首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Surface water and groundwater are the main water resources used for drinking and production. Assessments of the relationship between surface water and groundwater provide information for water resource management in Sanjiang plain, Northeast China. The surface water (river, lake, and wetland) and groundwater were sampled and analyzed for stable isotopic (δD, δ 18O) composition, tritium, and chlorofluorocarbons concentrations. The local meteoric water line is δD = 7.3δ 18O–6.7. The tritium (T) and chlorofluorocarbon (CFC) contents in groundwater were analyzed to determine the groundwater ages. Most groundwater were modern water with the ages <50 years. The groundwaters in mountain area and near rivers were younger than in the central plain. The oxygen isotope (δ 18O) was used to quantify the relationship between surface water and groundwater. The Songhua, Heilongjiang, and Wusuli rivers were gaining rivers, but the shallow groundwater recharged from rivers at the confluence area of rivers. At the confluence of Songhua and Heilongjiang rivers, 88 % of the shallow groundwater recharged from Songhua river. The combination of stable isotopes, tritium, and CFCs was an effectively method to study the groundwater ages and interrelation between surface water and groundwater. Practically, the farmlands near the river and under foot of the mountain could be cultivated, but the farmlands in the central plain should be controlled.  相似文献   

2.
Interaction between surface water represented by the Euphrates River, natural springs, and Sawa Lake with groundwater (11 wells) in southern Iraq was investigated in this study. Water samples were collected for hydrochemistry and stable isotope (2H and 18O) analysis. Sampling of water from determined stations (10 stations along the Euphrates, 3 springs, and Sawa Lake) were carried out during two stages; the first was in October 2013(dry season) and the second one was in March 2014 (wet season). The aim of the research is to assess the interaction of groundwater–surface water, which includes Al-Atshan River (branch of the Euphrates River), Sawa Lake, and the groundwater in the study area by using hydrochemistry and stable isotope techniques. The results indicate that surface waters have a different type of water from that of groundwater. In δ 2H and δ 18O diagrams, all groundwater, springs, and Sawa Lake waters are plotted below the Global Meteoric Water Line (GMWL) and the local meteoric water line (LMWL) indicating the influence of evaporation processes and seasonal variation. The LMWL deviates by a d-excess about +13.71 toward the East Mediterranean meteoric water line (EMWL) indicating that the origin of the vapor source is the Mediterranean Sea. The river water has different isotopic compositions from that of groundwater, springs, and Sawa Lake. The final conclusion is that there is no clear influence of the groundwater on the river water while there is an intermixing between the groundwater in the different locations in the study area.  相似文献   

3.
In this study, hydrochemical and isotope investigations were conducted in the Yanqi Basin to determine the chemical composition, and to gain insight into the groundwater recharge process in the Yanqi Basin. It mainly used hydrochemistry, environmental isotopes, and a series of comprehensive data interpretation, e.g., statistics, ionic ratios, and Piper diagram to obtain a better understanding of the functioning of the system. The following hydrochemical processes were identified as the main factors controlling the water quality of the groundwater system: weathering of silicate minerals, dissolution, ion exchange, and to a lesser extent, evaporation, which seemed to be more pronounced down gradient of the flow system. As groundwater flows from the recharge to discharge areas, chemical patterns evolve in the order of Ca2+–HCO3 ?, Ca2+/Mg2+–HCO3 ? to Ca2+–Mg2+–Cl?–SO4 2?, Na+–K+–Cl?–SO4 2? and Na+–Cl? according to lithology. The environmental isotope (δ 18O, δ 2H, 3H) measurements further revealed that precipitation was the main recharge source for the groundwater system; some local values indicated high levels of evaporation. Tritium and CFC analysis were used to estimate the ages of the different groundwater; the tritium values of the groundwater samples varied from 2.82 to 29.7 TU. The age of the groundwater at depths of <120 m is about 30–50 years. CFC values obtained for six samples to determine groundwater age; the age of the groundwater is about 20–50 years.  相似文献   

