首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Organic geochemical analysis and palynological studies of the organic matters of subsurface Jurassic and Lower Cretaceous Formations for two wells in Ajeel oil field, north Iraq showed evidences for hydrocarbon generation potential especially for the most prolific source rocks Chia Gara and Sargelu Formations. These analyses include age assessment of Upper Jurassic (Tithonian) to Lower Cretaceous (Berriasian) age and Middle Jurassic (Bathonian–Tithonian) age for Chia Gara and Sargelu Formations, respectively, based on assemblages of mainly dinoflagellate cyst constituents. Rock-Eval pyrolysis have indicated high total organic carbon (TOC) content of up to 18.5 wt%, kerogen type II with hydrogen index of up to 415 mg HC/g TOC, petroleum potential of 0.70–55.56 kg hydrocarbon from each ton of rocks and mature organic matter of maximum temperature reached (Tmax) range between 430 and 440 °C for Chia Gara Formation, while Sargelu Formation are of TOC up to 16 wt% TOC, Kerogen type II with hydrogen index of 386 mg HC/g TOC, petroleum potential of 1.0–50.90 kg hydrocarbon from each ton of rocks, and mature organic matter of Tmax range between 430 and 450 °C. Qualitative studies are done in this study by textural microscopy used in assessing amorphous organic matter for palynofacies type belonging to kerogen type A which contain brazinophyte algae, Tasmanites, and foraminifera test linings, as well as the dinoflagellate cysts and spores, deposited in dysoxic–anoxic environment for Chia Gara Formation and similar organic constituents deposited in distal suboxic–anoxic environment for Sargelu Formation. The palynomorphs are of dark orange and light brown, on the spore species Cyathidites australis, that indicate mature organic matters with thermal alteration index of 2.7–3.0 for the Chia Gara Formation and 2.9–3.1 for the Sargelu Formation by Staplin's scale. These characters have rated the succession as a source rock for very high efficiency for generation and expulsion of oil with ordinate gas that charged mainly oil fields of Baghdad, Dyala (B?aquba), and Salahuddin (Tikrit) Governorates. Oil charge the Cretaceous-Tertiary total petroleum system (TPS) are mainly from Chia Gara Formation, because most oil from Sargelu Formation was prevented passing to this TPS by the regional seal Gotnia Formation. This case study of mainly Chia Gara oil source is confirmed by gas chromatography–mass spectrometry analysis for oil from reservoirs lying stratigraphically above the Chia Gara Formation in Ajeel and Hamrine oil fields, while oil toward the north with no Gotnia seal could be of mainly Sargelu Formation source.  相似文献   

2.
Hydrocarbon potential of the Sargelu Formation,North Iraq   总被引:1,自引:1,他引:0  
Microscopic and chemical analysis of 85 rock samples from exploratory wells and outcrops in northern Iraq indicate that limestone, black shale and marl within the Middle Jurassic Sargelu Formation contain abundant oil-prone organic matter. For example, one 7-m (23-ft.)-thick section averages 442 mg?HC/g S2 and 439 °C Tmax (Rock-Eval pyrolysis analyses) and 16 wt.% TOC. The organic matter, comprised principally of brazinophyte algae, dinoflagellate cysts, spores, pollen, foraminiferal test linings and phytoclasts, was deposited in a distal, suboxic to anoxic basin and can be correlated with kerogens classified as type A and type B or, alternatively, as type II. The level of thermal maturity is within the oil window with TAI?=?3? to 3+, based on microspore colour of light yellowish brown to brown. Accordingly, good hydrocarbon generation potential is predicted for this formation. Terpane and sterane biomarker distributions, as well as stable isotope values, were determined for oils and potential source rock extracts to determine valid oil-to-source rock correlations. Two subfamily carbonate oil types—one of Middle Jurassic age (Sargelu) carbonate rock and the other of Upper Jurassic/Cretaceous age—as well as a different oil family related to Triassic marls, were identified based on multivariate statistical analysis (HCA and PCA). Middle Jurassic subfamily A oils from Demir Dagh oil field correlate well with rich, marginally mature, Sargelu source rocks in well MK-2 near the city of Baiji. In contrast, subfamily B oils have a greater proportion of R28 steranes, indicating they were generated from Upper Jurassic/Lower Cretaceous carbonates such as those at Gillabat oil field north of Mansuriyah Lake. Oils from Gillabat field thus indicate a lower degree of correlation with the Sargelu source rocks than do oils from Demir Dagh field. One-dimension petroleum system models of key wells were developed using IES PetroMod Software to evaluate burial-thermal history, source-rock maturity and the timing and extent of petroleum generation; interpreted well logs served as input to the models. The oil-generation potential of sulphur-rich Sargelu source rocks was simulated using closed system type II-S kerogen kinetics. Model results indicate that throughout northern Iraq, generation and expulsion of oil from the Sargelu began and ended in the late Miocene. At present, Jurassic source rocks might have generated and expelled between 70 % and 100 % of their total oil.  相似文献   

