首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We measured the effects of a plant invasion (Phragmites australis) on resident fish (Fundulus heteroclitus) in New England salt marshes by assessing diet quality at the food web base and by quantifying the importance of primary producers to secondary production using a recently developed Bayesian mixing model (Stable Isotope Analysis in R, “SIAR”). Spartina alterniflora, the dominant native plant, exhibited significantly greater leaf toughness and higher C/N ratios relative to P. australis. Benthic microalgae and phytoplankton (as suspended particulate matter) exhibited the lowest C/N indicating higher diet quality. We conducted a sensitivity analysis in SIAR by modeling F. heteroclitus at three separate trophic levels (1.5, 2.0, and 2.5) using species-specific discrimination factors to determine basal resource contributions. Overall, the best-fitting models include those that assume F. heteroclitus resides approximately 2.0 trophic levels above primary producers. Using discrimination factors from a range of data sources reported in the literature, our analyses revealed that consumers rely less on benthic microalgae and phytoplankton in restricted marshes (7–23 % and 11–44 %, respectively) relative to reference marshes (5–34 % and 23–48 %, respectively), resulting in a shift in diet toward invasive plant consumption (0–27 %). This is likely due to increased P. australis cover and marsh surface shading leading to decreased microalgal biomass, combined with reduced flooding of the marsh surface that favors terrestrial invertebrate assemblages. Restoration decreased the quantity of P. australis in the food web (0–15 %) and increased the importance of microalgae (1–30 %), phytoplankton (19–48 %), and native plants (23–63 %), indicating a shift in ecological recovery toward reference conditions.  相似文献   

2.
Phenotypic variation within species can have community- and ecosystem-level effects. Such variation may be particularly important in ecosystem engineers, including many invasive species, because of the strong influence of these species on their surrounding communities and environment. We combined field surveys and glasshouse experiments to investigate phenotypic variation within the invasive common reed, Phragmites australis, among four estuarine source sites along the east coast of North America. Field surveys revealed variation in P. australis height and stem density among source sites. In a glasshouse environment, percent germination of P. australis seeds also varied across source sites. To test the degree to which phenotypic variation in P. australis reflected genetic or environmental differences, we conducted a glasshouse common garden experiment assessing the performance of P. australis seedlings from the four source sites across a salinity gradient. Populations maintained differences in morphology and growth in a common glasshouse environment, indicating a genetic component to the observed phenotypic variation. Despite this variation, experimentally increased porewater salinity consistently reduced P. australis stem density, height, and biomass. Differences in these morphological metrics are important because they are correlated with the impacts of invasive P. australis on the ecological communities it invades. Our results indicate that both colonization and spread of invasive P. australis will be dependent on the environmental and genetic context. Additional research on intraspecific variation in invasive species, particularly ecosystem engineers, will improve assessments of invasion impacts and guide management decisions in estuarine ecosystems.  相似文献   

3.
The present study evaluated the effect of plant species on methane (CH4) emission and microbial populations in three types of soil–plant systems. Results showed large variation of CH4 flux rate ranging from 1.35 to 212.61 mg CH4 m?2 h?1. Emission peak of CH4 occurred in July. No significant difference was found in the non-vegetation system spanning 2 years. Compared with non-vegetation, vegetation systems had much higher flux of CH4, and obvious seasonal variation was observed. The polyculture system planted with Zizania latifolia (Z. latifolia) and Phragmites australis (P. australis) released higher CH4 fluxes than the mono system (P. australis), reflecting that Z. latifolia growth could simulate CH4 emission. The fluorescence in situ hybridization (FISH) results support the characteristics of CH4 fluxes. Much higher methanotrophs amount and lower methanogens amount from the mono system than those from the polyculture system was observed indicating that Z. latifolia growth may limit the oxygen transportation resulting in higher CH4 emission. The polyculture system has the highest potential of CH4 emission.  相似文献   

