首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 890 毫秒
1.
We have simulated the dehydration-melting of a natural, low-K, calcic amphibolite (67.4% hornblende, 32.5% anorthite) in piston-cylinder experiments at 10 kbar and 750–1000°C, for 1–9 days. The solidus temperature is lower than 750°C; garnet appears at 850°C. The overall reaction is: Hb+PL+Cpx+Al-Hb+Ca-Hb+Ga+Opx. Three stages of reaction are: (1) melting dominated by the growth of clinopyroxene and garnet, with little change in composition of liquid or garnet, (2) a reversal of this reaction between 875°C and 900°C, with decreases in the amounts of liquid and garnet, and (3) a large increase in liquid along with the loss of hornblende and decrease of plagioclase while clinopyroxene and garnet increase. Garnet is enriched in pyrope and zoned from Fe-cores to Mg-edges (range 3 mol % pyrope); liquid composition is enriched first in An (to 950°C) and then in Ab. The liquids are more calcic and aluminous than natural tonalites, which is attributed to the plagioclase composition (An90). The formation of peraluminous liquid from the metaluminous amphibolite is caused by anorthite — not H2O-saturated conditions. The results are consistent with an amphibolite phase diagram with relatively high solidus temperatures in the garnet-absent field (900–1000°C), but with a solidus backbend at 7–9 kbar, coincident with the garnet-in boundary. Hornblende breakdown due to garnet formation in a closed system must make H2O available for H2O-undersaturated melting right down to the H2O-saturated solidus, below 700°C, which defines a large low-temperature PT area where hydrous granitoid melts can be generated with residual garnet and hornblende.  相似文献   

2.
In hypersthene bearing hornblende metadiorites near Milford Sound garnet replaces hornblende in 5 cm wide subplanar zones, patterned almost certainly on joints. The alteration has been accompanied by a change in bulk rock composition (increase of Al, decrease of Na) and the occurrence constitutes good evidence for external chemical control of the overprinting of hornblende granulites with garnet.  相似文献   

3.
The Inugssugssuaq nappe is made up of a membrane of anorthositic rocks sheathed by grey gneisses of Nûk age (2.800 Ma) and with a core of highly xenolithic Nûk grey gneiss. The structure was generated by magmatic diapirism followed by tectonic activity, but both stages probably resulted from thermally induced gravitational instability. Relations with geometrically similar structures in the area are discussed.
Zusammenfassung Die Inugssugssuaq-Decke wird durch eine Membran von anorthositischen Gesteinen aufgebaut, die durch graue Gneise von Nûk Alter (2.800 Ma) eingehüllt wird und die einen Kern aus grauem, stark xenolithischen Gneis besitzt.Die Struktur wurde durch magmatischen Diapirismus gebildet, gefolgt von tektonischer Aktivität. Beide Stadien waren wahrscheinlich die Folge thermisch verursachter Schwereinstabilität. Die Beziehungen zu geometrisch ähnlichen Strukturen in dem Gebiet werden diskutiert.

Résumé La nappe d'Inugssugssuaq est formée par une membrane de roches anorthositiques, enrobée par des gneiss d âge Nuk (2.800 Ma), avec un noyau de gneiss xénolithiques gris.La structure résulte d'un diapirisme magmatique auquel a succédé une activité tectonique. Ces deux étappes furent vraisemblablement la conséquence d'une instabilité gravitative d'origine thermique. Les relations avec des structures géométriques semblables dans la région sont discutées.

Inugssugssuaq , (2.800 ), . , . , , . .
  相似文献   

4.
Feldspathic hornblende granulites from Doubtful Sound, New Zealand with the assemblage plagioclase+hornblende+clinopyroxene+orthopy-roxene +oxide+apatite are criss-crossed by a network of garnetiferous anorthosite veins and pegmatites. The feldspathic gneiss in contact with anorthosite has a reaction zone containing the assemblage plagioclase +garnet+clinopyroxene+quartz+rutile+apatite. The garnet forms distinctive coronas around clinopyroxene. The origin of these rocks is discussed in the light of mineral and whole rock chemical analyses and published experimental work.It is thought that under conditions leading up to 750 °C, 8 kb load pressure and 5 kb H2O pressure, partial melting occured in feldspathic hornblende granulites. The melt migrated into extensional fractures and eventually crystallised as anorthosite pegmatites and veins. The gneisses adjacent to the pegmatites from which the melt was extracted changed composition slightly, by the loss of H2O and Na2O, so that plagioclase reacted simultaneously with hornblende, orthopyroxene, and oxide to form garnet, clinopyroxene, quartz and rutile.  相似文献   

