首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recent researches have revealed that the seismic ground response above tunnels can be different from the free-field motion during earthquakes. Nevertheless, to the best of the authors׳ knowledge, neither building codes nor seismic microzonation guidelines have yet considered this matter. In the present study, the seismic response of a linear elastic medium including a buried unlined tunnel subjected to vertically propagating incident SV and P waves are addressed. For analysis purposes, a numerical time-domain analysis is performed by utilizing a robust numerical algorithm working based on the boundary element method. It is observed that the amplification of the ground surface underlain by a tunnel is increased in long periods. The variation of the amplification factor and characteristic period of the medium versus the buried depth of the tunnel are depicted as the major results of this study. Some simple and useful relations are proposed for estimating the seismic microzonation of the areas underlain by tunnels. These relations can also be used for the preliminary seismic design of structures located on underground structures.  相似文献   

2.
The effect of ground stratification on the seismic response of circular tunnels is investigated, as most practice-oriented studies consider homogeneous ground. A finite element plain-strain model of a circular tunnel cross-section embedded in a two-layered ground is used to highlight the influence of stratification on the tunnel׳s seismic response. The layers interface was placed at the crown, centre and invert level.It is proved that ground stratification has an important role in the lining seismic forces. When the tunnel is fully embedded in one of the layers, the seismic lining forces may vary significantly in comparison with the single-layer case. If the tunnel intercepts both layers, maximum lining forces aggravation occurs when the lower layer is very stiff.  相似文献   

3.
A series of 1 g shaking table tests, followed by the numerical simulations, is performed to investigate the effect of a circular subway tunnel on the ground motion amplification pattern. Effects of various parameters, including shear wave velocity of soil, frequency content of input motion, flexibility ratio and tunnel depth on the amplification pattern is investigated. Experimental study revealed that the tunnel did not affect free field response at dimensionless period greater than 10. Subsequent parametric study demonstrated that the amount of amplifications were mainly controlled by dimensionless period, dimensionless depth and flexibility ratio. Tunnel effect on the amplification pattern is more prominent for dimensionless period between 3 to 10, flexibility ratio greater than 1 and dimensionless depth less than 3. The study revealed that subway tunnel influences the seismic response of low period buildings, constructed above the tunnel.  相似文献   

4.
Tunnels are commonly designed under seismic loading assuming “free field conditions”. However, in urban areas these structures pass beneath buildings, often high-rise ones, or are located close to them. During seismic excitation, above ground structures may cause complex interaction effects with the tunnel, altering its seismic response compared to the “free field conditions” case. The paper summarizes an attempt to identify and understand these interaction effects, focusing on the tunnel response. The problem is investigated in the transversal direction, by means of full dynamic time history analyses. Two structural configurations are studied and compared to the free field conditions case, consisting of one or two above ground structures, located over a circular tunnel. Above ground structures are modeled in a simplified way as equivalent single-degree of freedom oscillators, with proper mechanical properties. Several parameters that are significantly affecting the phenomenon are accounted for in this parametric study, namely the soil to tunnel relative flexibility, the tunnel dimensions, the tunnel burial depth and the soil properties and nonlinearities during shaking. Tunnels response characteristics are compared and discussed, in terms of acceleration, deformations and lining dynamic internal forces. Internal forces are also evaluated with analytical closed form solutions, commonly used in preliminary stages of design, and compared with the numerical predictions. The results indicate that the presence of the above ground structures may have a significant effect on the seismic response of the tunnel, especially when the latter is stiff and located in shallow depths.  相似文献   

