首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Recent and potential future increases in global temperatures are likely to be associated with impacts on the hydrologic cycle, including changes to precipitation and increases in extreme events such as droughts. We analyze changes in drought occurrence using soil moisture data for the SRES B1, A1B and A2 future climate scenarios relative to the PICNTRL pre-industrial control and 20C3M twentieth century simulations from eight AOGCMs that participated in the IPCC AR4. Comparison with observation forced land surface model estimates indicates that the models do reasonably well at replicating our best estimates of twentieth century, large scale drought occurrence, although the frequency of long-term (more than 12-month duration) droughts are over-estimated. Under the future projections, the models show decreases in soil moisture globally for all scenarios with a corresponding doubling of the spatial extent of severe soil moisture deficits and frequency of short-term (4–6-month duration) droughts from the mid-twentieth century to the end of the twenty-first. Long-term droughts become three times more common. Regionally, the Mediterranean, west African, central Asian and central American regions show large increases most notably for long-term frequencies as do mid-latitude North American regions but with larger variation between scenarios. In general, changes under the higher emission scenarios, A1B and A2 are the greatest, and despite following a reduced emissions pathway relative to the present day, the B1 scenario shows smaller but still substantial increases in drought, globally and for most regions. Increases in drought are driven primarily by reductions in precipitation with increased evaporation from higher temperatures modulating the changes. In some regions, increases in precipitation are offset by increased evaporation. Although the predicted future changes in drought occurrence are essentially monotonic increasing globally and in many regions, they are generally not statistically different from contemporary climate (as estimated from the 1961–1990 period of the 20C3M simulations) or natural variability (as estimated from the PICNTRL simulations) for multiple decades, in contrast to primary climate variables, such as global mean surface air temperature and precipitation. On the other hand, changes in annual and seasonal means of terrestrial hydrologic variables, such as evaporation and soil moisture, are essentially undetectable within the twenty-first century. Changes in the extremes of climate and their hydrological impacts may therefore be more detectable than changes in their means.  相似文献   

2.
Simulations of late 20th and 21st century Arctic cloud amount from 20 global climate models (GCMs) in the Coupled Model Intercomparison Project phase 3 (CMIP3) dataset are synthesized and assessed. Under recent climatic conditions, GCMs realistically simulate the spatial distribution of Arctic clouds, the magnitude of cloudiness during the warmest seasons (summer–autumn), and the prevalence of low clouds as the predominant type. The greatest intermodel spread and most pronounced model error of excessive cloudiness coincides with the coldest seasons (winter–spring) and locations (perennial ice pack, Greenland, and the Canadian Archipelago). Under greenhouse forcing (SRES A1B emissions scenario) the Arctic is expected to become cloudier, especially during autumn and over sea ice, in tandem with cloud decreases in middle latitudes. Projected cloud changes for the late 21st century depend strongly on the simulated modern (late 20th century) annual cycle of Arctic cloud amount: GCMs that correctly simulate more clouds during summer than winter at present also tend to simulate more clouds in the future. The simulated Arctic cloud changes display a tripole structure aloft, with largest increases concentrated at low levels (below 700 hPa) and high levels (above 400 hPa) but little change in the middle troposphere. The changes in cloud radiative forcing suggest that the cloud changes are a positive feedback annually but negative during summer. Of potential explanations for the simulated Arctic cloud response, local evaporation is the leading candidate based on its high correlation with the cloud changes. The polar cloud changes are also significantly correlated with model resolution: GCMs with higher spatial resolution tend to produce larger future cloud increases.  相似文献   