5.
Measurements were made of the hydrogen isotope ratios of hydrous silicates (mica and amphibole) and whole rocks, and the carbon isotope ratios of graphite and carbonaceous matter in the metamorphic rocks from the northern Kiso district in central Japan.D values of hydrous silicates in the graphite-bearing metapelites are always higher than those in graphite-free schists, even though the sample localities of the two rock-types are very close. Hydrogen isotopic equilibrium has been attained between the coexisting minerals.D/H ratios of water in the metamorphic fluids seem to depend strongly on the presence or absence of graphite and seem to be not constant throughout the district. The district is divided into three areas of low (metamorphic zones I, II), medium (zones IIIa–V) and high 13Cgr value (zones VIa–VII) areas. In the high 13Cgr values area, the carbon contents of the graphite-bearing rocks decrease slightly from zones VIa to VII, whereas the 13Cgr values increase sharply from the upper part of zone VIa to VIb. TheD values of biotite in these graphite-bearing rocks are higher than those in the medium 13Cgr area. This suggests that methane enriched inH and12C is produced and liberated by the devolatilization reactions between muscovite, graphite and water. The fluid produced is composed of water, methane and a subordinate amount of carbon dioxide, and its logfO2 value is deduced to be about 1.2 lower than that defined by the FMQ buffer. In the medium 13Cgr area, the 13C values of graphite are nearly constant (–20.8), while the Fe2O3/(Fe2O3 + FeO) ratio of the graphite-bearing rocks apparently decreases with increasing metamorphic grade.D differences in hydrous silicates between graphite-bearing and graphite-free rocks are observed. These facts are interpreted to mean that methane was produced in addition to water and carbon dioxide, and that its generation ( ratio of the fluid was about 2) had practically no isotope effect on the graphite. In the low 13Cgr area, the carbon contents of the rocks decrease clearly from zones I to IIIa. TheD and 13Cgr values of the non-metamorphosed shales are much lower than those of the low grade graphite-bearing metapelites. This suggests that methane is produced and liberated from the rocks even at the incipient stage of metamorphism.  相似文献   

6.
Two separate series of hydrous experiments involving (1) imposing apatite saturation on a series of igneous rock compositions from basanite to rhyolite, and (2) crystallizing similar natural rock compositions progressively until apatite appears, demonstrate a close dependence between apatite saturation and silica content of the magma, and determine P2O5 levels at a given silica value and temperature at which that composition may be expected to crystallize apatite. The effect of pressure on apatite solubility is not great, and is most significant for silicic compositions.P2O5 vs SiO2 relationships of the low-K island arc suite, calcalkaline suite and high-K calc-alkaline suite, appear regular and characteristic for each suite, and when linked with the experimental work on apatite solubility, indicate the following: (1) the low-K and calc-alkaline series have low P2O5 contents (0.1–0.2 wt.%) and relatively flat P2O5-SiO2 patterns; they do not show evidence of reaching apatite saturation until rhyodacite-rhyolite compositions are obtained for the low-K suite, and andesite-dacite compositions for the calc-alkaline suite; (2) the high-K calc-alkaline series has higher P2O5 contents (0.4–0.6 wt.%) in mafic compositions, and achieves apatite saturation over a wide compositional range for the series; (3) the calc-alkaline and high-K calc-alkaline series are probably lower temperature, and more hydrous than the low-K series; (4) anomalous P2O5-SiO2 distributions may indicate non-equilibrium crystallization of apatite, magma-mixing and crystal accumulation processes active in generation of the orogenic volcanic series.  相似文献   

