首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The fundamental solutions of axisymmetric elastodynamic problem for the multilayered half-space due to an impulsive ring source acting within a layered elastic media are derived in time domain with the aid of Laplace–Hankel mixed transform and transfer matrix techniques. In addition, an effective numerical procedure, which utilizes the fast Hankel transform algorithm, is also proposed to calculate these solutions. Illustrative examples have been given to demonstrate that the fundamental solutions can be readily evaluated and the numerical results are of high accuracy. The present solutions can be directly applied to determine the transient wave fields caused by a seismic source and show the potential application to the elastodynamic problems solved by the boundary element method.  相似文献   

2.
By using integral transform methods, the Green's functions ofhorizontal harmonic force applied at the interior of the saturated half-space soil are obtained in the paper. The general solutions of the Biot dynamic equations in frequency domain are established through the use of Hankel integral transforms technique. Utilizing the above- mentioned general solutions, and the boundary conditions of the surface of the half-space and the continuous con-ditions at the plane of the horizontal force, the solutions of the boundary value problem can be determined. By the numerical inverse Hankel transforms method, the Green's functions of the harmonic horizontal force are obtainable. The degenerate case of the results deduced from this paper agrees well with the known results. Two numerical examples are given in the paper.  相似文献   

3.
IntroductionThe wave propagation problems in saturated soil are very important for the civil engineering, geophysics and seismology. Biot (1956,1962) established the theory of wave propagation in saturated soil firstly, and hereafter many researchers have used Biot theory to study wave propagation problems in saturated soil. By using integral transform and potential function method, Philippacopoulos (1988) studied the Lamb(s problem of a vertical point force applied to the surface of saturate…  相似文献   

4.
半空间饱和土在内部简谐水平力作用下的Ge函数   总被引:6,自引:0,他引:6       下载免费PDF全文
根据积分变换方法得出了半空间内部作用简谐水平力时的Gree函数.首先,利用Hankel积分变换方法,直接对频域内的Biot波动方程进行求解,得出Biot波动方程的通解;利用通解和半空间内部作用水平力时边界上的边界条件,以及力作用面上的连续性条件,可以得出上述边值问题的解;对于边值问题在变换域内的解进行相应的逆变换,就可以得出频域内的Gree函数.本文得到的线弹性退化解与文献中的结果吻合.最后,文中给出了两个算例.   相似文献   

5.
By using integral transform methods, the Green’s functions of horizontal harmonic force applied at the interior of the saturated half-space soil are obtained in the paper. The general solutions of the Biot dynamic equations in frequency domain are established through the use of Hankel integral transforms technique. Utilizing the above-mentioned general solutions, and the boundary conditions of the surface of the half-space and the continuous conditions at the plane of the horizontal force, the solutions of the boundary value problem can be determined. By the numerical inverse Hankel transforms method, the Green’s functions of the harmonic horizontal force are obtainable. The degenerate case of the results deduced from this paper agrees well with the known results. Two numerical examples are given in the paper. Foundation item: State Natural Science Foundation (59879012) and Doctoral Foundation from State Education Commission (98024832).  相似文献   

6.
王小岗 《地球物理学报》2009,52(8):2084-2092
基于孔隙介质的Biot理论,首先利用Laplace变换,给出圆柱坐标系下横观各向同性饱和弹性多孔介质在变换域上的波动方程;将波动方程解耦后,根据方位角的Fourier展开和径向Hankel变换,求解了Biot波动方程,得到以土骨架位移、孔隙水压力和土介质总应力分量的积分形式的一般解;借助一般解,建立了有限厚度饱和土层和饱和半空间的精确动力刚度矩阵,并由土层的层间界面连续条件建立三维非轴对称层状饱和地基的总刚度方程;在此基础上,系统研究了横观各向同性饱和半空间体在内部集中荷载激励下的动力响应,并给出了问题的瞬态解答.该研究为运用边界元法求解饱和地基动力响应奠定了理论基础.  相似文献   

7.
An analytical approach is developed to study the dynamic response of a flexible plate on single-layered saturated soil. The analysis is based on Biot's two-phased theory of poroelasticity and also on the classical thin-plate theory. First, the governing differential equations for saturated soil are solved by the use of Hankel transform. The general solutions of the skeleton displacements, stresses, and pore pressures, derived in the transformed domain, are subsequently incorporated into the imposed boundary conditions, which leads to a set of dual integral equations describing the corresponding mixed boundary value problem. These governing integral equations are finally reduced to the Fredholm integral equations of the second kind and solved by standard numerical procedures. The accuracy of the present solution is validated via comparisons with existing solutions for an ideal elastic half-space. Furthermore, some numerical results are presented to show the influences of the layer depth, the plate flexibility, and the soil porosity on the dynamic compliances.  相似文献   