4.
The groundwater of major karst systems and submarine springs in the coastal limestone aquifer of Syria has been investigated using chemical and isotopic techniques. The δ18O values of groundwater range from ?6.8 to ?5.05‰, while those for submarine springs vary from ?6.34 to +1.08‰ (eastern Mediterranean seawater samples have a mean of +1.7‰). Groundwater originates from the direct infiltration of atmospheric water. Stable isotopes show that the elevation of the recharge zones feeding the Banyas area (400–600 m a.s.l.) is higher than that feeding the Amrit area (100–300 m a.s.l.). The 18Oextracted (18O content of the seawater contribution) for the major submarine springs suggests a mean recharge area elevation of 600–700 m a.s.l., and lower than 400 m a.s.l. for the spring close to Amrit. Based on the measured velocity and the percentage of fresh water at the submarine springs outlet, the estimated discharge rate is 350 million m3/year. The tritium concentrations in groundwater (1.6–5.9 TU) are low and very close to the current rainfall values (2.9–5.6 TU). Adopting a model with exponential time distribution, the mean turnover time of groundwater in the Al-sen spring was evaluated to be 60 years. A value of about 3.7 billion m3 was obtained for the maximum groundwater reservoir size.  相似文献   

5.
Ayadi  Rahma  Trabelsi  Rim  Zouari  Kamel  Saibi  Hakim  Itoi  Ryuichi  Khanfir  Hafedh 《Hydrogeology Journal》2018,26(4):983-1007

Major element concentrations and stable (δ18O and δ2H) and radiogenic (3H and 14C) isotopes in groundwater have proved useful tracers for understanding the geochemical processes that control groundwater mineralization and for identifying recharge sources in the semi-arid region of Sfax (southeastern Tunisia). Major-ion chemical data indicate that the origins of the salinity in the groundwater are the water–rock interactions, mainly the dissolution of evaporitic minerals, as well as the cation exchange with clay minerals. The δ18O and δ2H relationships suggest variations in groundwater recharge mechanisms. Strong evaporation during recharge with limited rapid water infiltration is evident in the groundwater of the intermediate aquifer. The mixing with old groundwater in some areas explains the low stable isotope values of some groundwater samples. Groundwaters from the intermediate aquifer are classified into two main water types: Ca-Na-SO4 and Ca-Na-Cl-SO4. The high nitrate concentrations suggest an anthropogenic source of nitrogen contamination caused by intensive agricultural activities in the area. The stable isotopic signatures reveal three water groups: non-evaporated waters that indicate recharge by recent infiltrated water; evaporated waters that are characterized by relatively enriched δ18O and δ2H contents; and mixed groundwater (old/recent) or ancient groundwater, characterized by their depleted isotopic composition. Tritium data support the existence of recent limited recharge; however, other low tritium values are indicative of pre-nuclear recharge and/or mixing between pre-nuclear and contemporaneous recharge. The carbon-14 activities indicate that the groundwaters were mostly recharged under different climatic conditions during the cooler periods of the late Pleistocene and Holocene.

