首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
When the SKA was proposed, a major technical obstacle to its feasibility was the cost of the correlator. Significant advances made in correlator design since then are described. These advances have made SKA correlator possible within reasonable cost constrains. At the same time performance issues with the proposed FX architecture have been addressed.  相似文献   

2.
The frequency specifications of the Square Kilometre Array (SKA) call for an optimum operation of the antenna elements from 25 down to 100 MHz. The current 12 m diameter US-SKA design is specified from 500 up to 25 GHz, with an upper goal of 35 GHz. At the low frequency end of the band (i.e., 100 MHz), a 12 m reflector antenna is about four wavelengths in diameter. Then, the question is: how well can you do, at this low frequency end of the specified band of operation for the SKA, with a symmetric reflector configuration using an ultra-wide-band prime focus feed? This paper presents the analysis of the antenna performance, in terms of A eff/T A, of three symmetric configurations of the 12 m US-SKA antenna design between 100 and 200 MHz.  相似文献   

3.
Software development costs for the Square Kilometre Array are likely to be very large – in the range of 1000–2000 person-year a total. This level of software effort is unprecedented in radio astronomy. Consequently the risk associated with software development is very large. This is common to many large science projects and so we can learn from such projects how to best mitigate against the risk. We present a shopping list of suggestions drawn from the experience in other projects.  相似文献   

4.
The pace of the international Square Kilometre Array (SKA) project is accelerating, with major concept reviews recently completed and a number of technology demonstrators well underway. First-round submissions to host the telescope were lodged by six countries. The SKA timeline currently shows a site decision in 2006, and one or more technology concepts chosen in 2008. The telescope is expected to be operational, in various phases, in the period 2015–2020. This paper gives a status review of the project, and outlines engineering concept development and demonstration projects.  相似文献   

5.
Software costs for radio telescopes have nearly always been underestimated. Since the Square Kilometre Array is often called a software telescope, repeating the usual error would be particularly egregious. We estimate software costs by scaling from the reasonably well-known costs for the Atacama Large Millimeter Array. The resulting model has sharp dependency on the complexity of the SKA, suggesting the obvious – that software costs can most easily be limited by constraining the scientific and operational requirements. A bottom-up costing will not be possible until SKA is much more clearly defined. For the moment, we recommend that 20% of the SKA budget be allocated to software development.  相似文献   

6.
The Square Kilometre Array (SKA) will have a low frequency component (SKA-low) which has as one of its main science goals the study of the redshifted 21 cm line from the earliest phases of star and galaxy formation in the Universe. This 21 cm signal provides a new and unique window both on the time of the formation of the first stars and accreting black holes and the subsequent period of substantial ionization of the intergalactic medium. The signal will teach us fundamental new things about the earliest phases of structure formation, cosmology and even has the potential to lead to the discovery of new physical phenomena. Here we present a white paper with an overview of the science questions that SKA-low can address, how we plan to tackle these questions and what this implies for the basic design of the telescope.  相似文献   

7.
Origin of magnetic fields, its structure and effects on dynamical processes in stars to galaxies are not well understood. Lack of a direct probe has remained a problem for its study. The first phase of Square Kilometre Array (SKA-I), will have almost an order of magnitude higher sensitivity than the best existing radio telescope at GHz frequencies. In this contribution, we discuss specific science cases that are of interest to the Indian community concerned with astrophysical turbulence and magnetic fields. The SKA-I will allow observations of a large number of background sources with detectable polarization and measure their Faraday depths (FDs) through the Milky Way, other galaxies and their circum-galactic mediums. This will probe line-of-sight magnetic fields in these objects well and provide field configurations. Detailed comparison of observational data (e.g., pitch angles in spirals) with models which consider various processes giving rise to field amplification and maintenance (e.g., various types of dynamo models) will then be possible. Such observations will also provide the coherence scale of the fields and its random component through RM structure function. Measuring the random component is important to characterize turbulence in the medium. Observations of FDs with redshift will provide important information on magnetic field evolution as a function of redshift. The background sources could also be used to probe magnetic fields and its coherent scale in galaxy clusters and in bridges formed between interacting galaxies. Other than FDs, sensitive observations of synchrotron emission from galaxies will provide complimentary information on their magnetic field strengths in the sky plane. The core shift measurements of AGNs can provide more precise measurements of magnetic field in the sub parsec region near the black hole and its evolution. The low band of SKA-I will also be useful to study circularly polarized emission from Sun and comparing various models of field configurations with observations.  相似文献   