4.
Five temperate seagrasses (Amphibolis antartica, Halophila ovalis, Posidonia australis, Posidonia sinuosa and Zostera nigricaulis) were surveyed along the south-west coast of Western Australia. These morphological different seagrasses grow in contrasting sediments with large variations in sedimentary organic matter, carbonate and iron contents. We tested if sulfur composition in the plants responded to sulfur dynamics in the sediments and if plant morphology affected the sulfur composition of the plants. The sediments were characterized by low sulfate reduction rates (<9 mmol m?2day?1), low concentrations of dissolved sulfides in the pore waters (<74 μM) and low burial of sulfides (total reducible sulfur <0.8 mol m?2) in the sediments. However, all seagrasses showed high intrusion in the below-ground parts with up to 84 % of the sulfur derived from sedimentary sulfides. There were no direct links between sulfur in the plants and sulfur dynamics in the sediments, probably due to low iron contents in the sediments limiting the buffering capacity of the sediments and exposing the plants to sulfides despite low rates of production and low pools of sulfides. The intrusion was linked between plant compartments (roots, rhizomes and leaves) for the two small species (H. ovalis and Z. nigricaulis), whereas the intrusion into the leaves was limited for the larger species (P. australis and P. sinuosa) and for A. antarctica, where extensive rhizomes and roots and the long stem for A. antarctica separate the leaves from the sediment compartment. Elevated intrusion was observed at two study locations, where natural deposition of organic matter or nutrient enrichment may be contributing factors to enhanced sulfide pressure.  相似文献   

5.
Chesapeake Bay tidal wetlands are experiencing a broad-scale, aggressive invasion by the non-native, clonal grass Phragmites australis. The grass is often managed with herbicides in efforts to restore native plant communities and wildlife habitat. Management efforts, however, can act as a disturbance, resulting in increased light availability, potentially fostering reinvasion from soil seedbanks. If native vegetation establishes quickly from seedbanks, the site should have greater resiliency against invasion, while disturbed sites where native plants do not rapidly establish may be rapidly colonized by P. australis. We surveyed the soil seedbank of three vegetation cover types in five Chesapeake Bay subestuaries: areas where P. australis had been removed, where P. australis was left intact, and with native, reference vegetation. We determined the total germination, the proportion of the seedbank that was attributable to invasive species, the richness, the functional diversity, and the overall composition of the seedbanks in each of the cover types (i.e., plots). After 2 years of herbicide treatment in the P. australis removal plots, vegetation cover type impacted the total germination or the proportion of invasive species in the seedbank. In contrast, we also found that seedbank functional composition in tidal brackish wetlands was not influenced by vegetation cover type in most cases. Instead, plots within a subestuary had similar seedbank functional composition across the years and were composed of diverse functional groups. Based on these findings, we conclude that plant community recovery following P. australis removal is not seed-limited, and any lack of native vegetation recruitment is likely the result of yet-to-be-determined abiotic factors. These diverse seedbanks could lead to resilient wetland communities that could resist invasions. However, due to the prevalence of undesirable species in the seedbank, passive revegetation following invasive plant removal may speed up their re-establishment. The need for active revegetation will need to be assessed on a case-by-case basis to ensure restoration goals are achieved.  相似文献   

6.
The use of constructed wetlands to replace natural wetlands has become a widespread management tool. Because of the inherent disturbed nature of these sites, constructed wetlands are susceptible to colonization by undesirable plant species. Vegetated communities in 15 constructed wetland sites ranging in age from 1 to 12 yr and in size from 0.4 to 5.3 ha were surveyed using differential global positioning system (GPS) technology in 1994. These sites were re-surveyed in 2000. Colonization of the sites byPhragmites australis expanded from 73% of the sites in 1994 to 80% of the sites in 2000. The total area colonized byP. australis within the sites increased from 3.47 to 4.96 ha. In some sites, the area ofP. australis decreased, which appears to be correlated with an increase in scrub-shrub vegetation (0.986, p=0.014). Similar to results from the previous study, sites that are surrounded by subtidal perimeter ditches have significantly lessP. australis than those sites without perimeter ditches (p=0.019).P. australis expansion rates within the sites varied from 0.1 to 5.6 yr?1. Colonization of constructed wetland sites byP. australis should be a continued concern of resource managers. Activities such as planting scrub-shrub species on the upland-wetland berm and construction of subtidal perimeter ditches should be considered as methods to reduce the probability of invasion.  相似文献   