  相似文献   

6.
The study area, the Fasa Plain, is situated in the semiarid region of Fars Province in the south of Iran. The Salloo diapir is a salt dome that crops out in the northwest of the study area. Isotopic and hydrochemical analyses were used to examine the water and how the origin of salinity and the diapir affect the quality of the groundwater quality in the study area. Groundwater was sampled from 31 representative pumping wells in alluvial aquifer and five springs in order to measure their stable isotope compositions, bromide ion concentration, and physical and chemical parameters. The alluvial aquifer was organized into two main groups based on the chemistry, with Group 1 consisting of low-salinity well samples (544–1744 µS/cm) with water type Ca–Mg–HCO3–SO4 which were taken in the center and north of the area, and Group 2 consisting of high-salinity samples (2550–4620 µS/cm) with water type Ca–Mg–Cl–SO4 which were taken from the wells in the south and southwest of the area. A saline spring near the salt dome with an EC of 10,280 µS/cm has water type Na–Cl, while the compositions of the water in the other karstic springs is comparable to the fresh groundwater samples. All groundwater samples are undersaturated with respect to gypsum, anhydrite, and halite and are supersaturated with respect to calcite and dolomite. Stable isotopes (δ18O and δ2H) differentiated four water types: saline springs, freshwater spring, fresh groundwater, and saline groundwater. The results indicate that meteoric water is the main origin of these water resources. Halite dissolution from the salt dome was identified as the origin of salinity. The Na/Cl and Cl/Br ratios confirmed the results. Groundwater compositions in the southwestern part of the area are affected by the intrusion of saltwater from the salt dome. The average saltwater fraction in the some water wells is about 0.2%. In the south and southwestern part of the area, the saltwater fraction is positive in mixed freshwater/saltwater (Group 2). Different processes interact together to change the hydrochemical properties of Fasa’s alluvial aquifer. The main processes that occur in the aquifer are mixing, gypsum dissolution, and calcite precipitation.  相似文献   

7.
Stable isotopes of the water molecule (δ18O and δD) for groundwater, lake water, streams, and precipitation were coupled with physical flux measurements to investigate groundwater–lake interactions and to establish a water balance for a structurally complex lake. Georgetown Lake, a shallow high-latitude high-elevation lake, is located in southwestern Montana, USA. The lake is situated between two mountain ranges with highlands primarily to the east and south of the lake and a lower valley to the west. An annual water balance and (δ18O and δD) isotope balance were used to quantify annual groundwater inflows of 2.5?×?107 m3/year and lake leakage outflows of 1.6?×?107 m3/year. Roughly, 57% of total inflow to the lake is from groundwater, and 37% of total outflow at Georgetown Lake is groundwater. Stable isotopes of groundwater and springs around the lake and surrounding region show that the east side of the lake contains meteoric water recharged annually from higher mountain sources, and groundwater discharge to the lake occurs through this region. However, springs located in the lower western valley and some of the surrounding domestic wells west of the lake show isotopic enrichment indicative of strong to moderate evaporation similar to Georgetown Lake water. This indicates that some outflowing lake water recharges groundwater through the underlying west-dipping bedrock in the region.  相似文献   

8.
Water samples from cold and geothermal boreholes, hot springs, lakes and rivers were analyzed for δD, δ18O and 87Sr/86Sr compositions in order to investigate lake water–groundwater mixing processes, water–rock interactions, and to evaluate groundwater flow paths in the central Main Ethiopian Rift (MER) of the Ziway–Shala basin. Different ranges of isotopic values were recorded for different water types: hot springs show δ18O −3.36 to +3.69 and δD −15.85 to +24.23, deep Aluto-Langano geothermal wells show δ18O −4.65 to −1.24 and δD −12.39 to −9.31, groundwater wells show δ18O −3.99 to +5.14 and δD −19.69 to +32.27, whereas the lakes show δ18O and δD in the range +3.98 to +7.92 and +26.19 to +45.71, respectively. The intersection of the Local Meteoric Water Line (LMWL: δD = 7 δ18O + 11.2, R2 = 0.94, n = 42) and the Local Evaporation Line (LEL: δD = 5.63δ18O + 8, n = 14, R2 = 0.82) was used to estimate the average isotopic composition of recharge water into the basin (δD = −5.15 and δ18O = −2.34). These values are depleted if compared with the modern-day average precipitation, presumably indicating paleo-groundwater components recharged during previous humid climatic phases. The measured stable isotope values indicate that the geothermal wells, some of the hot springs and groundwater wells mainly consist of meteoric water. The Sr isotopic signatures in all waters are within the range of the Sr isotopic composition of the rift basalts and rhyolites. The variability of Sr isotopic data also pinpoints complex water–rock interaction and mixing processes in groundwater and surface water. The 87Sr/86Sr ratio ranges from 0.70445 to 0.70756 in the hot springs, from 0.70426 to 0.70537 in two deep geothermal wells, and from 0.70673 to 0.70721 in the rift lakes Ziway, Langano, Shala and Awasa. The radiogenic composition recorded by the lakes indicates that the input water was predominantly affected by progressive interaction with rhyolitic volcanics and lacustrine sediments.  相似文献   