3.
We analyze results of 15 global climate simulations contributed to the Coupled Model Intercomparison Project (CMIP). Focusing on the western USA, we consider both present climate simulations and predicted responses to increasing atmospheric CO2. The models vary in their ability to predict the present climate. In the western USA, a few models produce a seasonal cycle for spatially averaged temperature and/or precipitation in good agreement with observational data. Other models tend to over-predict precipitation in the winter or exaggerate the amplitude of the seasonal cycle of temperature. The models also differ in their ability to reproduce the spatial patterns of temperature and precipitation in the USA. Considering the monthly mean precipitation responses to doubled atmospheric CO2, averaged over the western USA, we find some models predict increases while others predict decreases. The predicted temperature response, on the other hand, is invariably positive over this region; however, for each month, the range of values given by the different models is large compared to the mean model response. We look for possible relationships between the models temperature and precipitation responses to doubled CO2 concentration and their ability to simulate some aspects of the present climate. We find that these relationships are weak, at best. The precipitation response over the western USA in DJF and the precipitation response over the mid- and tropical latitudes seem to be correlated with the RMS error in simulated present-day precipitation, also calculated over the mid- and tropical latitudes. However, considering only the responses of the models with the smallest RMS errors does not provide a different estimate of the precipitation response to a doubled CO2 concentration, because even among the most accurate models, the range of model responses is so large. For temperature, we find that models that have smaller RMS errors in present-climate temperature in the north eastern Pacific region predict a higher temperature response in the western USA than the models with larger errors. A similar relation exists between the temperature response over Europe in DJF and the RMS error calculated over the Northern Atlantic.  相似文献   

4.
Cabré  Anna  Marinov  Irina  Leung  Shirley 《Climate Dynamics》2015,45(5-6):1253-1280
Climate Dynamics - We analyze for the first time all 16 Coupled Model Intercomparison Project Phase 5 models with explicit marine ecological modules to identify the common mechanisms involved in...  相似文献   

5.
For many locations around the globe some of the most severe weather is associated with outbreaks of cold air over relatively warm oceans, referred to here as marine cold-air outbreaks (MCAOs). Drawing on empirical evidence, an MCAO indicator is defined here as the difference between the skin potential temperature, which over open ocean is the sea surface potential temperature, and the potential temperature at 700 hPa. Rare MCAOs are defined as the 95th percentile of this indicator. Climate model data that have been provided as part of the Intergovernmental Panel on Climate Change (IPCC) Assessment Report Four (AR4) were used to assess the models’ projections for the twenty-first century and their ability to represent the observed climatology of MCAOs. The ensemble average of the models broadly captures the observed spatial distribution of the strength of MCAOs. However, there are some significant differences between the models and observations, which are mainly associated with simulated biases of the underlying sea ice, such as excessive sea-ice extent over the Barents Sea in most of the models. The future changes of the strength of MCAOs vary significantly across the Northern Hemisphere. The largest projected weakening of MCAOs is over the Labrador Sea. Over the Nordic seas the main region of strong MCAOs will move north and weaken slightly as it moves away from the warm tongue of the Gulf Stream in the Norwegian Sea. Over the Sea of Japan there is projected to be only a small weakening of MCAOs. The implications of the results for mesoscale weather systems that are associated with MCAOs, namely polar lows and arctic fronts, are discussed.  相似文献   

6.
根据海河流域1961-2010年气象观测资料,检验IPCC AR4中全球气候模式和多模式集合的模拟能力,并预估未来2011-2050年气候变化的可能趋势,结果表明:全球气候模式以及多模式集合对海河流域都具有一定的模拟能力,其中MIUB_ECHO_G模式和多模式集合具有相对较好的模拟能力.海河流域气温和降水未来情景预估表明:气温整体呈现增加趋势,尤其是A1B情景下各模式的年升温率均高于全国水平;未来降水也呈现增加趋势,在A1B和B1情景下,各模式都为夏季降水增加显著.A2情景下,春季时各模式降水均增加显著,A1B情景下,MIUB_ECHO_G模式模拟在2013年出现突变,降水量出现显著增长,A2情景下,MIUB_ECHO_G模式和多模式集合模拟的降水量则是在2031年和2001年出现突变,出现显著增长.  相似文献   

