首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The seasonal variation of water temperature in the Seto Inland Sea, Japan is examined using data analysis and numerical experiments and is shown to be controlled by heat exchange through the sea surface and horizontal heat dispersion from the Pacific Ocean. The average water temperature goes down from the Pacific Ocean to the center of the Seto Inland Sea indicating that 4.0 to 6.0×1015 cal day?1 (1.6 to 2.5×1016 joule day?1) of heat is transported from the Pacific Ocean to the Seto Inland Sea and is lost through the sea surface. The amplitude of seasonal variation of water temperature is large at the center of the Seto Inland Sea and the maximum water temperature is reached first at Bisan Straits and last at Iyo-Nada.  相似文献   

2.
The concentrations of228Ra in surface waters of the Seto Inland Sea were determined. Surface waters from the central region of the Seto Inland Sea, Hiuchi Nada and Bingo Nada, contained concentrations of228Ra of 655–811 dpm/1000 l which were 100 times higher than those obtained in the Pacific Ocean. These high concentrations of228Ra must be supported by a228Ra flux from the bottom sediment. The lower limit of this flux was estimated to be more than 0.16 dpm cm–2 y–1. The228Ra concentrations decreased markedly from central regions of the Seto Inland Sea to about 18 dpm/1000 l in the Kii and the Bungo Channels as salinity increased. Using a box model and the228Ra data, the mean residence time of sea water in the Seto Inland Sea with respect to the exchange with the open ocean water was estimated to be less than 10 y, and the most probable value is the order of several years.  相似文献   

3.
The seasonal variation of water circulation in the Seto Inland Sea is investigated using a high resolution, three-dimensional numerical ocean model. The model results are assessed by comparison with long-term mean surface current and hydrographic data. The simulated model results are consistent with observations, showing a distinct summer and winter circulation patterns. In summer the sea water is highly stratified in basin regions, while it is well mixed near the straits due to strong tidal mixing there. During this period, a cold dome is formed in several basins, setting up stable cyclonic eddies. The cyclonic circulation associated with the cold dome develops from May and disappears in autumn when the surface cooling starts. The experiment without freshwater input shows that a basin-scale estuarine circulation coexists with cyclonic eddy in summer. The former becomes dominant in autumn circulation after the cold dome disappears. In winter the water is vertically well mixed, and the winter winds play a significant role in the circulation. The northwesterly winds induce upwind (downwind) currents over the deep (shallow) water, forming a “double-gyre pattern” in the Suo-Nada, two cyclonic eddies in Hiuchi-Nada, and anticyclonic circulation in Harima-Nada in vertically averaged current fields.  相似文献   

4.
Measurement of the vertical distribution of total suspended matter (TSM) was carried out during summer throughout the Seto Inland Sea. TSM concentration near the bottom is influenced significantly by water movement and turbid bottom water is observed in all areas where median grain size (Md) of the bottom sediment is more than 47gf. The high concentration of TSM near the bottom may be due to resuspension of the surface layer of bottom sediments. Comparison of the organic content of the resuspended matter with that of the bottom sediment shows that the resuspended matter contains more organic matter with a lower C : N ratio than the bottom sediment. The C : N ratio of the resuspended matter is similar to that of TSM in the surface layer of the water column. It is thought that TSM in surface waters sinks and settles on the surface of the bottom sediment. This deposited material is then easily resuspended in the water column by tidal currents before becoming permanently incorporated into the bottom sediment.  相似文献   

5.
The Seto Inland Sea is a representative coastal sea in Japan with a complicated geometry and thus a variety of marine environments. This sea is, at the same time, one of the most industrialized areas in Japan, and its marine environment has been significantly affected by the anthropogenic impacts over the last four decades. The wide range of marine environments in this sea and the serious environmental issues resulting from these impacts have attracted the attention of Japanese coastal oceanographers. It is believed that the nature and scope of these studies might be an example of the progress of Japanese coastal oceanography. The historical changes in the Seto Inland Sea environment in the last four decades are briefly summarized, and the progress in the studies of the Seto Inland Sea is reviewed with reference to historical changes. Some recent research topics and activities are also mentioned. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