9.
《Applied Geochemistry》2005,20(11):2063-2081
This paper deals with chemical and isotope analyses of 21 springs, which were monitored 3 times in the course of 2001; the monitoring program was focused on the groundwater of the Gran Sasso carbonate karst aquifer (Central Italy), typical of the mountainous Mediterranean area.Based on the hydrogeological setting of the study area, 6 groups of springs with different groundwater circulation patterns were distinguished. The hydrogeochemistry of their main components provided additional information about groundwater flowpaths, confirming the proposed classification. The spatial distribution of their ion concentrations validated the assumptions underlying the hydrogeological conceptual model, showing diverging groundwater flowpaths from the core to the boundaries of the aquifer. Geochemical modelling and saturation index computation elucidated water–carbonate rock interaction, contribution by alluvial aquifers at the karst aquifer boundaries, as well as impacts of human activities.The analysis of 18O/16O and 2H/H values and their spatial distribution in the aquifer substantiated the hydrogeology-based classification of 6 groups of springs, making it possible to trace back groundwater recharge areas based on mean isotope elevations; the latter were calculated by using two rain monitoring stations. 87Sr/86Sr analyses showed seasonal changes in many springs: in winter–spring, the changes are due to inflow of new recharge water, infiltrating into younger rocks and thus increasing 87Sr/86Sr values; in summer–autumn, when there is no recharge and spring discharge declines, changes are due to base flow groundwater circulating in more ancient rocks, with a subsequent drop in 87Sr/86Sr values.The results of this study stress the contribution that spatio-temporal isotope monitoring can give to the definition of groundwater flowpaths and hydrodynamics in fissured and karst aquifers, taking into account their hydrogeological and hydrogeochemical setting.  相似文献   

10.
The stable water isotopic composition (δ2H and δ18Ο), tritium (3H) activity, dissolved organic carbon, alkalinity, as well as the composition of carbon 13 (δ13C) in dissolved inorganic carbon (DIC) of 36 water samples taken from 16 resurgences in the northeast provinces of Viet Nam in the dry (Mar 2008) and rainy (June 2008) seasons were analyzed to elucidate hydrological characteristics of the karstic aquifers in the area. The stable water isotopic composition of the water samples collected clearly demonstrated that the karstic groundwater in the region was recharged from the local meteorological water. The tritium activity in the samples was found to be in between 3 and 4 TU, falling in the range of the 3H activity in the local precipitation and thus meaning that the traveling of recharge water to the resurgences was very short. Concentrated and diffuse allogenic recharges seem to be important sources of karstic groundwater in the study region. Water in the karstic aquifers could be classified into three types as: (a) water from karstic areas with dense vegetation cover that causes DIC be depleted in carbon 13 (13δ<?12‰ vs. Pee Dee Belemnite standard of Vienna, VPDB); (b) water from karstic areas with poor vegetation cover that originates DIC with carbon 13 composition ranging from ?11 to ?12‰; and (c) surface water from lakes, springs and rivers that has DIC with enriched carbon 13 (δ13C >?10‰). This implies that there are several sources of carbon dioxide contributing to the DIC in water of the karstic aquifers in the study region. Among other potential sources, the atmospheric CO2, CO2 from carbonate rock dissolution, biomineralization of soil organic matters and plant roots respiration seem to be important sources of the DIC in the waters of this region. The results show high vulnerability towards anthropogenic contaminants of karstic groundwater in the study region.  相似文献   

