首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
We report the properties of more than 600 bursts(including cluster-bursts) detected from the repeating fast radio burst(FRB) source FRB 20201124A with the Five-hundred-meter Aperture Spherical radio Telescope during an extremely active episode on UTC 2021 September 25–28, in a series of four papers. The observations were carried out in the band of 1.0–1.5 GHz by using the center beam of the L-band 19-beam receiver. We monitored the source in sixteen1 hr sessions and one 3 hr session spanning 23 ...  相似文献   

2.
As the third paper in the multiple-part series, we report the statistical properties of radio bursts detected from the repeating fast radio burst(FRB) source FRB 20201124A with the Five-hundred-meter Aperture Spherical radio Telescope during an extremely active episode between the 25th and 28th of September 2021(UT). We focus on the polarization properties of536 bright bursts with S/N > 50. We found that the Faraday rotation measures(RMs) monotonically dropped from-579to-605 rad m-2  相似文献   

3.
The physical mechanism of fast radio bursts(FRBs) is still unknown. On 2020 April 28, a special radio burst, FRB200428, was detected and believed to be associated with the Galactic magnetar SGR 1935+2154. It confirms that at least some of the FRBs were generated by magnetars, although the radiation mechanism continues to be debated.To this end, we study in detail the multiband afterglows of FRB 200428 described by the synchrotron fireball shock model. We find the prediction for the optical and r...  相似文献   

4.
Quasi-periodic oscillation(QPO) signals are discovered in some fast radio bursts(FRBs) such as FRB 20191221A,as well as in the X-ray burst associated with the galactic FRB from SGR 1935+2154. We revisit the intermediatefield FRB model where the radio waves are generated as fast-magnetosonic waves through magnetic reconnection near the light cylinder. The current sheet in the magnetar wind is compressed by a low frequency pulse emitted from the inner magnetosphere to trigger magnetic reconnection...  相似文献   

5.
The extremely low frequency( f < 40 MHz) is a very important frequency band for modern radio astronomy observations. It is also a key frequency band for solar radio bursts, planetary radio bursts, fast radio bursts detected in the lunar space electromagnetic environment, and the Earth’s middle and upper atmosphere with low dispersion values. In this frequency band, the solar stellar activity, the early state of the universe, and the radiation characteristics of the planetary magnetosphere and...  相似文献   

6.
A series of solar radio bursts were observed in AR NOAA 10486 withthe Solar Broadband (1.1--7.6 GHz) Radio Spectrometers (SBRS of China). Here weanalyze four significant events associated with CME events and strong X-ray flaresthat occurred on 2003 October 22, 26, 27, 29. The Oct. 26 event is a long durationevent (LDE) with drift pulsation structure (DPS), narrowband dm-burst (DCIM),and more than seven types of Fine Structures (FSs); its time of the maximum flux(07:30 UT) is about half an hour later than the X-flare (06:54 UT).  相似文献   

7.
Seventy-one occurrences of coronal mass ejections(CMEs) associated with radio bursts,seemingly associated with type Ⅲ bursts/fine structures(FSs),in the centimeter-metric frequency range during 2003-2005,were obtained with the spectrometers at the National Astronomical Observatories,Chinese Academy of Sciences(NAOC) and the Culgoora radio spectrometer and are presented.The statistical results of 68 out of 71 events associated with the radio type III bursts or FSs during the initiation or early stages of the...  相似文献   

8.
In this paper, the homology of four radio bursts occuring on August 28, 1989 are discussed in time domain, in frequency domain and in their exciting functions.From the discussions, it may be possible that if two radio bursts are homologus, then their ratios of the duration time for rising phases, decaying phases and total bursts are similar in time domain, so do their exciting functions. Therefore they resemble each other in their Fourier apectra.  相似文献   

9.
We study the statistical property of fast radio bursts(FRBs) based on a selected sample of 190 one-off FRBs in the first CHIME/FRB catalog.Three power law models are used in the analysis,and we find the cumulative distribution functions of energy can be well fitted by bent power law and thresholded power law models.The distribution functions of fluctuations of energy well follow the Tsallis q-Gaussian distribution.The q values in the Tsallis q-Gaussian distribution are constant with small fluctu...  相似文献   

