groundwater (11 wells) in southern Iraq was investigated in this study. Water samples were collected for hydrochemistry and stable isotope (2H and 18O) analysis. Sampling of water from determined stations (10 stations along the Euphrates, 3 springs, and Sawa Lake) were carried out during two stages; the first was in October 2013(dry season) and the second one was in March 2014 (wet season). The aim of the research is to assess the interaction of groundwater–surface water, which includes Al-Atshan River (branch of the Euphrates River), Sawa Lake, and the groundwater in the study area by using hydrochemistry and stable isotope techniques. The results indicate that surface waters have a different type of water from that of groundwater. In δ 2H and δ 18O diagrams, all groundwater, springs, and Sawa Lake waters are plotted below the Global Meteoric Water Line (GMWL) and the local meteoric water line (LMWL) indicating the influence of evaporation processes and seasonal variation. The LMWL deviates by a d-excess about +13.71 toward the East Mediterranean meteoric water line (EMWL) indicating that the origin of the vapor source is the Mediterranean Sea. The river water has different isotopic compositions from that of groundwater, springs, and Sawa Lake. The final conclusion is that there is no clear influence of the groundwater on the river water while there is an intermixing between the groundwater in the different locations in the study area.  相似文献   

14.
鄂尔多斯盆地白垩系含水层沉积学初探   总被引:16,自引:5,他引:16  
“含水层沉积学”是沉积学、水文地质学、油气储层地质学、地球化学等相互交叉综合的产物,是以沉积学、水文地质学理论为基础,以沉积含水层为主要研究对象,以查明地下水赋存和循环条件、地下水系统结构特征、地下水水质成因与分布以及地下水富集规律为主要研究内容,最终服务于地下水资源勘查评价的一门边缘分支学科。含水层沉积学及水文地质综合研究表明,受到沉积相类型及其空间展布的明显控制,鄂尔多斯盆地白垩系地下水赋存、循环、富集条件以及地下水水质分布总体具有北好南差、盆地南部具有下好上差的宏观规律。  相似文献   

15.
Outcrops of the Paleozoic Chalki volcanic rocks are restricted to part of the northern Thrust Zone of Iraq close to Iraqi-Turkish border. Petrographically, the volcanic rocks from the Chalki area are mainly layered, appearing fresh in the field and exhibiting some basaltic lava flows. Porphyritic, amygdaloidal, and microlite-porphyric are the main observed textures. Phenocrysts of primary phases (i.e., olivine, iron oxides) are in a groundmass of feldspars and clinopyroxene. Chalki Formation is intercalated with Pirispiki Formation which consists of thin to medium bedded, greenish gray marl, red mudstone, and veins of calcite. The Chalki rocks are mafic of theolitic basalt type. Geochemically, they have high chromium and nickel concentrations in most samples. Rare earth element (REE) patterns illustrate parallel to sub-parallel, moderately fractionated REE patterns. The low heavy REE (HREE) contents in the studied samples appear to be due to partial melting of metamorphosed oceanic crust leaving HREE-rich accessory minerals (i.e., garnet) as a residual phase in the source. No Eu anomalies were observed in the Chalki samples which may indicate a back-arc basin pattern. The non-subduction signature of the Chalki rocks is confirmed by the Nb/Yb versus Th/Yb diagram, which shows that most of the studied rocks fall in the compositional field of non-arc-related rocks—well within the field of the mid-ocean ridge basalt (MORB)-ocean island basalt (OIB) mantle array.  相似文献   

16.