7.
Several recent studies indicate that the replacement of extant species withPhragmites australis can alter the size of nitrogen (N) pools and fluxes within tidal marshes. Some common effects ofP. australis expansion are increased standing stocks of N, greater differentiation of N concentrations between plant tissues (high N leaves and low N stems), and slower whole-plant decay rates than competing species (e.g.,Spartina, Typha spp.). Some of the greater differences between marsh types involveP. australis effects on extractable and porewater pools of dissolved inorganic nitrogen (DIN) and N mineralization rates. Brackish and salt marshes show higher concentrations of DIN in porewater beneathSpartina spp. relative toP. australis, but this is not observed in freshwater tidal marshes whenP. australis is compared withTypha spp. or mixed plant assemblages. With few studies of concurrent N fluxes, the net effect ofP. australis on marsh N budgets is difficult to quantify for single sites and even more so between sites. The magnitude and direction of impacts ofP. australis on N cycles appears to be system-specific, driven more by the system and species being invaded than byP. australis itself. WhereP. australis is found to affect N pools and fluxes, we suggest these alterations result from increased biomass (both aboveground and belowground) and increased allocation of that biomass to recalcitrant stems. Because N pools are commonly greater inP. australis than in most other communities (due to plant and litter uptake), one of the most critical questions remaining is “From where is the extra N inP. australis communities coming?” It is important to determine if the source of the new N is imported (e.g., anthropogenic) or internallyproduced (e.g., fixed, remineralized organic matter). In order to estimate net impacts ofP. australis on marsh N budgets, we suggest that further research be focused on the N source that supports high standing stocks of N inP. australis biomass (external input versus internal cycling) and the relative rates of N loss from different marshes (burial versus subsurface flow versus denitrification).  相似文献   

8.
Up to date, very few studies have examined the phytoextraction ability of hyperaccumulators in the real soils contaminated with heavy metals following the identification of the hyperaccumulators using hydroponics tests. In the present study, amended with a chemical-mobilizing agent of ethylene diamine triacetic acid (EDTA), the manganese accumulation, tolerance and the hyperaccumulating ability of two hyperaccumulators Phytolacca americana L. (Phytolaccaceae) and Polygonum hydropiper L. (Polygonaceae) proved by previous hydroponics tests were examined using pot experiments with paddy soils contaminated with Mn (1,047 ± 53 mg kg?1) collected from one site in the vicinity of one manganese mine in Xiushan county of Chongqing, China. Results showed that the root and shoot biomass of P. americana and the chlorophyll production of P. hydropiper were significantly inhibited by EDTA treatments while the chlorophyll production of P. americana was oppositely obviously promoted by EDTA. It is noteworthy that, with or without EDTA treatment, the shoot Mn concentrations of both plant species were significantly below the hyperaccumulator threshold, indicating these two plants concealed their hyperaccumulating ability in the studied soils. Thus, further detailed studies need to be conducted to promote the metal hyperaccumulating capacity of these two plant species under comparably low Mn-contaminated soil conditions as shown in this study before the successful application of these Mn hyperaccumulators identified in laboratories to the phytoextraction of lightly or moderately Mn-contaminated agricultural soils.  相似文献   

9.
Multiple introductions are believed to play an important role in increasing genetic diversity and adaptability of invasive species, but there are few well-documented examples. The common reed, Phragmites australis, has dramatically increased in tidal wetlands throughout the USA in the past century due primarily to the introduction of a Eurasian lineage. In the Mississippi River “Balize” delta, P. australis is the dominant vegetation where monotypic stands of an introduced form blanket the outer marshes. The delta’s interior marshes, on the other hand, are more vegetatively diverse, serving as important waterfowl foraging habitat. Recent encroachment by various phenotypic forms of P. australis into the interior marshes led to this study examining genetic variation in these stands. Our results revealed four chloroplast DNA haplotypes that also segregate based on microsatellite variation. Three of these are closely related and introduced, but differ relative to time and likely mode of introduction. The “Delta” type (haplotype M1), which is unique to the region and the most common lineage, displays considerable microsatellite diversity. The Eurasian introduced lineage of P. australis (haplotype M), which is invasive elsewhere in North America, is increasing its distribution in the delta. A novel haplotype, AD, was also identified which is phenotypically and genetically similar to haplotype M. Despite the close relatedness, we found no evidence for inter-haplotype gene exchange at the nuclear level, suggesting that intraspecific hybridization is not a contributing factor to these invasions. The site provides a unique opportunity for researchers to understand the dynamics of multiple P. australis invasions.  相似文献   