10.
We present a statistical study of decimetric type Ⅲ radio bursts,coronal mass ejections(CMEs),and Hα flares observed in the period from July 2000 to March2005.In total,we investigated 395 decimetric type Ⅲ radio burst events,21% of which showed apparent correlation to CMEs that were associated with Hα flares.We noticed that the Hα flares which were strongly associated with CMEs were gradual events,and82% of them took place before CMEs appeared in the field of view of LASCO C2;that most of the CME-associated radio bursts started in the frequency range around750 MHz with a frequency drifting rate of several hundred MHz s-1,of which both positive and negative ones were recognized; and that the correlation of type Ⅲ radio bursts to CMEs without associated flares is fairly vague,less than 9%.  相似文献   

11.
Three particularly complex radio bursts (2001 October 19, 2001 April 10 and 2003 October 26) obtained with the spectrometers (0.65-7.6GHz) at the National Astronomical Observatories, Chinese Academy of Sciences (NAOC, Beijing and Yunnan) and other in- struments (NoRH, TRACE and SXT) are presented. They each have two groups of peaks occurring in different frequency ranges (broad-band microwave and narrow-band decimeter wavelengths). We stress that the second group of burst peaks that occurred in the late phase of the flares and associated with post-flare loops may be homologous radio bursts. We think that they are driven by the post-flare loops. In contrast to the time profiles of the radio bursts and the images of coronal magnetic polarities, we are able to find that the three events are caused by the active regions including main single-bipole magnetic structures, which are associated with multipole magnetic structures during the flare evolutions. In particular, we point out that the later decimetric radio bursts are possibly the radio counterparts of the homologous flares (called "homologous radio bursts" by us), which are also driven by the single-bipole mag- netic structures. By examining the evolutions of the magnetic polarities of sources (17GHz), we could presume that the drivers of the homologous radio bursts are new and/or recurring appearances/disappearances of the magnetic polarities of radio sources, and that the triggers are the magnetic reconnections of single-bipole configurations.  相似文献   

12.
Fast radio bursts(FRBs) are puzzling, millisecond, energetic radio transients with no discernible source; observations show no counterparts in other frequency bands. The birth of a quark star from a parent neutron star experiencing a quark nova- previously thought undetectable when born in isolation- provides a natural explanation for the emission characteristics of FRBs. The generation of unstable r-process elements in the quark nova ejecta provides millisecond exponential injection of electrons into the surrounding strong magnetic field at the parent neutron star's light cylinder via β-decay. This radio synchrotron emission has a total duration of hundreds of milliseconds and matches the observed spectrum while reducing the inferred dispersion measure by approximately 200 cm~(-3)pc. The model allows indirect measurement of neutron star magnetic fields and periods in addition to providing astronomical measurements of β-decay chains of unstable neutron rich nuclei. Using this model, we can calculate expected FRB average energies(~10~(41)erg) and spectral shapes, and provide a theoretical framework for determining distances.  相似文献   

13.
A conservative constraint on the rest mass of the photon can be estimated under the assumption that the frequency dependence of dispersion from astronomical sources is mainly contributed by the nonzero photon mass effect. Photon mass limits have been set earlier through the optical emissions of the Crab Nebula pulsar, but we demonstrate that these limits can be significantly improved with the dispersion measure(DM) measurements of radio pulsars in the Large and Small Magellanic Clouds.The combination of DM measurements of pulsars and distances of the Magellanic Clouds provides a strict upper limit on the photon mass as low as m_γ≤ 2.0 × 10~(-45) g, which is at least four orders of magnitude smaller than the constraint from the Crab Nebula pulsar. Although our limit is not as tight as the current best result(~ 10~(-47)g) from a fast radio burst(FRB 150418) at a cosmological distance,the cosmological origin of FRB 150418 remains under debate; and our limit can reach the same high precision of FRB 150418 when it has an extragalactic origin(~ 10~(-45)g).  相似文献   

14.
Solar type Ⅲ radio bursts are an important diagnostic tool in the understanding of solar accelerated electron beams. They are a signature of propagating beams of nonthermal electrons in the solar atmosphere and the solar system. Consequently, they provide information on electron acceleration and transport, and the conditions of the background ambient plasma they travel through. We review the observational properties of type Ⅲ bursts with an emphasis on recent results and how each property can help identify attributes of electron beams and the ambient background plasma. We also review some of the theoretical aspects of type Ⅲ radio bursts and cover a number of numerical efforts that simulate electron beam transport through the solar corona and the heliosphere.  相似文献   