3.
1D (Petromod) hydrocarbon charge modeling and source rock characterization of the Lower Cretaceous and Upper Jurassic underlying the prolific Cretaceous and Tertiary reservoirs in the Basra oilfields in southern Iraq. The study is based on well data of the Majnoon, West Qurna, Nahr Umr, Zubair, and Rumaila oil fields. Burial histories indicate complete maturation of Upper Jurassic source rocks during the Late Cretaceous to Paleogene followed by very recent (Neogene) maturation of the Low/Mid Cretaceous succession from early to mid-oil window conditions, consistent with the regional Iraq study of Pitman et al. (Geo Arab 9(4):41–72, 2004). These two main phases of hydrocarbon generation are synchronous with the main tectonic events and trap formation associated with Late Cretaceous closure of the neo-Tethys; the onset of continent–continent collision associated with the Zagros orogeny and Neogene opening of the Gulf of Suez/Red Sea. Palynofacies of the Lower Cretaceous Sulaiy and Lower Yamama Formations and of the Upper Jurassic Najmah/Naokelekan confirm their source rock potential, supported by pyrolysis data. To what extent the Upper Jurassic source rocks contributed to charge of the overlying Cretaceous reservoirs remains uncertain because of the Upper Jurassic Gotnia evaporite seal in between. The younger Cretaceous rocks do not contain source rocks nor were they buried deep enough for significant hydrocarbon generation.  相似文献   

4.
Ten samples from the Upper Jurassic Naokelekan and Barsarin Formations in an outcrop section near Sargelu Village were studied to evaluate their thermal maturity using vitrinite reflectance method. The studied beds appeared to be mature and within the oil generation window (0.79–1.25 % vitrinite reflectance in immersion oil (Ro)). Some of the reflectance histograms showed bimodal distribution indicating existence of nonindigenous populations which were all ignored during the measurements of the mean value of Ro. Comparison between the results obtained from vitrinite reflectance method and some other methods like pyrolysis and gas chromatography showed variations which finally more reality believed to be for the vitrinite reflectance method.  相似文献   

5.
The Miran oilfield is one of the new oil fields in Kurdistan region, northern Iraq, located in the Sulaimani Governorate. Twelve Cuttings samples from the Upper Jurassic Naokelekan and Barsarin formations in well Miran-2 were selected for detailed organic geochemical investigations. All the samples were subjected to bitumen extraction in order to study any biomarkers present using gas chromatography-mass spectrometry. The dominance of low-molecular-weight n-alkanes and other calculated parameters indicate a marine source for the organic matter derived from planktonic algal and bacterial precursors deposited under anoxic conditions. The isoprenoids/n-alkanes ratios indicate type II and mixed II/III kerogen for both formations. The type II/III kerogen is characteristic of transitional environment under anoxic to dysoxic conditions as also indicated by the homohopane index for studied samples. More argillaceous carbonate rocks were deposited when reducing conditions were prevalent. Medium to high gammacerane index values in the rock extracts probably indicate a stratified water column during deposition of both formations. The studied samples from both formations have entered peak oil window maturity as reflected from the biomarker ratios from both aliphatic and aromatic fractions of the extracts.  相似文献   