8.
Stars and planetary systems are formed out of molecular clouds in the interstellar medium. Although the sequence of steps involved in star formation are generally known, a comprehensive theory which describes the details of the processes that drive formation of stars is still missing. The Square Kilometre Array (SKA), with its unprecedented sensitivity and angular resolution, will play a major role in filling these gaps in our understanding. In this article, we present a few science cases that the Indian star formation community is interested in pursuing with SKA, which include investigation of AU-sized structures in the neutral ISM, the origin of thermal and non-thermal radio jets from protostars and the accretion history of protostars, and formation of massive stars and their effect on the surrounding medium.  相似文献   

9.
There currently exist many observations which are not consistent with the cosmological principle. We review these observations with a particular emphasis on those relevant for the Square Kilometre Array (SKA). In particular, several different data sets indicate a preferred direction pointing approximately towards the Virgo cluster. We also observe a hemispherical anisotropy in the Cosmic Microwave Background radiation (CMB) temperature fluctuations. Although these inconsistencies may be attributed to systematic effects, there remains the possibility that they indicate new physics and various theories have been proposed to explain them. One possibility, which we discuss in this review, is the generation of perturbation modes during the early pre-inflationary epoch, when the Universe may not obey the cosmological principle. Better measurements will provide better constraints on these theories. In particular, we propose measurement of the dipole in number counts, sky brightness, polarized flux and polarization orientations of radio sources. We also suggest test of alignment of linear polarizations of sources as a function of their relative separation. Finally we propose measurement of hemispherical anisotropy or equivalently dipole modulation in radio sources.  相似文献   

10.
With the high sensitivity and wide-field coverage of the Square Kilometre Array (SKA), large samples of explosive transients are expected to be discovered. Radio wavelengths, especially in commensal survey mode, are particularly well-suited for uncovering the complex transient phenomena. This is because observations at radio wavelengths may suffer less obscuration than in other bands (e.g. optical/IR or X-rays) due to dust absorption. At the same time, multiwaveband information often provides critical source classification rapidly than possible with only radio band data. Therefore, multiwaveband observational efforts with wide fields of view will be the key to progress of transients astronomy from the middle 2020s offering unprecedented deep images and high spatial and spectral resolutions. Radio observations of Gamma Ray Bursts (GRBs) with SKA will uncover not only much fainter bursts and verifying claims of sensitivity-limited population versus intrinsically dim GRBs, they will also unravel the enigmatic population of orphan afterglows. The supernova rate problem caused by dust extinction in optical bands is expected to be lifted in the SKA era. In addition, the debate of single degenerate scenario versus double degenerate scenario will be put to rest for the progenitors of thermonuclear supernovae, since highly sensitive measurements will lead to very accurate mass loss estimation in these supernovae. One also expects to detect gravitationally lensed supernovae in far away Universe in the SKA bands. Radio counterparts of the gravitational waves are likely to become a reality once SKA comes online. In addition, SKA is likely to discover various new kinds of transients.  相似文献   

11.
In the rapidly developing field of study of the transient sky, fast radio transients are perhaps the most exciting objects of scrutiny at present. The SKA, with its wide field-of-view and significant improvement in sensitivity over existing facilities, is expected to detect a plethora of fast transients which, in addition to help resolve the mysteries surrounding their nature and origin, will also lead to other interesting applications in astrophysics. We explore some of these possibilities here, and also emphasize the current status and future plans of the Indian community working in this area, in the context of ongoing work and extension of this to the SKA.  相似文献   

12.
论述了微波全息测量中相关机的理论和基于FPGA的实现以及全息测量的基本方法,重点讨论了在FPGA上实现整个系统的关键和难点部分.整个设计在保证功能实现的基础上,把节约FPGA资源放在相当重要的位置来考虑,这些技术对基于FPGA的DSP系统设计有很好的借鉴意义.最后对相关机的输出数据进行了定性分析,说明了相关机工作的正确性与可靠性.本设计已在上海余山站正式用作全息测量.  相似文献   