10.
Phytoremediation has been applied for treating an extensive range of environmental contaminants such as anti-diabetic drug metformin which is increasingly found as environmental contaminant. These contaminants are released to the environment via human and veterinary medicine and pharmaceutical industries. In this study, native plant capabilities for uptake of metformin from wastewater were investigated. Moreover, uptake rate of metformin was studied in two different concentrations of 20 and 50 mg l?1 metformin solution by Amaranthus retroflexus, Ricinus communis, Brassica napus, Celosia cristata, Helianthus annuus and Phragmites australis. The results showed that after exposing to 20 mg l?1 metformin solution 69.53 ± 2.25% of metformin was remediated by H. annuus plants. Also in 50 mg l?1 metformin solution, H. annuus plants showed the most remediation potential (65.7 ± 1%). Metformin uptake is raised by B. napus and C. cristata plants along with increasing metformin concentration. There was no evidence of the presence of metformin in the roots and shoots of R. communis and C. cristata. The results also indicated that plants such as H. annuus can be a potential candidate for uptake of metformin from wastewater.  相似文献   

11.
The rapid spread ofPhragmites australis in the coastal marshes of the Northeastern United States has been dramatic and noteworthy in that this native species appears to have gained competitive advantage across a broad range of habitats, from tidal salt marshes to freshwater wetlands. Concomitant with the spread has been a variety of human activities associated with coastal development as well as the displacement of nativeP. australis with aggressive European genotypes. This paper reviews the impacts caused by pure stands ofP. australis on the structure and functions of tidal marshes. To assess the determinants ofP. australis expansion, the physiological tolerance and competitive abilities of this species were examined using a field experiment.P. australis was planted in open tubes paired withSpartina alterniflora, Spartina patens, Juncus gerardii, Lythrum salicaria, andTypha angustifolia in low, medium, and high elevations at mesohaline (14‰), intermediate (18‰), and salt (23‰) marsh locations. Assessment of the physiological tolerance ofP. australis to conditions in tidal brackish and salt marshes indicated this plant is well suited to colonize creek banks as well as upper marsh edges. The competitive ability ofP. australis indicated it was a robust competitor relative to typical salt marsh plants. These results were not surprising since they agreed with field observations by other researchers and fit within current competition models throught to structure plant distribution within tidal marshes. Aspects ofP. australis expansion indicate superior competitive abilities based on attributes that fall outside the typical salt marsh or plant competition models. The alignment of some attributes with human impacts to coastal marshes provides a partial explanation of how this plant competes so well. To curb the spread of this invasive genotype, careful attention needs to be paid to human activities that affect certain marsh functions. Current infestations in tidal marshes should serve as a sentinel to indicate where human actions are likely promoting the invasion (e.g., through hydrologic impacts) and improved management is needed to sustain native plant assemblages (e.g., prohibit filling along margins).  相似文献   

12.
The increasing abundance ofPhragmites australis in many North American coastal and inland wetlands is of great concern to many scientists and land managers. While some considered the species native, others considered it an introduced invasive species. Regardless of its origin, control measures using mechanical, physical, and chemical means are implemented widely. With the exception of increased salinity, reductions in the abundance ofP. australis are usually temporary and control measures need to be repeated frequently increasing the cost and the potential for nontarget effects. The failure of traditional control attempts resulted in increased interest to develop a biological control program. Recent research suggests that genetically distinct populations (introduced and native) occur in North America. The native genotypes appear noninvasive and declining while the introduced genotypes are invasive replacing native genotypes where they co-occur. Accidentally introduced European herbivores specialized onP. australis are spreading across North America and can be extremely abundant in the Northeast. Introduction of additional specialized herbivores as biological control agents from the European range ofP. australis, if approved and successful, will result in changes in plant communities, wetland food webs, and management practices. The potential changes associated with introduction of biological control agents to wetland plant communities and their food webs may be more beneficial than current management strategies allowing the introducedP. australis genotypes and its associated herbivores to spread.  相似文献   