7.
The response of the South Pacific Convergence Zone (SPCZ) to climate change is examined using simulations from 16 coupled climate models under the A2 emission scenario carried out for the Intergovernmental Panel on Climate Change Fourth Assessment Report. Characteristics of the austral summer SPCZ in the late twenty-first century are compared with the late twentieth century: the orientation and latitude of the SPCZ precipitation band; the area and intensity of precipitation within the SPCZ; and the eastern extent of the SPCZ. Changes in the SPCZ position are examined using a simple linear fit to the band of maximum precipitation and using a “pattern matching” technique. Both techniques find no consistent shift in the slope or mean latitude of the austral summer SPCZ. However, many models simulate a westward shift in the eastern edge of the SPCZ in austral summer, with reduced precipitation to the east of around 150°W. The westward contraction of the SPCZ is associated with a strengthening of the trade winds in the southeast Pacific and an increased zonal sea surface temperature gradient across the South Pacific. The majority of models simulate an increase in the area of the SPCZ and in mean and maximum precipitation within the SPCZ, defined by a 6?mm/day precipitation threshold, consistent with increased moisture convergence in a warmer climate. Changes in the SPCZ response to ENSO are examined using ENSO precipitation composites. The SPCZ has a reduced slope and is shifted towards the equator in the A2 multi-model mean El Ni?o composite.  相似文献   

8.
The effect of enhanced greenhouse warming on the behaviour of mid-latitude cyclones is examined for changes in the total number of cyclone events and for changes in the number of intense events using the daily averaged mean sea level pressure simulated by coupled climate models participating in the IPCC AR4 (Fourth Assessment Report) diagnostic exercise. Results are presented for a set of scenarios which were produced using a wide range of increasing levels of greenhouse gases. For the enhanced greenhouse warming experiments, the models simulated a reduction in the total number of events and an increase in the number of intense events. This is a robust result, which essentially all the models exhibit. Comparison of the results for each of the scenarios shows that the magnitude of the changes in the number of simulated events increases with increasing levels greenhouse gas forcing used in the scenarios. Even though the numbers of events change, there is no apparent change seen in the geographical distribution of the events, i.e. there is no obvious change in the positions of the storm tracks seen on hemispheric charts. This was also evident in the results for the filtered variance of the meridional wind which was used as a proxy for cyclone activity. In spite of this, it is possible that small shifts in the storm tracks, which are difficult to resolve with the relatively coarse grid used for analysis, could occur.  相似文献   

9.
依据IPCC第六次评估报告(AR6)第一工作组报告第四章的内容,对未来全球气候的预估结果进行解读。报告对21世纪全球表面气温、降水、大尺度环流和变率模态、冰冻圈和海洋圈的可能变化进行了系统评估,并对2100年以后的气候变化做了合理估计。评估指出全球平均表面气温将在未来20年内达到或超过1.5℃,平均降水也将增加,但随季节和区域而异,同时变率将增大。大尺度环流和变率模态受内部变率影响较大。到21世纪末,北冰洋可能出现无冰期;全球海洋会继续酸化,平均海平面将持续上升,百年内上升幅度依赖不同排放情景,都在2100年后继续升高。在最新的评估中采用多种约束方法,减小了预估不确定性的范围。AR6对于低排放情景以及“小概率高增暖情节”的关注为应对气候变化提供了更多、更完整的信息。综合报告的评估结果指出,未来需要进一步减小区域,特别是季风区气候预估的不确定性,并从科学研究和模式发展两方面加强我国气候预估能力的建设。  相似文献   

10.
Global and regional climate models (GCM and RCM) are generally biased and cannot be used as forcing variables in ecological impact models without some form of prior bias correction. In this study, we investigated the influence of the bias correction method on drought projections in Mediterranean forests in southern France for the end of the twenty-first century (2071–2100). We used a water balance model with two different atmospheric climate forcings built from the same RCM simulations but using two different correction methods (quantile mapping or anomaly method). Drought, defined here as periods when vegetation functioning is affected by water deficit, was described in terms of intensity, duration and timing. Our results showed that the choice of the bias correction method had little effects on temperature and global radiation projections. However, although both methods led to similar predictions of precipitation amount, they induced strong differences in their temporal distribution, especially during summer. These differences were amplified when the climatic data were used to force the water balance model. On average, the choice of bias correction leads to 45 % uncertainty in the predicted anomalies in drought intensity along with discrepancies in the spatial pattern of the predicted changes and changes in the year-to-year variability in drought characteristics. We conclude that the choice of a bias correction method might have a significant impact on the projections of forest response to climate change.  相似文献   