13.
The Square Kilometre Array (SKA), when it becomes functional, is expected to enrich Neutron Star (NS) catalogues by at least an order of magnitude over their current state. This includes the discovery of new NS objects leading to better sampling of under-represented NS categories, precision measurements of intrinsic properties such as spin period and magnetic field, as also data on related phenomena such as microstructure, nulling, glitching, etc. This will present a unique opportunity to seek answers to interesting and fundamental questions about the extreme physics underlying these exotic objects in the Universe. In this paper, we first present a meta-analysis (from a methodological viewpoint) of statistical analyses performed using existing NS data, with a two-fold goal. First, this should bring out how statistical models and methods are shaped and dictated by the science problem being addressed. Second, it is hoped that these analyses will provide useful starting points for deeper analyses involving richer data from SKA whenever it becomes available. We also describe a few other areas of NS science which we believe will benefit from SKA which are of interest to the Indian NS community.  相似文献   

14.
Moore’s law is best exploited by using consumer market hardware. In particular, the gaming industry pushes the limit of processor performance thus reducing the cost per raw flop even faster than Moore’s law predicts. Next to the cost benefits of Common-Of-The-Shelf (COTS) processing resources, there is a rapidly growing experience pool in cluster based processing. The typical Beowulf cluster of PC’s supercomputers are well known. Multiple examples exists of specialised cluster computers based on more advanced server nodes or even gaming stations. All these cluster machines build upon the same knowledge about cluster software management, scheduling, middleware libraries and mathematical libraries. In this study, we have integrated COTS processing resources and cluster nodes into a very high performance processing platform suitable for streaming data applications, in particular to implement a correlator. The required processing power for the correlator in modern radio telescopes is in the range of the larger supercomputers, which motivates the usage of supercomputer technology. Raw processing power is provided by graphical processors and is combined with an Infiniband host bus adapter with integrated data stream handling logic. With this processing platform a scalable correlator can be built with continuously growing processing power at consumer market prices.  相似文献   

15.
Detection of individual luminous sources during the reionization epoch and cosmic dawn through their signatures in the HI 21-cm signal is one of the direct approaches to probe the epoch. Here, we summarize our previous works on this and present preliminary results on the prospects of detecting such sources using the SKA1-low experiment. We first discuss the expected HI 21-cm signal around luminous sources at different stages of reionization and cosmic dawn. We then introduce two visibility based estimators for detecting such signals: one based on the matched filtering technique and the other relies on simply combing the visibility signal from different baselines and frequency channels. We find that the SKA1-low should be able to detect ionized bubbles of radius \(R_{\mathrm {b}} \gtrsim 10\) Mpc with ~100 h of observations at redshift z~8 provided that the mean outside neutral hydrogen fraction \(\mathrm {x}_{\text {HI}} \gtrsim 0.5\). We also investigate the possibility of detecting HII regions around known bright QSOs such as around ULASJ1120+0641 discovered by Mortlock et al. (Nature 474, 7353 (2011)). We find that a 5σ detection is possible with 600 h of SKA1-low observations if the QSO age and the outside xHI are at least ~2×107 Myr and ~0.2 respectively. Finally, we investigate the possibility of detecting the very first X-ray and Ly- α sources during the cosmic dawn. We consider mini-QSOs like sources which emits in X-ray frequency band. We find that with a total ~ 1000 h of observations, SKA1-low should be able to detect those sources individually with a ~ 9σ significance at redshift z=15. We summarize how the SNR changes with various parameters related to the source properties.  相似文献   