7.
A general model has been developed to calculate changes of 18O of minerals in addition to their composition and modal abundance in metamorphic systems. A complete set of differential equations can be written to describe any chemical system in terms of the variables dP, dT, dX, dM, and d18O (X, M, and 18O refer to the chemical composition, number of moles, and oxygen isotope composition of each phase respectively). This set is composed of the differentials of five subsets of equations: (1) conditions of heterogeneous equilibrium; (2) compositional stoichiometry for each mineral; (3) mass balance for each oxide component; (4) oxygen isotope partitioning between phases; (5) conservation of the oxygen isotope ratio of the system. The variance of the complete set of equations is 2, and changes of 18O, composition, and modal abundance for each mineral can be calculated for arbitrary changes of P and T. Applications to a typical pelitic bulk composition at amphibolite and lower granulite facies conditions suggest that for systems dominated by continuous reactions such as: (a) chlorite + quartz = garnet+H2O; (b) staurolite + biotite = garnet + muscovite + H2O; or (c) garnet + muscovite = sillimanite + biotite, isopleths of mineral 18O are nearly independent of pressure, and have a spacing of about 0.1 per 10–20°C. For nearly discontinuous reactions such as: (d) garnet + chlorite + muscovite = biotite + staurolite+H2O; (e) staurolite + muscovite = biotite + aluminosilicate + garnet+H2O; or (f) muscovite + quartz = sillimanite + K-feldspar+H2O, isopleths of mineral 18O have slopes more nearly parallel to endmember reaction boundaries and 18O of phases can have a greater temperature dependence (e.g., 0.1 per 2°C for reaction d). This behavior results from relatively large amounts of reaction progress for small changes of P or T. However, the calculated exhaustion of a reactant within 0.1–5°C ensures that the predicted effects of such reactions on mineral 18O will not exceed 0.25 for typical bulk compositions. Models that allow for fractional crystallization of garnet suggest that prograde garnet zoning in pelitic assemblages will be relatively smooth until staurolite becomes unstable. At higher temperatures, garnet may develop a step of as much as 0.6 in its core-rim zoning as a result of combined garnet resorption during the continuous reaction garnet + muscovite = sillimanite + biotite and repartitioning of the garnet rim composition to relatively heavy 18O. The models are insensitive to the degree to which garnet fractionally crystallizes and to the isotope fractionation factors used; only extreme changes in modal abundance or bulk composition for a given mineral assemblage can produce significant changes in the predicted trends. In the absence of infiltration, isotopic shifts resulting from net transfer reactions for minerals in typical amphibolite, eclogite, and lower granulite facies metapelites and metabasites are inferred from the models to be 1 or less for 150°C of heating.  相似文献   

8.
The structure of a natural melilite with chemical composition (Ca1.87Sr0.02Na0.10K0.02)2.01(Mg0.96Al0.07)1.03(Si1.98Al0.02)2.00O7 has been investigated by X-ray single-crystal diffraction methods within the temperature range 298–773 K. The values of the coefficient of the modulation wave vector were determined at 298 K, 323 K, 348 K, and 358 K. These values show a continuous linear decrease from 0.2833(6) at 298 K to 0.2763(9) at 358 K. The incommensurate phase undergoes a phase transition to the normal phase at 359 K. The refinements of the structure, carried out at 298 K, 348 K, 359 K, 373 K, 413 K, 463 K, 513 K, 573 K, 673 K, and 773 K, showed that the normal phase (high-temperature phase) does not significantly differ from the basic structure (the average structure of the incommensurate structure). This study confirms that in natural melilites with chemical composition close to that of åkermanite the wavelength of the incommensurate modulation increases when the temperature rises. The different behaviour of the q-vector as a function of temperature in natural and synthetic åkermanite is discussed.  相似文献   