6.
The tidal volume transport in the Seto Inland Sea is calculated. The cross-section where the volume transport of the M2 tide is zero, is located around the western part of Bisan Strait. The tidal energy dissipation of the M2 tide by friction is 6.30×1016 ergs s–1 in the Seto Inland Sea. The quality factorQ for the M2 tide is 20.2. The total energy dissipation of the M2, S2, K1 and O1 tides is 7.99×1016 ergs s–1.  相似文献   

7.
Heat and salt balances in the Seto Inland Sea   总被引:1,自引:0,他引:1  
Seasonal variations of heat and salt balances are estimated in the Seto Inland Sea with the use of a numerical experiment.The surface effect is dominant with respect to the heat balance. In spring, however, the effect of the horizontal heat transport is the same as or greater than that of the surface heating (or cooling). Annual mean heat transport is 85 cal cm–2 day–1 (356 J cm–2 day–1) which is supplied from the open ocean and lost through the sea surface in the Inland Sea as a whole. Because of the shallow water depth, heat is supplied through the surface and carried out by the horizontal heat transport in Hiuchi- and Bingo-nada in the annual mean. The heat transport has the opposite sense to that in the whole Seto Inland Sea and annual mean transport is negative (–10 cal cm–2 day–1,i.e., –42 J cm–2 day–1).The salt balance is primarily controlled by the river discharge and the surface effect (precipitation) in June and July. In the other months, the effects of horizontal salt transport, of river inflow and of sea surface exchange (especially of the evaporation in autumn) are comparable to each other. In the Bungo Channel the river effect is relatively small. Osaka Bay and the Kii Channel are characterized by a smaller surface effect.Contribution No. 446 from Tohoku Regional Fisheries Research Laboratory.  相似文献   

8.
Prominent coastal upwelling and downwelling events due to Ekman transport were observed during the period from 14 to 18 August 1983 along the Misaki Peninsula in the Seto Inland Sea, Japan. The coastline of the Misaki Peninsula is aligned approximately in an ENE-WSW direction. When an ENE wind continued blowing for about two days, the warm water in the upper layer was pushed offshore and cold water in the lower layer upwelled along the peninsula. The estimated upwelling speed 3 m below the sea surface was 0.032 cm sec–1. On the other hand, when a WSW wind continued blowing for about two days the warm water in the upper layer sank into the lower layer along the peninsula. The estimated downwelling speed 3 m below the sea surface was 0.080 cm sec–1. The time lag between the variations of the alongshore wind and offshore current was about 0.5 days.  相似文献   

9.
Abstract

Sampling of submarine sediments by an improved piston corer and a bucket dredger has been carried out since 1973. The length of the core samples ranged from 0.9 m to 5.4 m. The recovery ratio ranged from 39.1 percent to 98.9 percent. The physical and engineering properties of 16 sediment cores and the physical properties of 125 dredged samples were determined, and variation of these properties was analyzed.

Clayey silts and silty clays cover the floor of relatively wide bays and sea areas. Sands and sandy silts blanket the floor of channels that have swift currents, and are also found in the vicinity of estuaries.

The piston core samples showed considerable sample disturbance, which should be estimated quantitatively in the future.  相似文献   

10.
Time series of the vertical distribution of resuspended matter and bottom current were collected concurrently during summer at a few anchored stations in the Seto Inland Sea. The vertical distribution of resuspended matter was measured every hour for about one tidal cycle and the three components of current fluctuation were obtained at each sampling station. Current data at each sampling station show that the bottom is hydraulically smooth.Assuming that the averaged vertical distribution of resuspended matter for one tidal cycle shows a steady state distribution, the settling velocityWs of resuspended matter is estimated to be in the range of 1.2×10–2 to 5.7×10–2 cm sec–1 from analysis of the averaged distributions.The relation between the erosion rate and the bottom shear stress for this study area is investigated and is compared with that for other areas. The results show that the erosion of sediment in the Seto Inland Sea during summer occurs even due to the low bottom shear stress which is considered as almost smooth hydraulically.  相似文献   