16.
The role of magnetic fields in the dynamical evolution of galaxies and of the interstellar medium (ISM) is not well understood, mainly because such fields are difficult to directly observe. Radio astronomy provides the best tools to measure magnetic fields: synchrotron radiation traces fields illuminated by cosmic-ray electrons, while Faraday rotation and Zeeman splitting allow us to detect fields in all kinds of astronomical plasmas, from lowest to highest densities. Here, we describe how fundamental new advances in studying magnetic fields, both in our own Milky Way and in other nearby galaxies, can be made through observations with the proposed Square Kilometre Array. Underpinning much of what we propose is an all-sky survey of Faraday rotation, in which we will accumulate tens of millions of rotation measure measurements toward background radio sources. This will provide a unique database for studying magnetic fields in individual Galactic supernova remnants and Hii regions, for characterizing the overall magnetic geometry of our Galaxy’s disk and halo, and for understanding the structure and evolution of magnetic fields in galaxies. Also of considerable interest will be the mapping of diffuse polarized emission from the Milky Way in many narrow bands over a wide frequency range. This will allow us to carry out Faraday tomography of the Galaxy, yielding a high-resolution three-dimensional picture of the magnetic field within a few kpc of the Sun, and allowing us to understand its coupling to the other components of the ISM. Finally, direct synchrotron imaging of a large number of nearby galaxies, combined with Faraday rotation data, will allow us to determine the magnetic field structure in these sources, and to test both the dynamo and primordial field theories for field origin and amplification.  相似文献   

17.
We present detailed science cases that a large fraction of the Indian AGN community is interested in pursuing with the upcoming Square Kilometre Array (SKA). These interests range from understanding low luminosity active galactic nuclei in the nearby Universe to powerful radio galaxies at high redshifts. Important unresolved science questions in AGN physics are discussed. Ongoing low-frequency surveys with the SKA pathfinder telescope GMRT, are highlighted.  相似文献   

18.
NASA is proposing a new receiving facility that needs to beamform broadband signals from hundreds of antennas. This is a similar problem to SKA beamforming with the added requirement that the processing should not add significant noise or distortion that would interfere with processing spacecraft telemetry data. The proposed solution is based on an FX correlator architecture and uses oversampling polyphase filterbanks to avoid aliasing. Each beamformer/correlator module processes a small part of the total bandwidth for all antennas, eliminating interconnection problems. Processing the summed frequency data with a synthesis polyphase filterbank reconstructs the time series. Choice of suitable oversampling ratio, and analysis and synthesis filters can keep aliasing below −39 dB while keeping the passband ripple low. This approach is readily integrated into the currently proposed SKA correlator architecture.  相似文献   

19.
介绍了中国VLBI网FX型相关处理机的结构和功能,并着重阐述了相关处理机的长期累加器子系统(LTA),它是相关处理机的条纹数据压缩部件。通过对长期累加器子系统的研究,提出了对该子系统的改进方案,以提高硬件线路的集成度和系统的可靠性,适应了对相关处理机更快速度、更高精度及多台站测量的要求,并说明了实现方法及其改进后的特点。  相似文献   

20.
CVN硬盘系统和软件相关处理在e-VLBI试验中的应用   总被引:1,自引:0,他引:1  
介绍了中国VLBI网(CVN)的e-VLBI技术研究进展.CVN包括上海佘山、乌鲁木齐南山2个固定观测站和云南昆明的流动站,以及上海天文台的2台站硬件相关处理机。2003年上海天文台自行研制了基于PC技术的VLBI数据记录、回放系统,命名为CVN硬盘系统,并成功将其安置于CVN观测站和处理机系统。硬件处理机经过改造后,已能处理来自硬盘和原有磁带系统的数据.从2003年至今,中国VLBI网采用该硬盘系统进行了多次VLBI观测和e-VLBI试验。在CVN硬盘系统基础上,软件相关处理技术的研究也得以开展。软件相关处理原型程序已经被用于台站条纹检测、卫星条纹搜索和数据处理中。该软件获得的计算结果被成功用于国内第一个3台站卫星VLBI的延迟和延迟率闭合试验,以及国内首次利用VLBI数据进行的卫星定轨试验。除此之外,该软件还用作硬件处理机的条纹引导器。为适应未来“嫦娥”月球探测工程,CVN将扩展成含有4个观测站和2个相关处理机(硬件、软件)的实时VLBI网。今后,e-VLBI将被应用于月球卫星导航以及测地和天体物理的VLBI观测。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号