9.
Peak metamorphic temperatures for the coesite-pyrope-bearing whiteschists from the Dora Maira Massif, western Alps were determined with oxygen isotope thermometry. The 18O(smow) values of the quartz (after coesite) (18O=8.1 to 8.6, n=6), phengite (6.2 to 6.4, n=3), kyanite (6.1, n=2), garnet (5.5 to 5.8, n=9), ellenbergerite (6.3, n=1) and rutile (3.3 to 3.6, n=3) reflect isotopic equilibrium. Temperature estimates based on quartz-garnet-rutile fractionation are 700–750 °C. Minimum pressures are 31–32 kb based on the pressure-sensitive reaction pyrope + coesite = kyanite + enstatite. In order to stabilize pyrope and coesite by the temperature-sensitive dehydration reaction talc+kyanite=pyrope+coesite+H2O, the a(H2O) must be reduced to 0.4–0.75 at 700–750 °C. The reduced a(H2O) cannot be due to dilution by CO2, as pyrope is not stable at X(CO2)>0.02 (T=750 °C; P=30 kb). In the absence of a more exotic fluid diluent (e.g. CH4 or N2), a melt phase is required. Granite solidus temperatures are 680 °C/30 kb at a(H2O)=1.0 and are calculated to be 70°C higher at a(H2O)=0.7, consistent with this hypothesis. Kyanite-jadeite-quartz bands may represent a relict melt phase. Peak P-T-f(H2O) estimates for the whiteschist are 34±2 kb, 700–750 °C and 0.4–0.75. The oxygen isotope fractionation between quartz (18O=11.6) and garnet (18O=8.7) in the surrounding orthognesiss is identical to that in the coesitebearing unit, suggesting that the two units shared a common, final metamorphic history. Hydrogen isotope measurements were made on primary talc and phengite (D(SMOW)=-27 to-32), on secondary talc and chlorite rite after pyrope (D=-39 to -44) and on the surrounding biotite (D=-64) and phengite (D=-44) gneiss. All phases appear to be in nearequilibrium. The very high D values for the primary hydrous phases is consistent with an initial oceanicderived/connate fluid source. The fluid source for the retrograde talc+chlorite after pyrope may be fluids evolved locally during retrograde melt crystallization. The similar D, but dissimilar 18O values of the coesite bearing whiteschists and hosting orthogneiss suggest that the two were in hydrogen isotope equilibrium, but not oxygen isotope equilibrium. The unusual hydrogen and oxygen isotope compositions of the coesite-bearing unit can be explained as the result of metasomatism from slab-derived fluids at depth.  相似文献   

10.
The chlorine concentration has been determined by a chemical method in 7 quartz tholeiites, 19 alkali olivine basalts, 9 basanitic alkali olivine basalts and 11 olivine nephelinites to be on average 80, 280, 720, and 400 ppm Cl respectively. If these basalts are products of decreasing degrees of partial melting of mantle rocks a regular increase of chlorine is to be expected in this sequence. The actual chlorine abundances are a function of partial losses of gases during rock consolidation and optimum stabilities of sodalite group minerals as major chlorine traps in alkalic basalts. The occurrence of sodalite and sodalite nosean solid solutions has been detected by microprobe in 7 out of 10 alkalic basalt species in grains smaller than 70 m. Quantitative analyses of 4 sodalite group minerals from the olivine nephelinites are listed. One contains the sodalite and the nosean molecule in a proportion one to one and must be formed above 1,050 °C according to the experimental results of Tomisaka and Eugster (1968) in the respective system. In the majority of the samples apatite contains less than 20% of the total chlorine of the basalts. Biotite as chlorine containing phase (about 900 ppm Cl) is rare. The proportion of chlorine which could be extracted from rock powders by boiling water is small. No general correlation between the element pairs Cl/S and Cl/K could be observed. Excluding tholeiites a tendency of a reversed correlation between chlorine and potential primary water (as indicated by the Fe2O3/FeO ratio) and between chlorine and silica can be derived.  相似文献   

11.
Integrated petrologic and Sm–Nd isotopic studies in garnet amphibolites along the Salmon River suture zone, western Idaho, delineate two periods of amphibolite grade metamorphism separated by at least 16 million years. In one amphibolite,P–T studies indicate a single stage of metamorphism with final equilibration at 600°C and 8–9 kbar. The Sm–Nd isotopic compositions of plagioclase, apatite, hornblende, and garnet define a precise, 8-point isochron of 128±3 Ma (MSWD=1.2) interpreted as mineral growth at the metamorphic peak. A40Ar/39Ar age for this hornblende indicates cooling through 525°C at 119±2 Ma. In a nearby amphibolite, garnets with a two-stage growth history consist of inclusion-rich cores surrounded by discontinuous, inclusion-free overgrowths. Temporal constraints for core and overgrowth development were derived from Sm–Nd garnet — whole rock pairs in which the garnet fractions consist of varying proportions of inclusion-free to inclusion-bearing fragments. Three garnet fractions with apparent ages of 144, 141, and 136 Ma are thought to represent mixtures between late Jurassic (pre-144 Ma) inherited radiogenic components preserved within garnet cores and early Cretaceous (128 Ma) garnet overgrowths. These observations confirm the resilience of garnet to diffusive exchange of trace elements during polymetamorphism at amphibolite facies conditions. Our geochronologic results show that metamorphism of arc-derived rocks in western Idaho was episodic and significantly older than in arc rocks along the eastern margin of the Wrangellian Superterrane in British Columbia and Alaska. The pre-144 Ma event may be an expression of the late Jurassic amalgamation of marginal oceanic arc-related terranes (e.g., Olds Ferry, Baker, Wallowa) during the initial phases of their collision with North American rocks. Peak metamorphism at 128 Ma reflects tectonic burial along the leading edge of the Wallowa arc terrane during its final penetration and suturing to cratonic North America.  相似文献   