11.
On the basis of the isotopic composition of water in the northern part of Epirus, Greece, from springs at different altitudes with well-defined recharge areas, the altitude effect on the δ18O value of groundwater is –0.142±0.003ö (100?m)–1 and is uniform over the entire study area. Using the δ18O composition of surface water and groundwaters, the contribution of Ioannina Lake and the channel draining the lake water to the Kalamas River to the recharge of springs and boreholes was confirmed and quantitatively defined. In contrast, the Voidomatis and Vikos Rivers are not sources for recharge of the big springs along their banks. However, water from the Aoos River does replenish the aquifer in the unconsolidated deposits underlying the plain of Konitsa. In addition, limestones of Senonian–Late Eocene ages, dolomites, and limestones of the "Vigles" facies are hydraulically interconnected, and the limestones of the "Pantokrator" facies are hydraulically isolated from the other carbonate formations.  相似文献   

12.
《Applied Geochemistry》2005,20(9):1658-1676
Geochemical and environmental isotope data were used to gain the first regional picture of groundwater recharge, circulation and its hydrochemical evolution in the upper Blue Nile River basin of Ethiopia. Q-mode statistical cluster analysis (HCA) was used to classify water into objective groups and to conduct inverse geochemical modeling among the groups. Two major structurally deformed regions with distinct groundwater circulation and evolution history were identified. These are the Lake Tana Graben (LTG) and the Yerer Tullu Wellel Volcanic Lineament Zone (YTVL). Silicate hydrolysis accompanied by CO2 influx from deeper sources plays a major role in groundwater chemical evolution of the high TDS Na–HCO3 type thermal groundwaters of these two regions. In the basaltic plateau outside these two zones, groundwater recharge takes place rapidly through fractured basalts, groundwater flow paths are short and they are characterized by low TDS and are Ca–Mg–HCO3 type waters. Despite the high altitude (mean altitude ∼2500 masl) and the relatively low mean annual air temperature (18 °C) of the region compared to Sahelian Africa, there is no commensurate depletion in δ18O compositions of groundwaters of the Ethiopian Plateau. Generally the highland areas north and east of the basin are characterized by relatively depleted δ18O groundwaters. Altitudinal depletion of δ18O is 0.1‰/100 m. The meteoric waters of the Blue Nile River basin have higher d-excess compared to the meteoric waters of the Ethiopian Rift and that of its White Nile sister basin which emerges from the equatorial lakes region. The geochemically evolved groundwaters of the YTVL and LTG are relatively isotopically depleted when compared to the present day meteoric waters reflecting recharge under colder climate and their high altitude.  相似文献   

13.
《Applied Geochemistry》2000,15(7):937-952
The B isotopic composition, in combination with O and H isotopes and hydrochemical tracers, is utilized to constrain the evolution of basement-hosted groundwaters via water–rock interactions and fluid infiltration from external (sedimentary) reservoirs. Two distinct groundwater types have been identified in the Central European crystalline basement (N Switzerland–SW Germany): (1) fresh groundwaters characterized by low values of δ11B (−3.5 to −0.6‰), δ18O (−12.0 to −10.0‰), and δD (−86.8 to −71.9‰), and (2) brackish groundwaters with distinctly heavier B, O, and H isotopic compositions (δ11B=+6.4 to +17.6‰, δ18O=−9.4 to −5.6‰, δD=−67.6 to −60.8‰). Fresh groundwaters show a systematic decrease in δ11B, related to an increase in B concentrations (and degree of total mineralization), along the pathway of groundwater migration which can only be interpreted in terms of leaching of crystalline host rocks. A δ11B value of −3.3‰ is inferred for the crustal B source (mainly Hercynian granites) involved in the leaching process, in agreement with the known δ11B range of granitic rocks. The evolution of brackish groundwaters, derived from crystalline basement reservoirs with little water circulation, is more complex. As indicated by B–O–H stable isotope and hydrochemical (e.g. B/Cl, Na/Cl, and Br/Cl) constraints, brackish groundwaters from the study area are influenced by admixture of sediment-derived fluids which infiltrated from Late Paleozoic (Permo-Carboniferous) and Early Mesozoic (Lower Triassic) sedimentary strata. The data presented show that B isotopes are sensitive to mixing processes of fluids derived from different crustal reservoirs and, hence, may be utilized as a tracer for constraining the internal (autochthonous) vs external (allochthonous) origin of salinity in basement-hosted groundwaters.  相似文献   