11.
The present study aims at evaluating and comparing precipitation over the Amazon in two sets of historical and future climate simulations based on phase 3 (CMIP3) and 5 (CMIP5) of the Coupled Model Intercomparison Project. Thirteen models have been selected in order to discuss (1) potential improvements in the simulation of present-day climate and (2) the potential reduction in the uncertainties of the model response to increasing concentrations of greenhouse gases. While several features of present-day precipitation—including annual cycle, spatial distribution and co variability with tropical sea surface temperature (SST)—have been improved, strong uncertainties remain in the climate projections. A closer comparison between CMIP5 and CMIP3 highlights a weaker consensus on increased precipitation during the wet season, but a stronger consensus on a drying and lengthening of the dry season. The latter response is related to a northward shift of the boreal summer intertropical convergence zone in CMIP5, in line with a more asymmetric warming between the northern and southern hemispheres. The large uncertainties that persist in the rainfall response arise from contrasted anomalies in both moisture convergence and evapotranspiration. They might be related to the diverse response of tropical SST and ENSO (El Niño Southern Oscillation) variability, as well as to spurious behaviours among the models that show the most extreme response. Model improvements of present-day climate do not necessarily translate into more reliable projections and further efforts are needed for constraining the pattern of the SST response and the soil moisture feedback in global climate scenarios.  相似文献   

12.
The atmosphere?Cocean general circulation models (AOGCMs) used for the IPCC 4th Assessment Report (IPCC AR4) are evaluated for the Greenland ice sheet (GrIS) current climate modelling. The most suited AOGCMs for Greenland climate simulation are then selected on the basis of comparison between the 1970?C1999 outputs of the Climate of the twentieth Century experiment (20C3M) and reanalyses (ECMWF, NCEP/NCAR). This comparison indicates that the representation quality of surface parameters such as temperature and precipitation are highly correlated to the atmospheric circulation (500?hPa geopotential height) and its interannual variability (North Atlantic oscillation). The outputs of the three most suitable AOGCMs for present-day climate simulation are then used to assess the changes estimated by three IPCC greenhouse gas emissions scenarios (SRES) over the GrIS for the 2070?C2099 period. Future atmospheric circulation changes are projected to dampen the zonal flow, enhance the meridional fluxes and therefore provide additional heat and moisture to the GrIS, increasing temperature over the whole ice sheet and precipitation over its northeastern area. We also show that the GrIS surface mass balance anomalies from the SRES A1B scenario amount to ?300?km3/year with respect to the 1970?C1999 period, leading to a global sea-level rise of 5?cm by the end of the 21st century. This work can help to select the boundaries conditions for AOGCMs-based downscaled future projections.  相似文献   

13.
IPCC AR4气候模式对东亚夏季风年代际变化的模拟性能评估   总被引:24,自引:2,他引:24  
孙颖  丁一汇 《气象学报》2008,66(5):765-780
文中使用多种观测资料和分类的方法评估了IPCC AR4(政府间气候变化委员会第4次评估报告)气候模式(亦称Coupled Model Intercomparison Program 3, CMIP3)对东亚夏季风降水与环流年代际变化的模拟性能.结果表明,在评估的19个模式中,有9个模式可以较好地再现中国东部地区多年平均降水场,但仅有3个模式(第1类模式)可以较好地对东亚夏季风降水的年代际变化作出模拟,这3个模式是:GFDL-CM2.0、MIROC3.2(hires)和MIROC3.2(medres),其中模式GFDL-CM2.0具有最好的模拟性能.进一步的分析表明,大部分模式对东亚夏季风变化模拟能力的缺乏是因为这些模式没有抓住东亚夏季风降水变化的主要动力和热力学机制,即东亚地区在过去所出现的大范围对流层变冷和变干.而第1类模式由于较好地再现了东亚地区垂直速度场(动力学因子)和水汽场(热力学因子)的变化特征,因此较好地模拟出中国东部南涝北旱的气候变化特征.本文的评估清楚地表明,当选择不同模式进行集合时,模式对某一研究变量的模拟性能好坏极大地影响了集合的结果.当模拟性能较好的模式在一起进行集合时,所得到的结果更加接近于真实的观测结果.就特定的研究变量而言,这种集合更加优于将可得到的所有模式进行集合.这说明,虽然多模式集合一般优于单个模式的结果,但应考虑使参与集合的模式对所研究变量具有一定的模拟能力.  相似文献   