12.
The Costabonne skarn complex was emplaced in the lower part of the Cambrian Canaveilles Formation (eastern Pyrenees) in contact with a Hercynian granitic stock. Skarns have developed from calcium-poor (<1% CaO) pelitic rocks. A zonation can be clearly seen: schists (Z0), biotite zone (Z1), amphibole zone (Z2), pyroxene zone (Z3), and garnet zone (Z4). Two superposed successions of transformations are observed: (1) muscovitefeldspar garnet and (2) biotiteamphibolepyroxene. Calculation of mass transfer indicates an important exchange of CaO and K2O and, in lesser amounts, Fe2O3, MgO and MnO. SiO2, Al2O3, FeO, TiO2, the heavy rare earths (HREE) and most of the trace elements remain constant; whereas the contents of Na2O, Rb, Sr, Ba, and the light rare earths elements (LREE) are reduced. According to fluid inclusion data and mineral compositions, the metasomatic fluid was mainly 0.99)$$ " align="middle" border="0"> with minor CO2, CH4, N2, H2, O2, H2S, HCl and HF. Ca, Na, and K were the most abundant cations. Temperature and pressure conditions are estimated to be at least 550° C and 1.7 to 2.0 kb, respectively. The totality of the observed transformations may be described in the system CaO-K2O-SiO2-Al2O3-MgO-H2O with the minerals quartz, muscovite, phlogopite, tremolite, diopside, grossular, K-feldspar, and anorthite. With CaO and K2O taken as perfectly mobile components, SiO2, Al2O3, and MgO as determining inert components and H2O as excess component, the reactions leading to the skarn formation can be represented in a diagram. The succession of zones is shown to take place with increasing CaO from the schist (Z0) up to the garnet zone (Z4). The nature of the feldspar (plagioclase or K-feldspar) depends on the value of relative to CaO.  相似文献   

13.
Compositional dependence of apparent partition coefficient of iron and magnesium between coexisting garnet and clinopyroxene from Mt. Higasiakaisi is studied by means of a multicomponent regular solution model. It is shown that garnet and clinopyroxene solid solutions are positively non-ideal, and the non-ideal parameters according to the symmetric regular solution model are 2.58 kcal and 2.39 kcal, respectively, assuming the equilibration temperature of the mass to be 550° C.Notations a i h activity of component i in phase h - ij interaction parameter of component i and j in a solid solution - i activity coefficient of component i - X i mole fraction of component i - K partition coefficient of Fe and Mg between coexisting garnet and clinopyroxene - K apparent partition coefficient of Fe and Mg between coexisting garnet and clinopyroxene - G 0 difference in free energy of the partition reaction - H 0 difference in enthalpy of the partition reaction - S 0 difference in entropy of the partition reaction - R gas constant - G garnet - Alm almandine component - Py pyrope component - Gr grossular component - Sp spessartine component - CPx clinopyroxene - Hd hedenbergite component - Di diopside component - Jd jadeite component - Ts Tschermac's molecule component Deceased on April 17, 1974.  相似文献   