13.
Much uncertainty exists in the phosphorus (P) cycle in the marshes of the intertidal zone. This study explored the P cycling in the two Suaeda salsa marshes [middle S. salsa marsh (MSM) and low S. salsa marsh (LSM)] of the Yellow River estuary during April 2008 to November 2009. Results showed seasonal fluctuations and vertical distributions of P in different S. salsa marsh soils, and variations in P content in different parts of plants due to water and salinity status. The N/P ratios of the different S. salsa were 9.87 ± 1.23 and 15.73 ± 1.77, respectively, indicating that plant growth in MSM was limited by N, while that in LSM was limited by both N and P. The S. salsa litter in MSM released P to the environment throughout the year, while that in LSM immobilized P from the environment at all times. The P absorption coefficients of S. salsa in MSM and LSM were very low (0.0010 and 0.0001, respectively), while the biological cycle coefficients were high (0.739 and 0.812, respectively). The P turnovers among compartments of MSM and LSM showed that the uptake amounts of roots were 0.4275 and 0.0469 g m?2 year?1 and the values of aboveground parts were 1.1702 and 0.1833 g m?2 year?1, the re-translocation quantities from aboveground parts to roots were 0.8544 and 0.1452 g m?2 year?1, the translocation amounts from roots to soil were 0.0137 and 0.0012 g m?2 year?1, the translocation quantities from aboveground living bodies to litter were 0.3157 and 0.0381 g m?2 year?1, and the annual return quantities from litter to soil were less than 0.0626 and ?0.0728 g m?2 year?1 (minus represented immobilization), respectively. P was an important limiting factor in S. salsa marshes, especially in LSM. S. salsa was seemingly well adapted to the low-nutrient condition and the vulnerable habitat, and the nutrient enrichment due to the import of N and P from the Yellow River estuary would be a potential threat to the S. salsa marshes.  相似文献   

14.
Lagrangian retention and flushing are examined by advecting neutrally buoyant point particles within a circulation field generated by a numerical ocean model of Tampa Bay. Large temporal variations in Lagrangian residence time are found under realistic changes in boundary conditions. Two 90-day time periods are examined. The first (P1) is characterized by low freshwater inflow and weak baroclinic circulation. The second (P2) has high freshwater inflow and strong baroclinic circulation. At the beginning of both time periods, 686,400 particles are released uniformly throughout the bay. Issues relating to particle distribution and flushing are examined at three different spatial scales: (1) at the scale of the entire bay, (2) the four major regions within the bay, and (3) at the scale of individual model grid cells. Two simple theoretical models for the particle number over time, N(t), are fit to the particle counts from the ocean model. The theoretical models are shown to represent N(t) reasonably well when considering the entire bay, allowing for straightforward calculation of baywide residence times: 156 days for P1 and 36 days for P2. However, the accuracy of these simple models decreases with decreasing spatial scale. This is likely due to the fact that particles may exit, reenter, or redistribute from one region to another in any sequence. The smaller the domain under consideration, the more this exchange process dominates. Therefore, definitions of residence time need to be modified for “non-local” situations. After choosing a reasonable definition, and removal of the tidal and synoptic signals, the residence times at each grid cell in P1 is found to vary spatially from a few days to 90 days, the limit of the calculation, with an average residence time of 53 days. For P2, the overall spatial pattern is more homogeneous, and the residence times have an average value of 26 days.  相似文献   