14.
This paper evaluates the performance of eight state-of-art IPCC-AR4 coupled atmosphere-ocean general circulation models in their representation of regional characteristics of atmospheric water balance over South Asia. The results presented here are the regional climate change scenarios of atmospheric water balance components, precipitation, moisture convergence and evaporation (P, C and E) up to the end of the twenty-second century based on IPCC AR4 modelling experiments conducted for (A1B) future greenhouse gas emission scenario. The AOGCMs, despite their relatively coarse resolution, have shown a reasonable skill in depicting the hydrological cycle over the South Asian region. However, considerable biases do exist with reference to the observed atmospheric water balance and also inter-model differences. The monsoon rainfall and atmospheric water balance changes under A1B scenario are discussed in detail. Spatial patterns of rainfall change projections indicate maximum increase over northwest India in most of the models, but changes in the atmospheric water balance are generally widespread over South Asia. While the scenarios presented in this study are indicative of the expected range of rainfall and water balance changes, it must be noted that the quantitative estimates still have large uncertainties associated with them.  相似文献   

15.
In this paper we draw on Science and Technology (STS) approaches to develop a comparative analytical account of the Intergovernmental Panel on Climate Change (IPCC) and the Intergovernmental science-policy Platform on Biodiversity and Ecosystem Services (IPBES). The establishment of both of these organizations, in 1988 and 2012 respectively, represented important ‘constitutional moments’ in the global arrangement of scientific assessment and its relationship to environmental policymaking. Global environmental assessments all share some similarities, operating at the articulation between science and policy and pursuing explicit societal goals. Although the IPCC and IPBES have different objectives, they are both intergovernmental processes geared towards the provision of knowledge to inform political debates about, respectively, climate change and biodiversity loss. In spite of these similarities, we show that there are significant differences in their knowledge practices and these differences have implications for environmental governance. We do this by comparing the IPCC and IPBES across three dimensions: conceptual frameworks, scenarios and consensus .We argue that, broadly speaking, the IPCC has produced a ‘view from nowhere’, through a reliance on mathematical modelling to produce a consensual picture of global climate change, which is then ‘downscaled’ to considerations of local impacts and responses. By contrast IPBES, through its contrasting conceptual frameworks and practices of argumentation, appears to seek a ‘view from everywhere’, inclusive of epistemic plurality, and through which a global picture emerges through an aggregation of more placed-based knowledges. We conclude that, despite these aspirations, both organizations in fact offer ‘views from somewhere’: situated sets of knowledge marked by politico-epistemic struggles and shaped by the interests, priorities and voices of certain powerful actors. Characterizing this ‘somewhere’ might be aided by the concept of institutional epistemology, a term we propose to capture how particular knowledge practices become stabilized within international expert organizations. We suggest that such a concept, by drawing attention to the institutions’ knowledge practices, helps reveal their world-making effects and, by doing so, enables more reflexive governance of both expert organizations and of global environmental change in general.  相似文献   