14.
High-grade iron mineralisation (>65%Fe) in the North Deposit occurs as an E-W trending synclinal sheet within banded iron formation (BIF) of the Early Proterozoic Dales Gorge Member and consists of martite-microplaty hematite ore. Three hypogene alteration zones between unmineralised BIF and high-grade iron ore are observed: (1) distal magnetite-siderite-iron silicate, (2) intermediate hematite-ankerite-magnetite, and (3) proximal martite-microplaty hematite-apatite alteration zones. Fluid inclusions trapped in ankerite within ankerite-hematite veins in the hematite-ankerite-magnetite alteration zone revealed mostly H2O–CaCl2 pseudosecondary and secondary inclusions with salinities of 23.9±1.5 (1, n=38) and 24.4±1.5 (1, n=66) eq.wt.% CaCl2, respectively. Pseudosecondary inclusions homogenised at 253±59.9°C (1, n=34) and secondary inclusions at 117±10.0°C (1, n=66). The decrepitation of pseudosecondary inclusions above 350°C suggests that their trapping temperatures are likely to be higher (i.e. 400°C). Hypogene siderite and ankerite from magnetite-siderite-iron silicate and hematite-ankerite-magnetite alteration zones have similar oxygen isotope compositions, but increasingly enriched carbon isotopes from magnetite-siderite-iron silicate alteration (–8.8±0.7, 1, n=17) to hematite-ankerite-magnetite alteration zones (–4.9±2.2, 1, n=17) when compared to the dolomite in the Wittenoom Formation (0.9±0.7, 1, n=15) that underlies the deposit. A two-stage hydrothermal-supergene model is proposed for the formation of the North Deposit. Early 1a hypogene alteration involved the upward movement of hydrothermal, CaCl2-rich brines (150–250°C), likely from the carbonate-rich Wittenoom Formation (13C signature of 0.9±0.7, 1, n=15), within large-scale folds of the Dales Gorge Member. Fluid rock reactions transformed unmineralised BIF to magnetite siderite-iron silicate BIF, with subsequent desilicification of the chert bands. Stage 1b hypogene alteration is characterised by an increase in temperature (possibly to 400°C), depleted 13C signature of –4.9±2.2 (1, n=17), and the formation of hematite-ankerite-magnetite alteration and finally the crystallisation of microplaty hematite. Late Stage 1c hypogene alteration involved the interaction of low temperature (~120°C) basinal brines with the hematite-ankerite-magnetite hydrothermal assemblage leaving a porous martite-microplaty hematite-apatite mineral assemblage. Stage 2 supergene enrichment in the Tertiary resulted in the removal of residual ankerite and apatite and the weathering of the shale bands to clay.Editorial handling: B. Lehmann  相似文献   

15.
Corundum-rich garnetite occurs as an isolated lens in a garnet peridotite body in the Donghai area of the Sulu ultrahigh-pressure (UHP) terrane. This rock consists of garnet and corundum, along with minor crack-related zoisite, pargasite, Mg-staurolite, Mg-chloritoid, sapphirine and chlorite. Pyropic garnet (Prp54–63Grs26–36Alm10–12) exhibits a sinusoidal REE pattern, positive Ta, Pb, and negative Nb, Ti anomalies due to metasomatism. Reddish corundum contains 1.1–1.7 wt% Cr2O3, and shows three oriented sets of exsolved rutile needles. Both garnet and corundum contain inclusions of apatite, Mg-allanite (MgO>4 wt%), and Ni-Fe sulfides formed as trapped Ni-Fe-S melt. The protolith of the corundum-rich garnetite could have been spinel websterite formed in the upper mantle. Both the websterite and the host garnet peridotite were subjected to subduction-zone UHP metamorphism at 800 °C and >4 GPa. Crack-related hydrous phases were formed by fluid infiltration during exhumation.Editorial responsibility: T.L. Grove  相似文献   

16.
A suite of pelitic rocks around Kandra, Singhbhum District, Bihar, displays a metamorphic gradient registered by the index minerals chlorite, biotite, garnet, staurolite and sillimanite in a Barrovian sequence. Metamorphism was by and large coeval with folding movements, and correlating the internal fabric of minerals and deformational characters, a regular sequence of the index minerals is derived. It is argued that the chronological order by itself is not sufficient to prove that metamorphism was progressive in time.Among the index minerals, garnet appears to have formed by the reaction chlorite+biotitea+quartz garnet+biotiteb+H2O. For the origin of sillimanite, a new reaction, 3 staurolite+muscovite+quartz=7 sillimanite+biotite+3H2O, is suggested on the basis of significant textural features. Textural and petrological indications regarding the formation of staurolite are in discordance. Staurolite was either derived from the biotite zone phases, or should be taken to have formed, against textural evidences, from chloritoids of the garnet zone.Graphical analysis of the assemblages by Thompson's AFM projection reveals that chlorite and staurolite are excess phases owing to retrogression and incomplete reaction. Shifting of apices of triangular fields and intersection of garnet-biotite tie lines within a zone can be satisfactorily explained in terms of extra components CaO and MnO or their ratios. It is pointed out that if MgO/(MgO + FeO) between two phases show a linear relation, their tie lines will be concurrent on the AF side of the projection, the point of concurrence reflecting equilibrium and temperature of recrystallisation.  相似文献   