11.
12.
The carbon dioxide in seawater (pCO2) was measured in the Seto Inland Sea of Japan using newly developed equilibrator instrument designed to be free from the correction for addition or extraction of the carbon dioxide from carrier gas. The temperature dependence of pCO2 was about 4.5%pCO2/°C for a single seawater sample which was processed as free from biological activity and change in total carbon dioxide content during an experiment. The decrease in pCO2 during daylight hours due to the photosynthetic fixation was about 30% of the daily mean of pCO2 during warm months and about 15% during cold months. The effect of carbon dioxide exchange between air and seawater on pCO2 was about 0.6 ppm in August and about 0.1 ppm in March. This is negligible small compared with the daily oscillation of carbon dioxide in seawater.  相似文献   

13.
This study describes the temporal variation of microphytobenthic biomass and its controlling factors, as well as the impact of microphytobenthic activities on coastal shallow sediment in the eastern Seto Inland Sea, Japan. The chlorophyll a (Chl a), phaeopigments and sedimentary biophilic element (C, N, P and Si) contents in surface sediments, as well as nutrient concentrations at the sediment-water interface (overlying water and pore water) were observed monthly during November 2003 to May 2005 at one site in Shido Bay (water depth ca. 7 m) and at one site in Harima-Nada (35 m). No correlation was observed between the sedimentary biophilic elements and other parameters. The maximum chlorophyll a content of 48.2 μg g–1 was found in surface sediments under the photon flux reaching the seafloor of 537 μmol photon m–2 s–1 during the winter period when water transparency was the highest at station S (Shido Bay). Our results suggest that higher chlorophyll a content in surface sediment was due to the fresh microphytobenthic biomass (mainly benthic diatom). We also found a significant negative correlation between Chl a and inorganic nutrients in pore water during the low temperature period, especially silicic acid. This result suggests that the silicic acid was assimilated largely during the increase of microphytobenthic biomass in surface sediment. This study suggests that the microphytobenthic roles may have a great effect on nutrient budgets during the large supply of irradiance (winter periods) for their photosynthetic growth in shallow coastal waters.  相似文献   

14.
Observations were made of time variations of carbon dioxide in seawater, pCO2, and in the atmosphere, PCO2, in the Seto Inland Sea of Japan. The pCO2 data showed well defined diurnal variation; high values at nighttime and low values during daylight hours. The pCO2 correlated negatively with dissolved oxygen. These results denote that the diurnal variation of pCO2 is associated with effects of photoplankton's activity in seawater. The pCO2 measured in the Seto Inland Sea showed higher values than the PCO2 during June to November, denoting transport of carbon dioxide from the sea surface to the atmosphere, and lower values during December to May, denoting transport of carbon dioxide from the atmosphere to the sea surface. The exchange rates of carbon dioxide were calculated using working formula given by Andriéet al. (1986). The results showed that the Seto Inland Sea gained carbon dioxide of 1.0 m-mol m–2 d–1 from the atmosphere in March and lost 1.7 m-mol m–2 d–1 to the atmosphere in August.  相似文献   

15.
In the Suo-Nada area of the Seto Inland Sea, Japan, sedimentation rates and the sedimentary record of anthropogenic metal loads were determined by combining the Pb-210 dating technique with heavy metal analysis of the sediments. The sedimentation rates vary from 0.11 to 0.27 g cm–2 yr–1. Lower sedimentation rates were observed in the eastern part of the basin which is characterized by a bottom with sand and gravel, and fast tidal currents.Anthropogenic and natural loads of copper and zinc into the sediments are 34 and 326, and 65 and 375 ton yr–1, respectively. The anthropogenic loads are fairly low compared with those of the other main areas of sediment accumulation in the Seto Inland Sea. The highest level of zinc and copper pollution was observed in the western part of the basin because of waste discharge from an old and big ironworks outside basin since the early 1900's.  相似文献   