14.
Karstic aquifers are considered as the main sources of groundwater in the northeast of Rudbar, Iran. The present study was conducted to evaluate the hydrogeological properties of karstic springs in this region. For this purpose, saturation indices (SI values) were calculated using the geochemical PHREEQC model for a number of minerals in the groundwater in the karstic aquifer. Moreover, AqQA-RockWare software packages were used to prepare hydrogeochemical plots for the aquifer, using which the sources of the ions in the water were identified. The origin of bicarbonate, calcium, and magnesium ions in water was determined using chloro-alkaline indices. Moreover, through plotting a Piper diagram for spring water samples, it was discovered that water type of all springs is the Ca-HCO3 type, confirming the karstic characteristic of springs in the area. A Durov diagram also suggests that the water composition of the springs is of the bicarbonate type with the dominant Ca cation, suggesting the calcareous effects of the region on the quality of groundwater and exhibiting a single source for the springs. The calculated saturation indices show that most of the water samples are undersaturated with respect to calcite, dolomite, and CO2. The stable isotopes (δ18O and δ2H) and deuterium excess values were used to get information about transport pathways in groundwater, atmospheric moisture, and the degree of interaction between these reservoirs. The degree of karstification of the recharge area of the karst aquifer was determined to be 5.5 from an analysis of the hydrograph Sefidab Spring.  相似文献   

15.
To understand deep groundwater flow systems and their interaction with CO2 emanated from magma at depth in a volcanic edifice, deep groundwater samples were collected from hot spring wells in the Aso volcanic area for hydrogen, oxygen and carbon isotope analyses and measurements of the stable carbon isotope ratios and concentrations of dissolved inorganic carbon (DIC). Relations between the stable carbon isotope ratio (δ13CDIC) and DIC concentrations of the sampled waters show that magma-derived CO2 mixed into the deep groundwater. Furthermore, groundwaters of deeper areas, except samples from fumarolic areas, show higher δ13CDIC values. The waters' stable hydrogen and oxygen isotope ratios (δD and δ18O) reflect the meteoric-water origin of that region's deep groundwater. A negative correlation was found between the altitude of the well bottom and the altitude of groundwater recharge as calculated using the equation of the recharge-water line and δD value. This applies especially in the Aso-dani area, where deeper groundwater correlates with higher recharge. Groundwater recharged at high altitude has higher δ13CDIC of than groundwater recharged at low altitude, strongly suggesting that magmatic CO2 is present to a much greater degree in deeper groundwater. These results indicate that magmatic CO2 mixes into deeper groundwater flowing nearer the magma conduit or chamber.  相似文献   

16.
Investigations in the Jiaozuo coal-mining district (China) aim to link water-inrush aquifers with the sources of groundwater recharge. Concentrations of TDS, HCO 3 , Cl and Na+ in the groundwater samples gradually decrease with increasing depth; in contrast, the factor 1 value of the Q-mode analysis gradually increases, which indicates that the deep groundwater may upflow, recharging the aquifers near the faulted zone. Some groundwater samples (above the local meteoric water line and ‘evaporation line 1’) may originate from recharge by infiltrating local rainfall. Spring and river samples are symmetrically distributed on the regression line of the Ordovician and Carboniferous limestone aquifer groundwater (δ2H?=?3.76?×?δ18O?–?31.77) and may, therefore, originate from groundwater recharge in the northern Taihang mountains. This mechanism is supported by the observation that groundwater levels change with rainfall. According to radiocarbon residence-time estimates, two groundwater sample sites may have been recharged during the late glacial stage.  相似文献   