17.
张灵敏  刘景波  程南飞  叶凯  郭顺  陈意  毛骞 《岩石学报》2013,29(5):1525-1539
流体的盐度对含羟基变质矿物组合的稳定温压条件和岩石-流体的相互作用有重要影响.流体的盐度可从矿物中氯含量的角度加以研究.磷灰石是一个含氯矿物,作为副矿物广泛分布在各种岩石中,且能在较宽的温压范围内稳定存在.本文选择大别-苏鲁造山带中典型的高压、超高压岩石开展了磷灰石成分的研究,结合前人流体包裹体的研究结果,探讨了榴辉岩相条件下流体盐度和磷灰石中的氯含量之间的关系.榴辉岩和脉体中磷灰石的XClAp/XOHAp比值与已有的流体包裹体盐度呈很好的线性正相关.榴辉岩和脉体中磷灰石的XClAp/XoHAp比值范围为0.00~0.35时,对应的流体包裹体盐度约为0~40% NaCleqv.  相似文献   

18.
Syngenetic garnet of eclogitic/pyroxenitic composition included in a polycrystalline diamond aggregate from the Venetia kimberlite, Limpopo Belt, South Africa shows multiple inclusions of spherules consisting of 61±5 vol% Fe3C (cohenite), 30±2 vol% Fe-Ni and 9±3 vol% FeS (troilite). Troilite forms shells around the native iron-cohenite assemblage, implying that both compositions were immiscible melts and were trapped rapidly by the silicate. It is proposed that this polycrystalline diamond-silicate-metallic spherule assemblage formed in very local pressure and fO2 conditions in cracks at the base of the subcratonic lithosphere from a C-H-O fluid that reacted with surrounding silicate at about 1,300–1,400 °C. In a mantle fluid consisting of CH4>H2O>H2 near fO2=IW, the H2 activity increases rapidly when carbon from the fluid is consumed by diamond precipitation, driving the oxygen fugacity of the system to lower values along the diamond saturation curve. Water from the fluid induces melting of surrounding silicate material, and hydrogen reduces metals in the silicate melt, reflected by an unusually low Ni content of the garnet. The carbon isotopic composition of 13C=–13.69 (PDB) and the lack of nitrogen as an impurity is consistent with formation of the diamond from non-biogenic methane, whereas 18O=7.4 (SMOW) of the garnet implies derivation of the silicate from subduction-related material. Hence, very localized and transient reducing conditions within the subcratonic lithosphere can be created by this process and do not necessarily call for involvement of fluids derived from subducted material of biogenic origin.Editorial responsibility: J. Hoefs  相似文献   

19.
The Wanapitei Complex (6 km×2.5 km), lying 0.4 km southeast of the Grenville Front, consists of a northwestern zone of gabbro and folded injection breccia and a southeastern layer of intensely folded hornblendeplagioclase gneiss. Disseminated Ni-Cu sulphides are unevenly distributed in a zone between the injection breccia and the folded gneiss.Rocks of the mineralized zone occur in southeastern and northeastern areas. The former area consists of hornblende norite, the major host rock of the sulphides, and olivine norite. Steeply-dipping cross-bedded primary layers and chemical trends indicate the top faces southeast. In the latter area olivine norite, hornblende norite, and hornblende gabbro grade eastward into recrystallized rocks and breccia. The olivine norites are characterized by corona reaction rims. Reactions are: olivine+plagioclase bronzite+diopside-spinel; olivine+pyroxene bronzite; and pyroxene+plagioclase diopside-spinel. Molecular proportion ratio variation diagrams suggest that rocks evolved from a common parent magma that underwent fractionation dominated by olivine and plagioclase. Sulphide mineralization (pyrrhotite, chalcopyrite, pentlandite, pyrite) is interstitial to the silicates and appears to be of primary magmatic origin.Northeasterly-trending shear zones, felsic dikes, and matic dikes are metamorphosed to the same degree as the rocks they cut (amphibolite facies). The sequence of events for the mineralized zone are: intrusion deep in the crust; tilting; brecciation; shearing; felsic and mafic dike emplacement; metamorphism; and injection of granite pegmatite dikes.Deceased (8-16-1986)  相似文献   