8.
In most previous studies on the dynamic response of a long cylindrical cavity subjected to internal transient dynamic loads, the porous medium was usually assumed to be completely saturated by ground water. In practice, however, the full saturation condition does not always exist. In this paper the surrounding soil and the lining of the cavity are respectively treated as a nearly saturated porous medium and an elastic material, and the governing equations for the dynamic problem are derived. A set of exact solutions are obtained in the Laplace transform domain for three types of transient loads, i.e. suddenly applied constant load, gradually applied step load and triangular pulse load. By utilizing a reliable numerical method of inverse Laplace transforms, the time-domain solutions are then presented. The influence of the degree of saturation of the surrounding soil on the dynamic response of the lined cavity is examined for numerical examples.  相似文献   

9.
A transversely isotropic material in the sense of Green is considered. Using a series of potential functions proposed in [Eskandari-Ghadi M. A complete solution of the wave equations for transversely isotropic media. J Elasticity 2005; 81:1–19], the solutions of the transient wave equations within a half-space under surface load are obtained in the Laplace–Hankel domain for axisymmetric problems. The solutions are investigated in detail in the special case of a surface point force pulse varying with time as Heaviside function. Using Cagniard–De Hoop method, the inverse Laplace transform and inverse Hankel transform of the solutions are then obtained in the form of integrals with finite limits. For validity of the analytical results, the final formulations for surface waves are degenerated for an isotropic material and compared with the existing formulation obtained by Pekeris [The seismic surface pulse. Proc Natl Acad Sci USA 1955;41:469–80], to show that they are exactly the same. The numerical evaluations of the integrals for some transversely isotropic materials as well as an isotropic one are obtained. The present approach is then numerically verified by comparing a particular case of displacements for the surface of an isotropic half-space subjected to a point load of Heaviside function with the solutions obtained by Pekeris [The seismic surface pulse. Proc Natl Acad Sci USA 1955;41:469–80]. In addition, the wave equations for the mentioned medium are obtained on the vertical line directly under the applied surface load. The final formulations are degenerated for an isotropic material and compared with the existing formulation given in Graff [Wave motion in elastic solids. New York: Dover Publications Inc; 1975 [New Ed edition, November 1991]], to show that they are also exactly the same. Then equations are presented in graphical forms using an appropriate numerical evaluation.  相似文献   

10.
Three-dimensional time-harmonic response of a poroelastic half space subjected to an arbitrary buried loading is investigated. The analysis starts with the field equations in cylindrical coordinates based on Biot's general theory of poroelasticity. General solutions for the displacements are first derived using the Fourier expansions and Hankel integral transform with respect to the circumferential and radial coordinates, respectively. The transformed-domain solutions are obtained in explicit form. The physical-domain displacements and stress components are then obtained numerically by inverse integral transform. Comparisons illustrating the accuracy of the developed approach are made with existing solutions for an elastic half space, which is reduced directly from the general solution developed in the paper. Numerical results are presented for the displacements of a saturated soil subjected to a horizontal internal excitation.  相似文献   

11.
The closed form three-dimensional Green׳s function of a semi-infinite unsaturated poroelastic medium subjected to an arbitrary internal harmonic loading is derived, with consideration of capillary pressure and dynamic shear modulus varying with saturation. By applying the Fourier expansion techniques and Hankel integral transforms to the circumferential and radial coordinates, respectively, the general solution for the governing partial differential equations is obtained in the transformed domain. A corresponding boundary value problem is formulated. The integral solutions for the induced displacements, pore pressure and net stress are then determined considering the continuity conditions. The formulas are compared with the degenerated solution of saturated soils and confirmed. Numerical results reveal that the response of the unsaturated half-space depends significantly on the saturation by altering dynamic shear modulus to account for the effects of matric suction on soil stiffness. Slight differences between the results occur if only the saturation is taken into account. Moreover, a large source-depth results in a pronounced contribution to the reduction of surface displacement amplitudes. The analytical solutions concluded in the study offer a broader application to dynamic response associated with axi-symmetric and asymmetric conditions.  相似文献   

12.
Accurate prediction of the liquefaction of saturated soils is based on strong coupling between the pore fluid phase and soil skeleton. A practical numerical method for large strain dynamic analysis of saturated soils is presented. The up formulation is used for the governing equations that describe the coupled problem in terms of soil skeleton displacement and excess pore pressure. A mixed finite element and finite difference scheme related to large strain analysis of saturated soils based on the updated Lagrangian method is given. The equilibrium equation of fluid-saturated soils is spatially discretized by the finite element method, whereas terms associated with excess pore pressure in the continuity equation are spatially discretized by the finite difference method. An effective cyclic elasto-plastic constitutive model is adopted to simulate the non-linear behavior of saturated soils under dynamic loading. Several numerical examples that include a saturated soil column and caisson-type quay wall are presented to verify the accuracy of the method and its usefulness and applicability to solutions of large strain liquefaction analysis of saturated soils in practical problems.  相似文献   