5.
Human activities, such as fluid injection as part of the stimulation of an enhanced geothermal system (EGS) for heat and power production, can cause damaging earthquake ground motions. A difficulty in quickly settling or rejecting insurance claims to the policy of the EGS operator is the lack of ground truth on the observed shaking at sites of reported damage. To overcome this problem a local seismic network could be installed prior to injection to constrain the ground-motion field at points of potential damage. Since the installation and maintenance of seismometers are costly there is an incentive to keep the number of instruments to a minimum. In this short communication, ground-motion fields are simulated and receiver operating characteristic analysis is conducted to guide decisions on the number of sensors required to obtain a certain confidence in the rate of false alarms and missed detections. For densities of 10–20 instruments per km2 the ability to estimate potentially damaging ground motions is reasonable but associated with a significant chance of missed detections and false alarms. If an EGS operator or regulatory authority does not want to accept such chances then network densities of 50–100 instruments per km2 are required and even in this case the exceedance/non-exceedance of a certain ground-motion threshold cannot be completely constrained.  相似文献   

6.
7.
Seismic features of vibration induced by train   总被引:2,自引:0,他引:2  
Introduction Collisions can be generated continuously by the passage of trains due to the surface irregu-larities of wheels and rails. When a fully loaded train or freight with weight of thousands tons runson deformed rails, it may induce strong vibrations. Such vibrations may transmit several kilome-ters to result in building damage. For instance, the famous Longmen Grottoes near the Luoyangcity in China has been seriously damaged by the ground trembling by trains pasting near it(http:…  相似文献   

8.
In this paper a numerical approach is proposed for the construction of fragility curves for shallow metro tunnels in alluvial deposits, when subjected to transversal seismic loading. The response of the tunnel is calculated under quasi static conditions applying the induced seismic ground deformations which are calculated through 1D equivalent linear analysis for an increasing level of seismic intensity. The results of the present numerical analyses are compared with selected closed form solutions, highlighting the limitations of the latter, while indicative full dynamic analysis are performed in order to validate the results of the quasi-static method. The proposed approach allows the evaluation of new fragility curves considering the distinctive features of the tunnel geometries and strength characteristics, the input motion and the soil properties as well as the associated uncertainties. The comparison between the new fragility curves and the existing empirical ones highlights the important role of the local soil conditions, which is not adequately taken into account in the empirical curves.  相似文献   

9.
A procedure for the seismic analysis of underground tunnels using recorded free-field earthquakes based on the 2.5D finite/infinite element approach is presented. The near and far fields of the half space are modeled by finite and infinite elements, respectively. Using the 1D wave theory, the nodal force and displacement on the near-field boundary are computed for each spectral frequency of the earthquake. Then, equivalent seismic forces are computed for the near-field boundary for the earthquake spectrum. By assuming the soil-tunnel system to be uniform along the tunnel axis, the 2.5D approach can account for the wave transmission along the tunnel axis, which reduces to the 2D case for infinite transmission velocity. The horizontal and vertical components of the 1999 Chi-Chi Earthquake (TCU068) are adopted as the free-field motions in the numerical analysis. The maximal stresses and distribution patterns of the tunnel section under the P- and SV-waves are thoroughly studied by the 2.5D and 2D approaches, which should prove useful to the design of underground tunnels.  相似文献   

10.
Seismic isolation effect of lined circular tunnels with damping treatments   总被引:3,自引:0,他引:3  
The Havriliak-Negami model for dynamic viscoelastic material behavior and Biot's theory of poroelasticity are employed to develop an exact solution for three-dimensional scattering effect of harmonic plane P-SV waves from a circular cavity lined with a multilayered fluid-filled shell of infinite length containing viscoelastic damping materials and embedded within a fluid-saturated permeable surrounding soil medium. The analytical results are illustrated with numerical examples where the effects of liner/coating structural arrangement, viscoelastic material properties, liner-soil interface bonding condition, seismic excitation frequency, and angle of incidence on the induced dynamic stress concentrations are evaluated and discussed to obtain representative values of the parameters that characterize the system. It is demonstrated that incorporating viscoelastic damping materials with a low shear modulus in the constrained layer configuration is an efficient means of enhancing the overall seismic isolation performance, especially for near-normally incident seismic shear waves where the amplitudes of induced dynamic stresses may be reduced by up to one-third of those without isolation in a relatively wide frequency range. Some additional cases are considered and good agreements with solutions available in the literature are obtained.  相似文献   