20.
Reactions which occur at the lower boundary of the hornblende-hornfels facies and in the so-called pyroxene-hornfels facies were experimentally investigated for an ultrabasic rock at 500, 1000 and 2000 bars H2O pressure.The starting material used was a mixture of natural chlorite, talc, tremolite and quartz such that its composition, except for surplus quartz, corresponded to that of an ultrabasic rock. The atomic ratio Fe2++Fe2+/Mg+Fe3++Fe3+ in the system was 0.16.The lower boundary of the hornblende-hornfels facies was defined by the formation of the orthorhombic amphibole anthophyllite and hornblende according to the following idealized reaction: chlorite+talc+tremolite+quartz hornblende+anthophyllite+H2O In effect, this reaction consists of the two bivariant reactions: chlorite+tremolite+quartz hornblende+anthophyllite+H2O talc+chlorite anthophyllite+quartz+H2OThe equilibrium temperatures obtained for the two reactions in the given system are practically the same and are as follows: 535±10°C at 500 bars H2O pressure 550±20°C at 1000 bars H2O pressure 560±10°C at 2000 bars H2O pressure 580±10°C at 4000 bars H2O pressureAt 2000 bars and higher temperatures within the hornblende-hornfels facies, anorthite is formed in addition to hornblende and anthophyllite, probably according to the following reaction: hornblende1+quartz hornblende2+anthophyllite+anorthite+H2O; because of the formation of anorthite it is to be expected that the hornblende in this case is poorer in aluminium than the hornblende at 500 and 1000 bars. Winkler (1967) suggests renaming the pyroxene-hornfels facies as K-feldspar-cordierite-hornfels facies which, in turn, is subdivided into a lower-temperature orthoamphibole subfacies without orthopyroxene and a higher-temperature orthopyroxene subfacies without orthoamphibole. The orthopyroxene subfacies itself may in its lower temperature part still carry hornblende which finally disappears in the higher temperature part.The appearance of orthopyroxene characterizes the transition from the orthoamphibole to the orthopyroxene subfacies of the K-feldspar-cordierite hornfels facies. The following reaction takes place at pressures lower than 2000 bars: hornblende1+anthophyllite hornblende2+enstatite+anorthite+H2OSince at 2000 bars an Al-poor hornblende already exists in the hornblende-hornfels facies, it is very likely that here only anthophyllite breaks down to give enstatite+quartz+H2O.The equilibrium temperatures for these reactions which give rise to enstatite are: 650±10°C at 250 bars H2O pressure 690±10°C at 500 bars H2O pressure 715±10°C at 1000 bars H2O pressure 770±10°C at 2000 bars H2O pressureOnly after an increase in temperature to about 710°C at 500 bars and about 770°C at 1000 bars does hornblende in the system investigated here break down completely according to the reaction: hornblende = enstatite+anorthite+diopside+H2OExcept at very small H2O-pressures (see Fig. 3), there exists, therefore, a region within the orthopyroxene subfacies where hornblende, enstatite and anorthite coexist. As a result we have, as mentioned above, a lower-temperature and a higher-temperature part of the orthopyroxene subfacies, and it is only in the latter part that the parageneses correspond to the pyroxene-hornfels facies as stated by Eskola (1939).Summing up, the starting material consisting of chlorite, talc, tremolite plus quartz remains unchanged in the albite-epidote-hornfels facies; this gives rise in the hornblende-hornfels facies to the paragenesis hornblende+anthophyllite, or — at higher pressures — to hornblende+anthophyllite+anorthite. For the particular composition of the starting material, however, no reactions take place at the transition of the hornblende-hornfels facies to the orthoamphibole subfacies of the K-feldspar-cordierite-hornfels facies as this transition is typified by the breakdown of muscovite in the presence of quartz. However, at the end of the orthoamphibole subfacies the breakdown of anthophyllite, by which orthopyroxene is formed, heralds the onset of the orthopyroxene subfacies. In this subfacies — at greater than about 300 bars — hornblende is still present and coexists with enstatite and anorthite, but with rising temperature hornblende breaks down to give way to the paragenesis enstatite+anorthite+diopside. The experimentally determined parageneses confirm known petrographic occurrences.

Für die Förderung dieser Arbeit danken wir der Deutschen Forschungsgemeinschaft vielmals. Der Dank von Choudhuri gilt dem Akademischen Auslandsamt der Universität Göttingen für ein Stipendium, das ihm den Abschluß seiner Studien an der Universität Göttingen ermöglichte.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号