13.
An analytical solution is presented for the response of a non-homogeneous, compressible, elastic half-space to a time-harmonic vertical point load on its surface. The shear modulus is assumed to increase continuously with depth. The model is chosen so as to describe uniformly deposited cohesionless soils. Expressions for displacements and stresses in the interior of the half-space medium are derived by means of Hankel transforms and contour integration. Selected numerical results are presented to demonstrate the influence of non-homogeneity. Finally, some effects are pointed out to be used in connection with vibration tests for subsoil investigation.  相似文献   

14.
The numerical evaluation of certain integral transforms is required for the interpretation of some geophysical exploration data. Digital linear filter operators are widely used for carrying out such numerical integration. It is known that the method of Wiener–Hopf minimization of the error can be used to design very efficient, short digital linear filter operators for this purpose. We have found that, with appropriate modifications, this method can also be used to design longer filters. Two filters for the Hankel J0 transform (61-point and 120-point operators), and two for the Hankel J1 transform (47-point and 140-point operators) have been designed. For these transforms, the new filters give much lower errors compared to all other known filters of comparable, or somewhat longer, size. The new filter operators and some results of comparative performance tests with known integral transforms are presented. These filters would find widespread application in many numerical evaluation problems in geophysics.  相似文献   

15.
给出基于Biot多孔介质理论分析饱和土体在动载荷作用下瞬态响应的有限元公式,数值计算部分采用本文有限元法分别计算一维饱和土柱在两种不同类型动载荷作用下的瞬态响应,并将数值计算结果与文献中的解析解进行比较,二者结果十分吻合,从而验证本文方法的可行性。  相似文献   

16.
The Hankel transform theorem can be applied to the inversion of gravity data for the buried sphere, the horizontal cylinder, and the vertical rod. This new approach leads to exact solutions of the transforms for the assumed bodies. A comparison with the classical procedure by Fourier transform reveals that for the sphere and the vertical rod, the Hankel transform is preferable.  相似文献   

17.
An extension of the boundary element method to heterogeneous domains composed of horizontal layers is here proposed. It includes a numerical computation of the corresponding Green's functions, thanks to an inverse Hankel transform of the closed form solutions obtained in the spectral domain with suitable variables derived from displacements and stress vectors to obtain the decoupling between P–SV and SH waves. Transmission and reflection operators are introduced to avoid the problem of overflowing exponentials met with in Thomson–Haskell matrices. Applications are given in the soil–structure interaction field to compute the impedances of surface and embedded circular foundations resting on a viscoelastic halfspace.  相似文献   

18.
This paper examines stresses and excess pore fluid pressure that are induced in a saturated poroelastic soil of halfspace extent by a concentrated line load. The line load is moving at a constant velocity along the surface of the poroelastic halfspace. The governing equations for the proposed analysis are based on the Biot's theory of dynamics in saturated poroelastic soils. The governing partial differential equations are solved using Fourier transforms. The solutions for the stresses and excess pore pressure are expressed in the forms of inverse Fourier transforms. The numerical results are obtained by performing the numerical inversion of the transform integrals. A parametric study is presented to illustrate the influences of the velocity of moving load and the poroelastic material parameters on the stresses and excess pore pressure. At a high velocity, the maximum values of the stresses in a poroelastic halfspace are smaller than those in an elastic solid, whilst at a low velocity the stresses in a poroelastic halfspace are larger than those in an elastic halfspace. The potential of diffusivity has an important influence on the stresses and excess pore pressure.  相似文献   

19.
In this paper, the authors compare results obtained by semi-analytical and numerical approaches for the dynamic response of a poroviscoelastic soil under transient loads. The behaviour of the medium is governed by complete Biot formalism. The semi-analytical approach is based on Helmholtz decompositions and Fourier transforms, and yields exact solid and fluid displacements in the transformed domain. The numerical approach uses a C++C++ object oriented programming finite element–finite difference code. Both methods give concurring results. Moreover, influence of viscous coupling on the response of the ground and visualization of the compressional wave of the second kind are discussed.  相似文献   

20.
饱和土中深埋圆柱形衬砌洞室对瞬态平面波的散射   总被引:1,自引:0,他引:1       下载免费PDF全文
基于Biot饱和多孔介质动力学理论,运用Laplace变换和波函数展开法,根据饱和土体与衬砌结构交界面的连续条件和衬砌结构内边界上的应力自由条件,得到饱和土中深埋圆柱形衬砌洞室对瞬态平面P波和SV波散射问题的解答,该解答可以退化成为饱和土中深埋圆柱形空穴或弹性夹塞物的情形,并很容易转换成为对稳态波散射的解.通过与已有的相关问题的解析解答进行对比,验证了该解答的正确性.同时利用Laplace逆变换的数值方法,给出了饱和土和衬砌中应力和位移场在时域内的数值解,通过算例,分析了衬砌厚度、刚度对衬砌内边界处应力集中因子的影响.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号