16.
Women’s experiences as Intergovernmental Panel on Climate Change (IPCC) authors, have been explored showing how gender, race, nationality, etc. increase barriers to participate in the production of climate science even for the best scientists. Recently, the IPCC Gender Task Force, conducted another survey exploring barriers to participation in the IPCC that included men as well as women. The Gender Task Force released a report on gendered barriers mostly focusing on quantitative responses. This paper presents a qualitative analysis of the fourteen open-ended questions in the survey. In addition to qualitative analysis, storytelling and the concept of feminist objectivity are useful approaches to convey the complicated web of responses of over 500 scientists about their experiences participating in the IPCC and in climate science more broadly. Gender, race and nationality continue to be barriers. I stress the connection between exclusions of underrepresented scientists in the IPCC with the persistent western belief that science is an objective and impartial practice. The paper brings attention to exclusionary structures that prevent participation in the IPCC and in science more broadly, but also provides stories of how these are resisted. These stories go beyond recognizing people as disadvantaged toward addressing the intersecting structures that exclude people from participating in science. As climate science becomes more diverse, and evidence points toward the benefit of diversity for superior science, understanding barriers and opportunities for scientists participating in multidisciplinary and international reports such as the IPCC becomes increasingly important. The stories provide a theoretical and methodological catalyst for international science institutions who seek to increase the influence and presence of underrepresented groups in science and produce superior science.  相似文献   

17.
本文依据政府间气候变化专门委员会(IPCC)第六次评估报告(AR6)第一工作组(WGI)报告第七章的内容,详细解读了基于多源证据对气候敏感度的估算,这些证据包括:过程理解、仪器记录、古气候数据和萌现约束。得到的结论是,多源证据支持平衡态气候敏感度(ECS)的中心估计值接近3 ℃,可能区间为2.5~4.0 ℃,非常可能区间为2.0~5.0 ℃;瞬态气候响应(TCR)的最佳估值为1.8 ℃,可能区间为1.4~2.2 ℃,非常可能区间为1.2~2.4 ℃。与之前历次IPCC评估报告相比,AR6关于气候敏感度的估算最为重要的创新之处为,它没有将气候模式结果当作唯一证据,而是仅仅给出第六次国际耦合模式比较计划(CMIP6)结果并与基于多源证据的综合评估结果进行了对比。通过对比发现,CMIP6关于ECS与TCR的平均值均高于第五次国际耦合模式比较计划(CMIP5)和AR6的综合评估结果。相比CMIP6,AR6综合了多个证据线有效地缩小了ECS的不确定范围。  相似文献   

18.
A large component of present-day sea-level rise is due to the melt of glaciers other than the ice sheets. Recent projections of their contribution to global sea-level rise for the twenty-first century range between 70 and 180 mm, but bear significant uncertainty due to poor glacier inventory and lack of hypsometric data. Here, we aim to update the projections and improve quantification of their uncertainties by using a recently released global inventory containing outlines of almost every glacier in the world. We model volume change for each glacier in response to transient spatially-differentiated temperature and precipitation projections from 14 global climate models with two emission scenarios (RCP4.5 and RCP8.5) prepared for the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. The multi-model mean suggests sea-level rise of 155 ± 41 mm (RCP4.5) and 216 ± 44 mm (RCP8.5) over the period 2006–2100, reducing the current global glacier volume by 29 or 41 %. The largest contributors to projected global volume loss are the glaciers in the Canadian and Russian Arctic, Alaska, and glaciers peripheral to the Antarctic and Greenland ice sheets. Although small contributors to global volume loss, glaciers in Central Europe, low-latitude South America, Caucasus, North Asia, and Western Canada and US are projected to lose more than 80 % of their volume by 2100. However, large uncertainties in the projections remain due to the choice of global climate model and emission scenario. With a series of sensitivity tests we quantify additional uncertainties due to the calibration of our model with sparsely observed glacier mass changes. This gives an upper bound for the uncertainty range of ±84 mm sea-level rise by 2100 for each projection.  相似文献   

19.
20.
Abstract

Current understanding of the regional nature of global changes in the climato‐logical regime of the earth is limited. General circulation climate models (GCMs) cannot provide consistent and detailed information on the regional patterns of precipitation, soil moisture and runoff that are required by water resource planners. A case study is presented that couples a limited area model, with high spatial resolution and realistic land‐surface parametrization, to a global climate model. Results for July are presented for the continent of Australia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号