15.
The nickel arsenide (B81) and related crystal structures are among the most important crystallographic arrangements assumed by Fe and Ni compounds with light elements such as Si, O, S, and P, expected to be present in planetary cores. Despite the simple structure, some of these materials like troilite (FeS) exhibit complex phase diagrams and rich polymorphism, involving significant changes in interatomic bonding and physical properties. NiP (oP16) represents one of the two principal structure distortions found in the nickel arsenide family and is characterized by P–P bonding interactions that lead to the formation of P2 dimers. In the current study, the single-crystal synchrotron X-ray diffraction technique, aided by first principles density functional theory (DFT) calculations, has been applied to examine the compression behavior of NiP up to 30 GPa. Two new reversible displacive phase transitions leading to orthorhombic high-pressure phases with Pearson symbols oP40 and oC24 were found to occur at approximately 8.5 and 25.0 GPa, respectively. The oP40 phase has the primitive Pnma space group with unit cell a = 4.7729(5) Å, b = 16.6619(12) Å, and c = 5.8071(8) Å at 16.3(1) GPa and is a superstructure of the ambient oP16 phase with multiplicity of 2.5. The oC24 phase has the acentric Cmc21 space group with unit cell a = 9.695(6) Å, b = 5.7101(9) Å, and c = 4.7438(6) Å at 28.5(1) GPa and is a superstructure of the oP16 phase with multiplicity of 1.5. DFT calculations fully support the observed sequence of phase transitions. The two new phases constitute logical next stages of P sublattice polymerization, in which the dilution of the P3 units, introduced in the first high-pressure phase, decreases, leading to compositions of Ni20(P3)4(P2)4 and Ni12(P3)4, and provide important clues to understanding of phase relations and transformation pathways in the NiAs family.  相似文献   

16.
The scaling relationships for stress drop and corner frequency with respect to magnitude have been worked out using 159 accelerograms from 34 small earthquakes (M w 3.3–4.9) in the Kachchh region of Gujarat. The 318 spectra of P and S waves have been analyzed for this purpose. The average ratio of P- to S-wave corner frequency is found to be 1.19 suggestive of higher corner frequency for P wave as compared to that for S wave. The seismic moments estimated from P waves, M 0(P), range from 1.98 × 1014 N m to 1.60 × 1016 N m and those from S waves, M 0(S), range from 1.02 × 1014 N m to 3.4 × 1016 N m with an average ratio, M 0(P)/M 0(S), of 1.11. The total seismic energy varies from 1.83 × 1010 J to 2.84 × 1013 J. The estimated stress drop values do not depend on earthquake size significantly and lie in the range 30–120 bars for most of the events. A linear regression analysis between the estimated seismic moment (M 0) and corner frequency (f c) gives the scaling relation M 0 f c 3  = 7.6 × 1016 N m/s3. The proposed scaling laws are found to be consistent with similar scaling relations obtained in other seismically active regions of the world. Such an investigation should prove useful in seismic hazard and risk-related studies of the region. The relations developed in this study may be useful for the seismic hazard studies in the region.  相似文献   

17.
Wastewater biosolids are large potential sources of macronutrients for agriculture, conservation and restoration of soils; there are, however, few studies on phosphorus (P) release in soils amended with biosolids. Biosolids and vermicomposted biosolids were tested in concentrations (5–30 g amendment kg?1 soil) equivalent to 18–100 Mg ha?1. Desorption of P was determined by successive extractions for 65 days. Soil P was low, and biosolid and vermicompost addition released 8 and 6 times more P, respectively, than soil alone. To describe the release of P, zero-, first- and second-order equations, simple Elovich and power functions and the parabolic diffusion law were compared based on their coefficient of determination (r 2) and standard error (SE). In all treatments, the power function and especially the parabolic diffusion law were the best fit, with 0.898–0.996 r 2 and 0.022–0.732 SE. The general behavior of the kinetic parameters mostly depended on the amendment doses. Eutrophication posited to start beyond 16 mg P kg?1 soil was more likely allayed by a maximum vermicompost dose of 50 Mg ha?1, higher than the 36 Mg ha?1 maximum biosolid dose. The higher vermicompost P addition and lower P release could favor gradual and longer-term P absorption by plants and may reduce leaching or runoff P losses.  相似文献   