6.
Sixteen rock samples of outcrop of Chia Gara Formations from the type locality area, south of Amadia, North Iraq showed evidences for hydrocarbon generation potential by palynological studies. These analyses include age assessment of Upper Jurassic (Tithonian) to Lower Cretaceous (Berriasian) age based on assemblages of mainly dinoflagellate cyst constituents. Qualitative studies are done in this study by textural microscopy used in assessing amorphous organic matter for palynofacies type belong to kerogen type A of Thompson and Dembiki (Int J Coal Geol 6:229–249, 1986) which contain brazinophyte algae, Tasmanites, and foraminifera test linings, as well as the dinoflagellate cysts and spores, deposited in dysoxic–anoxic environment. The palynomorphs are of dark orange and light brown, on the spore species Cyathidites australis, that indicate mature organic matters with thermal alteration index of 2.7–3.0 by Staplin’s scale. These characters and total organic carbon of 0.5–8.5 wt% have rated the succession as a source rock for high efficiency for generation and expulsion of oil with ordinate gas that charged mainly oil fields of Tawqi. Some oil is released from the Chia Gara Formation to charge the Cretaceous–Tertiary total petroleum system.  相似文献   

7.
南祁连盆地木里坳陷部署的多个天然气水合物钻孔钻遇不同程度的水合物与油气显示伴生现象,指示该地区具有良好的油气勘探前景,有必要对已发现油气显示进行来源分析。由于水合物钻孔深度有限,针对DK-9孔4组油气显示样品,在开展现有烃源岩油源对比基础上,选取中侏罗统、上三叠统各5组代表性低熟烃源岩样品进行热模拟实验,模拟深部烃源岩生、排烃过程,将新生烃类再次与油气显示进行对比,进一步探究油气显示来源。结果显示,油气显示可分为两类(Ⅰ和Ⅱ),第Ⅰ类油气显示遭受生物降解作用,成熟度稍高,第Ⅱ类油气显示成熟度稍低;现有烃源岩主要分为三种类型(Ⅰ—Ⅲ),分别对应深度163.30~207.42 m、 207.42~348.50 m、357.90~586.50 m。结合常规油源对比、热模拟实验与地质条件分析,最终推测第Ⅰ类油气显示主要与第Ⅰ类烃源岩同源;第Ⅱ类油气显示主要与第Ⅱ类烃源岩同源,此外可能还有第Ⅲ类烃源岩或更深层烃源岩的贡献,即其母质来源既与中侏罗统烃源岩有关又与上三叠统烃源岩有关。  相似文献   

8.
The Upper Jurassic Sargelu and the Cretaceous Garau formations are important source rocks in the Lurestan basin, southwest Iran. In this study, the maturity evolution and burial history of these source rocks are investigated using 1D modeling in 15 wells within the Lurestan basin. These models are calibrated using temperature and vitrinite reflectance readings at well locations. Results indicate that thermal maturity of studied source rocks increases towards the northwest of the Lurestan basin and is the lowest over the Anaran High. The present-day level of maturity suggests that these formations are suitable candidates for shale gas resources in the Lurestan basin.  相似文献   

9.
第三次资源评价(三次资评)结果表明准噶尔盆地侏罗系石油资源量占盆地总资源量的30%以上,天然气资源量占盆地总资源量的28%,其中30. 7%的原油资源和45. 7%的天然气资源分布在准噶尔盆地的南缘,可见应深人分析南缘侏罗系主力烃源岩的特征及其生烃潜力。通过对三次资评之后勘探所积累的地质地球化学数据的系统分析,认为准噶尔盆地南缘有机质类型总体以且II2型和III型为主,纵向上发育了一套优质烃源岩(八道湾组)和两套中等丰度的烃源岩 (三工河组和西山窑组),烃源岩的规模远远大于三次资源评价的结果。这3套烃源岩均达到了成熟一过成熟的演化阶段,在白垩纪末期进入生油高峰期,在新近纪末期进入生气高峰期,生油气关键时刻与圈闭的形成和定型匹配良好,有利于形成大型和超大型油气藏。研究成果对指导准噶尔盆地南缘油气勘探具有重要的理论和实际意义。  相似文献   