11.
Increased attention has been given to ground-borne vibrations induced by railway vehicles and to the effects of these vibrations as they propagate through the ground into nearby buildings.Various studies,mainly based on numerical methods as well as physical modelling,have been carried out to investigate this problem.To study the dynamic response of tunnels and the surrounding soil due to train-induced vibration loads,a centrifuge te st was conducted with a small-scale model in 1 g and 50 g stres...  相似文献   

12.
A large number of breakwaters have been constructed along coasts to protect humans and infrastructures from tsunamis.There is a risk that foundation soils of these structures may liquefy,or partially liquefy during the earthquake preceding a tsunami,which would greatly reduce the structures’capacity to resist the tsunami.It is necessary to consider not only the soil’s liquefaction behavior due to earthquake motions but also its post-liquefaction behavior because this behavior will affect the breakwater’s capacity to resist an incoming tsunami.In this study,numerical tests based on a sophisticated constitutive model and a soil-water coupled finite element method are used to predict the mechanical behavior of breakwaters and the surrounding soils.Two real breakwaters subjected to two different seismic excitations are examined through numerical simulation.The simulation results show that,earthquakes affect not only the immediate behavior of breakwaters and the surrounding soils but also their long-term settlements due to post-earthquake consolidation.A soil profile with thick clayey layers beneath liquefied soil is more vulnerable to tsunami than a soil profile with only sandy layers.Therefore,quantitatively evaluating the seismic behavior of breakwaters and surrounding soils is important for the design of breakwater structures to resist tsunamis.  相似文献   

13.
基岩上均匀场地中透镜体对地震动的非线性放大作用   总被引:1,自引:0,他引:1  
本文采用有限元方法研究基岩上均匀场地中透镜体对地震动的非线性放大作用,分析非线性放大作用和线性放大作用的差别,以及透镜体埋深、宽度、厚度以及输入地震波幅值和频谱等因素对非线性放大作用的影响.研究表明,透镜体的存在对地震动有显著的非线性放大作用,该放大作用可达30%;非线性放大作用一般小于线性放大作用;透镜体宽度对地表加速度反应谱的影响较大,埋深和厚度对地表加速度反应谱的影响较小;输入地震波幅值和频谱也有很大的影响.  相似文献   

14.
Seismic response of lined tunnels in the half-plane with surface topography   总被引:2,自引:0,他引:2  
In this work, we examine the seismic response of multiple tunnels reinforced with liners and buried within the elastic homogeneous half-plane in the presence of surface relief. The seismic waves are upward propagating, time-harmonic, horizontally polarized shear (SH) waves. More specifically, we examine: (a) the scattered wave fields along the free surface and inside the half-plane with the embedded tunnels; (b) the dynamic stress concentration factors that develop at the soil-liner interfaces; (c) the stresses and displacements that develop inside the tunnel liners. We use a sub-structuring technique that is based on the direct boundary element method to model each constituent part of the problem separately. Then, assembly of the full problem is accomplished through the imposition of compatibility and equilibrium conditions at all interfaces. Next, a detailed verification study is carried out based on comparisons against available analytical and/or numerical results for a series of test examples. Subsequently, detailed numerical simulations are conducted and the results of these parametric studies reveal the influence of the following key parameters on the soil-tunnel system response: (a) the shape of the free-surface relief; (b) the depth of placement of the tunnels and their separation distance; (c) the SH-wavelength to tunnel diameter ratio; (d) the elastic properties of the tunnel lining rings and (e) the dynamic interaction effects between the free-surface relief and the tunnels.  相似文献   