Modeling of karstic basins can provide a better understanding of the interactions between surface water and groundwater, a more accurate estimation of infiltrated water amount, and a more reliable water balance calculation. In this study, the hydrological simulation of a karstic basin in a semiarid region in Iran was performed in three different stages. In the first stage, the original SWAT model was used to simulate surface-water flow. Then, the SWAT-MODFLOW conjunctive model was implemented according to the groundwater characteristics of the study area. Finally, due to the karstic characteristics of the region and using the CrackFlow (CF) package, the SWAT-MODFLOW-CF conjunctive model was developed to improve the simulation results. The coefficient of determination (R2) and the Nash-Sutcliffe efficiency coefficient (NSE) as error evaluation criteria were calculated for the models, and their average values were 0.63 and 0.57 for SWAT, 0.68 and 0.61 for SWAT-MODFLOW, 0.73 and 0.7 for SWAT-MODFLOW-CF, respectively. Moreover, the mean absolute error (MAE) and root mean squared error (RMSE) of the calibration for groundwater simulation using the SWAT-MODFLOW model were 1.23 and 1.77 m, respectively. These values were 1.01 and 1.33 m after the calibration of the SWAT-MODFLOW-CF model. After modifying the CF code and keeping the seams and cracks open in both dry and wet conditions, the amount of infiltrated water increased and the aquifer water level rose. Therefore, the SWAT-MODFLOW-CF conjunctive model can be proposed for use in karstic areas containing a considerable amount of both surface water and groundwater resources.

  相似文献   

17.
18.
Acta Geochimica - The Dibdibba aquifer is considered to be the main source in the Al-Zubair area because agriculture depends on it to provide grazing water in the area. The groundwater well samples...  相似文献   

19.
地球科学中铁同位素研究进展   总被引:1,自引:0,他引:1  
21世纪初,铁同位素的高精度分析因多道等离子体质谱仪的引入成为可能。铁在自然界中具有高丰度、多价态和生物可利用性,其同位素地球化学受到广泛关注,并取得巨大的进展。本文综述了铁同位素研究的进展和在地球科学中的应用。这些进展包括:(1)查明了各类陨石的铁同位素组成,并制约了太阳系及早期行星演化过程;(2)调查了地球主要储库的铁同位素组成;(3)积累了大量高、低温常见体系中两相间的铁同位素分馏系数;(4)初步探明了岩浆过程(如部分熔融、地幔交代和岩浆分异等)中的铁同位素分馏行为;(5)初步查明铁同位素在主要低温过程(如风化、早期成岩作用等)中的分馏行为;(6)实例性研究揭示了沉积岩样品铁同位素在示踪古海洋大气氧逸度变化和早期生命演化方面的潜力。随着人们对铁同位素分馏机制理解的加深,各体系中分馏系数的积累,铁同位素将在地球科学的各个方面得到更广泛的应用。  相似文献   

20.
Large-scale interaction between the Continental Intercalaire and the Djeffara aquifer systems in the southeast of Tunisia has been investigated with the aid of chemical and isotopic tracers. Two distinct groundwater types have been identified: (1) the Continental Intercalaire groundwater characterized by elevated temperatures (50–61.4°C), low δ18O (−8.4 to−7.87) and δ2H (−67.2 to−59) values and negligible radiocarbon content, both testifying its great age dating from the late Pleistocene period, and (2) the Djeffara groundwater with distinctly heavier isotopic composition (δ18O = −8.31 to −5.80, δ2H = −65.9 to −31.9). The Djeffara groundwaters reveal a distinct changes of physico-chemical and isotopic parameters near El Hamma Faults in the northwestern part of the Djeffara basin. These changes could possibly be explained by a vertical leakage from the Continental Intercalaire aquifer through El Hamma Faults. The mixing proportions inferred from stable isotope mass balance prove that the contribution of the Continental Intercalaire to the recharge of Djeffara aquifer is very significant and may reach 100% in the El Hamma region and in the northern part of Gabes. Isotope tracers strongly suggest that recent recharge to the Djeffara aquifer system is very limited. Its current yield, particularly in its central and northern parts can be maintained only thanks to large-scale underground inflow from the Continental Intercalaire aquifer system, which carries late Pleistocene palaeowater. Consequently, current exploitation of groundwater resources of the Djeffara aquifer has non-sustainable character.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号