16.
Sedimentation rates in ten sediment cores from Hiroshima Bay in the Seto Inland Sea of Japan were determined with the |2210|0Pb technique, and heavy metals were analyzed. The sedimentation rates vary from 0.18 to 0.33 g cm|2-2|0 yr|2-1|0. The highest sedimentation rates were observed in the northern part of the bay at the mouth of Ota River, while lower sedimentation rates not more than 0.20 g cm−2 yr−1 were observed at stations close to narrow water-ways, or where water depth was shallow. The contents of copper and zinc in the sediment cores began to increase around 1930 as a result of increased human activity, and have remained almost unchanged since 1970 possibly because of regulation of pollutant discharge. The natural background values of copper and zinc in the sediment of this bay range from 16 to 27 mgkg−1 and 70 to 105 mg kg−1, respectively. The total amounts of anthropogenic copper and zinc deposited in the sediments since about 1930 are estimated to be 0.5–2.7 ton km−2 and 2.2–14.5 ton km−2, respectively. At the present-day, the anthropogenic loads of copper and zinc to the sediments of the whole bay are 26 ton yr−1 and 183 ton yr−1, and these values constitute 39% and 48% of the total sedimentary loads at the present-day, respectively.  相似文献   

17.
In the Hiuchi-Nada area of the Seto Inland Sea, Japan, sedimentation rates were determined with the Pb-210 technique, and heavy metals in sediments were also analyzed. Sediments were collected in twelve short sediment cores and a long sediment core, using 1-m and 6-m gravity corers.The sedimentation rates vary from 0.14 to 0.31 g cm–2yr–1. The highest sedimentation rate was observed in the central part of the area, while lower sedimentation rates were observed in the eastern part.In Hiuchi-Nada, a remarkable increase in copper and zinc contents is noticeable as early as the 1800's. Over the past 240 years a copper smelter at the south-western side of this area has been causing serious pollution of the sediment. Now, anthropogenic copper and zinc loads into the sediment are 123 and 376 ton yr–1 compared to natural copper and zinc loads of 82 and 401 ton yr–1, respectively. The highest level of copper and zinc pollution was observed in the 1960's, when the relative enrichments above background values (copper; 19 and zinc; 93 mg kg–1) were 5.5 and 2.8, respectively.  相似文献   

18.
The ratios of phosphorus and nitrogen originating from land and the open ocean in the Seto Inland Sea, which is the largest semi-enclosed coastal sea in Japan, have been estimated from data on total phosphorus and nitrogen loads and observed concentrations of total phosphorus and nitrogen. The ratios of land-origin and open-ocean-origin total phosphorus and nitrogen in the Seto Inland Sea are 0.28:0.72 and 0.19:0.81, respectively.  相似文献   

19.
Purine and pyrimidine bases in marine environmental particles collected in Harima-Nada, the Seto Inland Sea, Japan, were investigated by high performance liquid chromatography.Purines and pyrimidines concentrations varied from 0.3 to 9.3 μg l−1 (n=20) for suspended matter, and 0.3 to 0.6 mg g−1 (n=10) for sinking particles. A good correlation was found between chlorophyll a and purine+pyrimidine bases in suspended matter, indicating that these bases contained in suspended matter originated from phytoplankton.A comparison between several compositional data of the suspended matter and the sinking particles, namely CN ratio, composition of purines and pyrimidines, and percentages of the nitrogen bases relative to total particulate organic nitrogen, demonstrates that the sinking particles were different from suspended matter. Also, from the variety of purine and pyrimidine concentrations of marine particle samples, it was estimated that the decomposition rate of these bases seemed more rapid than decomposition rates of amino acids reported in our earlier study.  相似文献   

20.
Surface samples of sea water collected in the Seto Inland Sea were analyzed for232Th and228Th. The concentrations of232Th were generally less than 2 dpm/1,0001 and these values are probably an upper limit for the232Th concentration in surface waters of the Seto Inland Sea. The228Th concentrations ranged between 4.2 to 42.3 dpm/1,0001. Remarkable seasonal and temporal variations in228Th concentrations were found, in comparison with the minimal variations in228Ra concentrations reported previously. The activity ratios of228Th/228Ra were about 0.18 in the southern part of the Kii and the Bungo Channels, and decreased markedly from the open ocean toward the central region of the Seto Inland Sea. The average value of the228Th/228Ra ratio in the central region of the Seto Inland Sea was 0.032±0.020. This suggests that removal residence time of228Th can be estimated to be about 34±22 days in surface waters of the Seto Inland Sea.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号