17.
Groundwater is the most important source of water supply in the Yeniceoba Plain in Central Anatolia,Turkey.An understanding of the geochemical evolution of groundwater is important for the sustainable development of water resources in this region.A hydrogeochemical investigation was conducted in the Plio-Quaternary aquifer system using stable isotopes(δ~(18)O andδD),tritium(~3H),major and minor elements(Ca,Na,K,Mg,Cl,SO_4,NO_3,HCO_3 and Br)in order to identify groundwater chemistry patterns and the processes affecting groundwater mineralization in this system.The chemical data reveal that the chemical composition of groundwater in this aquifer system is mainly controlled by rock/water interactions including dissolution of evaporitic minerals,weathering of silicates,precipitation/dissolution of carbonates,ion exchange,and evaporation.Based on the values of Cl/Br ratio(300 mg/l)in the Plio-Quaternary groundwater,dissolution of evaporitic minerals in aquifer contributes significantly to the high mineralization.The stable isotope analyses indicate that the groundwater in the system was influenced by evaporation of rainfall during infiltration.Low tritium values(generally1 tritium units)of groundwater reflect a minor contribution of recent recharge and groundwater residence times of more than three or four decades.  相似文献   

18.
Springs are the only available source of water for domestic and agricultural use in mountainous regions of Dhouli Rao and Kandela in the Sirmaur district of Himachal Pradesh, India. These springs are mainly gravity, contact or fracture and solution tubular (Karst) type. Drying of springs during summer causes much hardship to the inhabitants of this region. Hence, environmental isotopes (2H, 18O, 3H) were employed along with hydrogeochemistry and geomorphology to identify the recharge zones of the drying springs. From the stable isotope data of rainwater, the altitude effect was estimated (?0.3?‰ for δ18O per 100 m elevation) and used to determine the recharge zones of the drying springs (+1,000 to +1,430 m amsl). The geo-morphological setting of the valley indicated that either check dam, contour bunding or levees structures with gabion method of rainwater conservation can be implemented to augment the recharge of the springs.  相似文献   

19.
Kilimanjaro, Tanzania, the highest mountain in Africa, has undergone extensive hydrologic changes over the past century in an area where water resources are critical. A hydrochemical and isotopic synoptic sampling program in January 2006 is used to characterize hydrogeology, hydrology, and water quality of the area. Samples were collected from the summit and southern side of Kilimanjaro and the Moshi region (Tanzania). Sample sources included four glaciers, seven groundwater wells, 12 rivers, 10 springs, precipitation, and a lake. Analyses included major ion chemistry, stable isotopes of water (18O and D); in addition, seven samples were analyzed for tritium. The samples generally have good water quality with the exception of three samples with elevated fluoride concentrations (>3 mg/L) and elevated nitrate concentrations (>2.5 mg/L NO3 as N). There is a strong elevation control on stable isotopes, with an apparent elevation effect of – 0.1 ‰ δ18O per 100 m rise in elevation (R 2 = 0.79). The results, including the tritium values, show that the hydrogeologic system is comprised of both local and regional flow systems, and that regional rivers are receiving significant inflow from shallow groundwater, and at very high elevations the hydrologic system is derived from groundwater, precipitation, and glacial melt water.  相似文献   

20.
M. Afşin 《Environmental Geology》2000,39(10):1190-1196
The main aquifer of the Helvadere springs that emerges on the strike-slip of the Hasanda?? fault set alongside the Tuzgölü (salt lake) fault zone, and trends in a NW–SE direction of Aksaray city, in the western part of Central Anatolia, is the exposed rocks of Hasanda?? which are volcanics that have distinct hydrogeological properties. The meteoric origin of the spring waters is deduced from hydrochemical and environmental isotope (18O, 2H, 3H) studies. The springs have high discharge (Q>100?l/s) and low ion concentrations because of fast circulation along the groundwater flow path in the aquifer. Furthermore, because it has Ca-Na-Mg-HCO3 hydrochemical facies, it conforms to high standards of drinking and irrigation water.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号