10.
从滴南凸起10个含油储集岩样品分步提取了自由态油气组分、束缚态油气组分和油气包裹体组分,各组分进一步做色谱、色谱-质谱和正构烷烃单体碳同位素分析。根据生物标志物组成,可将10个含油储集岩样分为两类:第一类包括D2-1和D18-12个侏罗系油砂样,第二类包括其他8个采自侏罗系、二叠系和石炭系含油储集岩样。两类样品生物标志物组成差异主要有:(1)第一类样品各类油气组分三环萜烷含量明显低于第二类样品;(2)第一类样品 C20、C21和 C23三环萜烷含量比较接近,其分布模式为 C20<C21>C23,第二类样品这3个化合物含量差异较大,且分布模式为C20>C21>C23;(3)第一类样品伽马蜡烷和β-胡萝卜烷相对含量高于第二类样品;(4)第一类样品C27甾烷含量较低而C28甾烷含量较高,第二类样品则相反。可以推断第一类样品自由态组分、束缚态组分和油气包裹体均来源于二叠系烃源岩而第二类样品各类油气组分则来源于石炭系烃源岩。第一类样品油气包裹体成熟度明显高于自由态组分和束缚态组分,表明早期充注原油的成熟度高于晚期充注的原油,总体上各类油气组分成熟度位于生油高峰阶段(Ro 0.8%~1.1%)。第二类样品从自由态组分、束缚态组分至油气包裹体成熟度依次降低,表明早期充注原油的成熟度低于晚期充注的原油,总体上各类油气组分成熟度位于高-过成熟阶段(Ro〉1.25%)。第一类样品各类油气组分正构烷烃单体碳同位素组成相对较轻,第二类样品各类油气组分正构烷烃单体碳同位素组成有一定的差异,组成较轻者与第一类样品各类油气组分接近。  相似文献   

11.
<正>So far there has been no common opinion on oil source of the Chepaizi swell in the Junggar Basin.Therefore,it is difficult to determine the pathway system and trend of hydrocarbon migration, and this resulted in difficulties in study of oil-gas accumulation patterns.In this paper,study of nitrogen compounds distribution in oils from Chepaizi was carried out in order to classify source rocks of oils stored in different reservoirs in the study area.Then,migration characteristics of oils from the same source were investigated by using nitrogen compounds parameters.The results of nitrogen compounds in a group of oil/oil sand samples from the same source indicate that the oils trapped in the Chepaizi swell experienced an obvious vertical migration.With increasing migration distance,amounts and indices of carbazoles have a regular changing pattern(in a fine linear relationship).By using nitrogen compounds techniques,the analyzed oil/oil sand samples of Chepaizi can be classified into two groups.One is the samples stored in reservoir beds of the Cretaceous and Tertiary,and these oils came from mainly Jurassic source rock with a small amount of Cretaceous rock;the other is those stored in the Jurassic,Permian and Carboniferous beds,and they originated from the Permian source.In addition,a sample of oil from an upper Jurassic reservoir(Well Ka 6), which was generated from Jurassic coal source rock,has a totally different nitrogen compound distribution from those of the above-mentioned two groups of samples,which were generated from mudstone sources.Because of influence from fractionation of oil migration,amounts and ratios of nitrogen compounds with different structures and polarities change regularly with increasing migrating distance,and as a result the samples with the same source follow a good linear relationship in content and ratio,while the oil samples of different sources have obviously different nitrogen compound distribution owing to different organic matter types of their source rocks.These conclusions of oil source study are identical with those obtained by other geochemical bio-markers. Therefore,nitrogen compounds are of great significance in oil type classification and oil/source correlation.  相似文献   

12.
摘要:为了查明祁连山冻土区木里煤田天然气水合物的气源,从QH 1、QH 2、QH 3井采集侏罗系样品44块,在常规的岩石热解和有机碳分析的基础上,进行GC MS分析和显微组分镜下鉴定。样品TOC在14%~166%之间,Ro为071%~079%;泥岩TI大于40,煤小于0。正构烷烃呈前峰型分布,主峰碳为C17-C19,Pr/Ph普遍大于11;三环萜烷以C19TT-C20TT为主峰,C24Te对C26TT有绝对优势;甾烷系列C27-C28-C29甾烷呈反“L”形分布;藿烷系列C31升藿烷占优势,C34、C35升藿烷含量低且G/C30H低,大部分小于02。结果表明,该区侏罗系烃源岩基本处于成熟阶段,有机质为Ⅱ2型-Ⅲ型,主要来自陆相高等植物输入,为河湖沼泽相沉积。有机质丰度较高,属中等-好烃源岩。综合分析认为,研究区侏罗系烃源岩处于成熟度阶段但未到主生气期,不是研究区水合物主力气源岩。  相似文献   