15.
Evaluation of seismic ground motion induced by topographic irregularity   总被引:1,自引:0,他引:1  
Results of an extensive numerical study on the 2D scattering of seismic waves by local topography are presented. The investigation has been conducted using the direct boundary element method. Several types of topography (slopes, canyons and ridges) are considered. The influences of some key parameters, such as exciting frequency and geometry of the irregular feature, on surface ground motion are studied in detail. It is found that local topographic conditions play an important role in the modification of seismic ground motion at the irregular feature itself and its neighbourhood. The present results can be considered to be useful from the viewpoint of earthquake engineering and seismology.  相似文献   

16.
17.
This work investigates the impact of deep coal mining induced vibrations on surface constructions using numerical tools. An experimental study of the geological site amplification and of its influence on mining induced vibrations has already been published in the previous paper (Part 1: Experimental evidence for site effects in a coal basin). Measurements have shown the existence of an amplification area in the southern part of the basin where drilling data have shown the presence of particularly fractured and soft stratigraphic units. The present study, using the boundary element method (BEM) in the frequency domain, first investigates canonical geological structures in order to get general results for various sites. The amplification level at the surface is given as a function of the shape of the basin and of the velocity contrast with the bedrock. Next, the particular coal basin previously studied experimentally (Driad-Lebeau et al. [1]) is modeled numerically by BEM. The amplification phenomena characterized numerically for the induced vibrations are found to be compatible with the experimental findings such as: amplification level, frequency range and location. Finally, the whole work was necessary to fully assess the propagation and amplification of mine induced vibrations. The numerical results quantifying amplification can also be used to study other coal basins or various types of alluvial sites.  相似文献   

18.
A systematic method for optimal added damper placement in building structures is developed, taking into account the response amplification due to the surface ground. Non-linear amplification of the surface ground is described by an equivalent linear model. Hysteretic damping of the surface ground and radiational damping into the semi-infinite visco-elastic ground are included in the model. An original steepest direction search algorithm is applied to the interaction model. Closed-form expressions of the inverse of the coefficient matrix (tri-diagonal matrix) enable one to compute the transfer function and its derivative with respect to design variables very efficiently. It is shown that the ratio of the fundamental natural period of the structure to that of the surface ground is a key parameter for characterizing the optimal damper placement. Several examples for different soil conditions are presented to demonstrate the effectiveness and validity of the present method.  相似文献   

19.
本文通过弹性和弹塑性时程分析,研究了水平地震作用下梁铰型屈服RC框架模型结构的楼层屈服剪力系数、基本自振周期、楼层数3个因素对弹塑性位移增大系数的影响,通过非线性回归分析给出了弹塑性层间位移增大系数经验公式;通过分析滞回耗能沿楼层高度的分布,初步确定了梁铰型屈服RC框架结构的薄弱楼层位置;基于结构损伤分析,讨论了抗震规范中RC框架结构弹塑性层间位移角限值的水准。  相似文献   

20.
Underground utility tunnels are widely used in urban areas throughout the world for lifeline networks due to their easy maintenance and environmental protection capabilities. However, knowledge about their seismic performance is still quite limited and seismic design procedures are not included in current design codes. This paper describes a series of shaking table tests the authors performed on a scaled utility tunnel model to explore its performance under earthquake excitation. Details of the experimental setup are first presented focusing on aspects such as the design of the soil container, scaled structural model, sensor array arrangement and test procedure. The main observations from the test program, including structural response, soil response, soil-structure interaction and earth pressure, are summarized and discussed. Further, a finite element model (FEM) of the test utility tunnel is established where the nonlinear soil properties are modeled by the Drucker-Prager constitutive model; the master-slave surface mechanism is employed to simulate the soil-structure dynamic interaction; and the confining effect of the laminar shear box to soil is considered by proper boundary modeling. The results from the numerical model are compared with experiment measurements in terms of displacement, acceleration and amplification factor of the structural model and the soil. The comparison shows that the numerical results match the experimental measurements quite well. The validated numerical model can be adopted for further analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号