18.
Oil mineral leases (30, 58 and 61) in Delta and River States are the major oil blocks in the oil and gas rich Niger Delta region of Nigeria that is characterized by environmental degradation from oil and gas activities. This research work presents an analytical approach on natural radioactivity assessment in soil and sediment in 15 oil fields of these OMLs. Concentrations of natural radionuclides (226Ra, 232Th and 40K) were determined using gamma spectroscopy. The mean activity concentration of 226Ra, 232Th and 40K for OML30 is 40.2 ± 5.1, 29.9 ± 4.2 and 361.5 ± 20.0 Bq kg?1, respectively; the corresponding values obtained for OML58 is 20.9 ± 2.8, 19.4 ± 2.5 and 260.0 ± 14.1 Bq kg?1, respectively. While the mean activity concentration of 226Ra, 232Th and 40K for OML61 is 29.3 ± 3.5, 21.6 ± 2.6 and 262.1 ± 14.6 Bq kg?1, respectively. These values obtained show enhanced NORMs, but are well within the world range and values reported in some regions and countries of the world, and are slightly above control values, values obtained in Southwestern region of Nigeria and some countries reported average values. The study also examined some radiation hazard indices, the mean values obtained are 86.6 ± 9.3 Bq kg?1, 0.6 Bq kg?1, 40.8 ηGy h?1, 0.05 μSv y?1, 0.2 and 0.3 for radium equivalent activity (Raeq), representative level index (Iγ), absorbed dose rates (D), annual effective dose rates (E ff dose), external hazard index (H ex) and internal hazard index (H in), respectively. These calculated hazard indices to estimate the potential radiological health risk in soil and sediment are well below their permissible limits. The soil and sediments from the study area provide no excessive exposures for the inhabitants and can be used as construction materials without posing any radiological threat or harm to the public users. However, oil-field workers and host community residents are cautioned against excess exposure to avoid future accumulative dose of these radiations from sludge and sediment of this area.  相似文献   

19.
Egg deposition by the intertidal spawning fish Atlantic silverside (Menidia menidia) was compared among six shoreline types (Spartina alterniflora, Phragmites australis, sandy beach, riprap, riprap-sill, and bulkhead) and various substrates. In spring 2010, M. menidia egg density was measured daily near Roosevelt Inlet, Delaware Bay, USA. Over 3,000,000 eggs were collected during 50 sampling days. Eggs were deposited at all six shoreline types, with >93?% of eggs collected from S. alterniflora shorelines. Choice of substrate for egg attachment was similar across shoreline types with >91?% of eggs collected from filaments of the green alga Enteromorpha spp., a disproportionately high utilization rate in comparison with Enteromorpha spp.'s relative coverage. This study demonstrates that S. alterniflora shoreline, in association with Enteromorpha spp., is the preferred spawning habitat for M. menidia and that hardened shorelines and shorelines inhabited by P. australis support substantially reduced egg densities.  相似文献   

20.
Tidal marshes act as a buffer system for nutrients in the pore water and play important roles in controlling the budget of nutrients and pollutants that reach the sea. Spatial and seasonal dynamics of pore water nutrients were surveyed in three tidal marshes (Chongming Island, Hengsha Island, and Fengxian tidal flat) near the Yangtze Estuary and Hangzhou Bay from August 2007 to May 2008. Nutrient variations in pore water closely followed seawater quality in the estuaries, while the average concentration of NH4 +–N, the main form of inorganic nitrogen in pore water, was over two orders of magnitude higher than that in seawater which was dominated by nitrate. NH4 +–N export (13.81 μmol m?2 h?1) was lower than the import of (NO3 ?+NO2 ?)–N (?24.17 μmol m?2 h?1) into sediment over the 1-year period, hence reducing N-eutrophication in coastal waters. The export of SiO3 2?–Si and PO4 3?–P from tidal marshes regulated nutrient level and composition and lifted the ratio beyond potentidal element limitation in the coastal system. Moreover, macrophyte plants (Spartina alterniflora and Phragmites australis) played significant roles in controlling nutrient concentration in pore water and its exchange between marshes and estuaries. Fengxian marsh was characterized by higher nutrient concentrations and fluxes than other marshes in response to the more serious eutrophication in Hangzhou Bay than in the Yangtze Estuary.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号