13.
澳大利亚西北陆架油气资源,特别是天然气资源富集,是全球液化天然气的主要供应地之一。西北陆架不仅是澳洲油气勘探潜力最大的地区,而且也是中国油公司拓展海外油气业务的重要地区。以多方面收集的数据资料为基础,探讨澳大利亚西北陆架油气分布规律,揭示油气分布主控因素,进而优选有利勘探区。区域上,已发现的油气储量主要分布于西北陆架最西南端的北卡那封盆地;层系上,油气主要富集于下白玺统泥页岩区域盖层之下的上三叠统、侏罗系或下白玺统碎屑岩储集层。油气分布整体表现为“内油外气、下气上油、以气为主的特征,油田多局限于侏罗纪裂谷作用控制的发育有成熟生油岩的次盆地。腐殖型干酪根类型和烃源岩的高成熟度决定了西北陆架的富气特征,侏罗纪发育的裂谷控制了石油的区域分布。基于油气地质综合研究和油气发现过程,优选出了埃克斯茅斯高地、埃克斯茅斯次盆、巴科一次盆、卡斯韦尔次盆、萨胡尔台地、卡尔德尔地堑和武尔坎次盆7个有利勘探区。  相似文献   

14.
焉耆盆地侏罗纪煤系源岩显微组分组合与生油潜力   总被引:3,自引:1,他引:2  
焉耆盆地为我国西部含煤、含油气盆地, 侏罗系含煤地层是最重要的潜在源岩.对侏罗纪煤系中的暗色泥岩、碳质泥岩和煤层分别进行了有机岩石学、Rock-Eval热解分析和核磁共振分析.泥岩、碳质泥岩和煤层具有不同的有机岩石学和有机地球化学特征, 其中煤层具有3种有机显微组分组合类型, 不同显微组分组合类型的煤层具有不同的生油、生气潜力或倾油、倾气性.基质镜质体、角质体、孢子体等显微组分是煤中的主要生烃组分.侏罗系泥岩、碳质泥岩和煤层具有不同的生物标志物分布特征, 生物标志物组合分析表明焉耆盆地已发现原油是泥岩、碳质泥岩和煤层生成原油的混合产物.含煤地层的地球化学生烃潜力分析和已发现原油的油源对比均表明, 含煤地层不仅是重要的气源岩, 而且可成为有效的油源岩.   相似文献   

15.
中国西北侏罗系油气成藏特征   总被引:7,自引:1,他引:6  
王昌桂 《地学前缘》2000,7(4):487-495
中国西北侏罗系油气田有 56个 ,分布在 7个侏罗系坳陷之中。文中根据侏罗系油气藏的烃源岩与储层匹配的关系 ,将油气藏分为自生自储、自生它储和它生自储 3种类型。以大量的实际资料为依据提出了自生自储型的油气藏分布规律 :在平面上 ,油气藏分布在成熟的有效烃源岩范围内 ;在纵向上 ,油气藏则分布在区域性优质盖层之下。侏罗系油气以垂向运移为主 ,运移通道主要是断层。油气在成藏后普遍发生过 3次运移 ,使其在更新的层位中形成次生油气藏。侏罗系油气具有多次成藏期 ,主要成藏期发生在早白垩世末、老第三纪渐新世 ,最晚可跨到新第三纪中新世。文中利用自生矿物伊利石同位素年代分析方法定量地研究了吐—哈盆地 12个油田、准噶尔盆地 6个油田和民和盆地 2个井点的油气成藏期 ,提出吐—哈盆地油气成藏期主要有 4期 ,后 2个盆地主要有两期。  相似文献   

16.
在海拉尔盆地外围及周边地区选取了31块侏罗系野外烃源岩分析样品,进行了总有机碳、岩石中可溶有机质的抽提和岩石热解分析;针对该区侏罗系烃源岩,共对17口井岩心进行了取样地化分析,利用气相色谱-质谱对烃源岩氯仿抽提物及重要生物标志化合物开展了定性与定量检测,目的是对源岩地球化学特征进行系统评价,为下一步油气基础地质调查奠定基础.结果表明,海拉尔盆地外围及周边地区的侏罗系部分的烃源岩有机质丰度较高,应具备较好的生烃物质基础.海拉尔盆地侏罗系烃源岩总体属于淡水-半咸水环境,有机质类型多样,成熟度普遍较高.甾类化合物中以规则甾烷为主,沉积物中具有较高丰度的以五环三萜烷为主的三环萜烷化合物,显示了其应以藻类生源为主,高等植物为主的陆相沉积中的相对含量则较低.伽马蜡烷的含量普遍很低.OEP呈偶碳数优势,并且缺失高分子正构烷烃,说明烃源岩成熟度演化早期受到了微生物降解作用.  相似文献   

17.
A collection of data obtained from analytical methods in geochemistry along with the reservoir engineering and geologic data were used to investigate the reservoir continuity in the Cretaceous Fahliyan, Gadavan, Kazhdumi and Sarvak reservoirs of the super-giant Azadegan oilfield, SW Iran. The geochemical data indicate that the oil samples, with medium to high level of thermal maturity, have been generated from the anoxic marine marl/carbonate source rock(s). The Sargelu (Jurassic) and Garau (Cretaceous) formations are introduced as the main source rocks for the studied oils. The dendrogram obtained from the cluster analysis of high-resolution gas chromatography data introduces two main oil groups including Fahliyan reservoir, and Kazhdumi along with Sarvak/Gadvan reservoirs. This is confirmed by C7 Halpern star diagram, indicating that, the light oil fraction from Fahliyan reservoir is distinct from the others. Also, different pressure gradient of the Fahliyan Formation (over-pressured) relative to other reservoirs (normally-pressured) show the presence of compartments. The relation between toluene/n-heptane and n-heptane/methylcyclohexane represents the compartmentalization due to maturation/evaporative fractionation for Fahliyan and water washing for other studied reservoirs. Also, the impermeable upper part of the Fahliyan Formation and thin interbedded shaly layers in the Kazhdumi, Sarvak and Gadvan formations have controlled reservoir compartmentalization.  相似文献   

18.
Exploration in the Hammerfest Basin, southwestern Barents Sea, has proven several petroleum systems and plays with the presence of multiple source rocks of mainly Jurassic and Triassic age. To date several fields and discoveries have been found and are described to mainly contain gaseous hydrocarbons with the presence, in some cases, of an oil leg.Our 3D Hammerfest Basin model shows that the Jurassic Hekkingen Formation and the Triassic Snadd and Kobbe formations reached high maturity levels (gas window) in the western and the northwestern margin. At the same time, this model reproduces the main hydrocarbon accumulations that have been found in the basin. An analysis of the volumetrics and the proportion of oil and gas contributions to each field and discovery, suggests that the gas contribution stems mainly from Triassic source rocks, while the oil phases contain variable proportions from the Jurassic Hekkingen Formation and Triassic source rocks.Gas isotope and maturity related biomarker ratios confirm the maturity trends derived from the basin modelling results. Light hydrocarbons indicate the influence of secondary processes (biodegradation and long distance migration) in the petroleum from the Goliat field and the Tornerose discovery. Age related biomarker ratios such as the ETR (extended tricyclic terpane ratio) and the C28/C29 steranes ratio did not provide a clear separation when evaluating a contribution from Jurassic vs. Triassic source rocks.  相似文献   

19.
柴达木盆地侏罗系发育泥岩、炭质泥岩、煤和油页岩等多种类型煤系烃源岩。受沉积环境控制,不同类型烃源岩之间有机质丰度、有机质类型及生排烃模式等差别很大。传统的评价方法低估了炭质泥岩和煤的生烃潜力。提出了基于单位岩石烃源岩产烃率的定量评价方法,对不同类型烃源岩的总生烃量和总资源量定量预测表明:炭质泥岩对侏罗系生烃总量和油气资源的贡献率分别达到44.8%和41.7%,整体提升了柴达木盆地侏罗系烃源岩的资源潜力,煤型气的资源潜力大幅度提高,对柴达木盆地天然气勘探具有重要指导意义。   相似文献   

20.
准南前陆冲断带具有丰富的油气资源,但与资源评价关系密切的烃源岩研究不足。本文应用地球化学分析方法,对准南前陆冲断带的上二叠统、中下侏罗统、下白垩统和古近系等4套烃源岩的有机质丰度、有机质类型、热演化程度进行了系统分析和综合对比。结果表明,上二叠统烃源岩和中下侏罗统烃源岩为良好的烃源岩,古近系安集海河组其次,下白垩统烃源岩相对较差。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号