15.
The measurement of positions and sizes of radio sources in observations is important for understanding of the flare evolution. For the first time, solar radio spectral fine structures in an M6.5 flare that occurred on 2013 April 11 were observed simultaneously by several radio instruments at four different observatories: Chinese Solar Broadband Radio Spectrometer at Huairou(SBRS/Huairou), Ondˇrejov Radio Spectrograph in the Czech Republic(ORSC/Ondˇrejov), Badary Broadband Microwave Spectropolarimeter(BMS/Irkutsk), and spectrograph/IZMIRAN(Moscow, Troitsk). The fine structures included microwave zebra patterns(ZPs), fast pulsations and fiber bursts. They were observed during the flare brightening located at the tops of a loop arcade as shown in images taken by the extreme ultraviolet(EUV) telescope onboard NASA's satellite Solar Dynamics Observatory(SDO). The flare occurred at 06:58–07:26 UT in solar active region NOAA 11719 located close to the solar disk center. ZPs appeared near high frequency boundaries of the pulsations, and their spectra observed in Huairou and Ondˇrejov agreed with each other in terms of details. At the beginning of the flare's impulsive phase, a strong narrowband ZP burst occurred with a moderate left-handed circular polarization. Then a series of pulsations and ZPs were observed in almost unpolarized emission. After 07:00 UT a ZP appeared with a moderate right-handed polarization.In the flare decay phase(at about 07:25 UT), ZPs and fiber bursts become strongly right-hand polarized.BMS/Irkutsk spectral observations indicated that the background emission showed a left-handed circular polarization(similar to SBRS/Huairou spectra around 3 GHz). However, the fine structure appeared in the right-handed polarization. The dynamics of the polarization was associated with the motion of the flare exciter, which was observed in EUV images at 171 ?A and 131 ?A by the SDO Atmospheric Imaging Assembly(AIA). Combining magnetograms observed by the SDO Helioseismic and Magnetic Imager(HMI) with the homologous assumption of EUV flare brightenings and ZP bursts, we deduced that the observed ZPs correspond to the ordinary radio emission mode. However, future analysis needs to verify the assumption that zebra radio sources are really related to a closed magnetic loop, and are located at lower heights in the solar atmosphere than the source of pulsations.  相似文献   

16.
Fast radio bursts(FRBs) are a type of newly-discovered transient astronomical phenomenon.They have short durations, high dispersion measures and a high event rate. However, due to unknown distances and undetected electromagnetic counterparts at other wavebands, it is difficult to further investigate FRBs. Here we propose a method to study their environmental magnetic field using an indirect method.Starting with dispersion measures and rotation measures(RMs), we try to obtain the parallel magnetic field component ■ which is the average value along the line of sight in the host galaxy. Because both RMs and redshifts are now unavailable, we demonstrate the dependence of ■ on these two separate quantities.This result, if the RM and redshift of an FRB are measured, would be expected to provide a clue towards understanding an environmental magnetic field of an FRB.  相似文献   

17.
This paper deals with the detailed analysis of frequency drift rates of solar"drift pair"(DP)bursts observed from 2015 July 10 to 12 during a type Ⅲ burst storm.The observations were conducted by the UTR-2 radio telescope at 9–33 MHz with high frequency and time resolution.DPs were recorded drifting from higher to lower frequencies(forward DPs)as well as from lower to higher ones(reverse DPs).Patterns on their dynamic spectrum had various inclines and occupied different bandwidths.The frequency drift rate versus frequency dependence of these bursts has been studied.The fitting model to describe the peak evolution of these bursts in the frequency-time plane is presented.The relationship between DPs and type Ⅲ solar bursts is discussed.  相似文献   

18.
Giant gaseous layers(termed “superdisks”) have been hypothesized in the past to account for the strip-like radio emission gap(or straight-edged central brightness depression) observed between twin radio lobes, in over a dozen relatively nearby powerful Fanaroff-Riley Class II radio galaxies. They could also provide a plausible alternative explanation for a range of observations. Although a number of explanations have been proposed for the origin of the superdisks, little is known about their material content. Some X-ray observations of superdisk candidates indicate the presence of hot gas, but a cool dusty medium also seems to be common. If they are entirely or partly composed of neutral gas, then it may be directly detectable and we report here a first attempt to detect/image any neutral hydrogen gas present in the superdisks that are inferred to be present in four nearby radio galaxies. We have not found a positive H I signal in any of the four sources, resulting in tight upper limits on the H I number density in the postulated superdisks,estimated directly from the central rms noise values of the final radio continuum subtracted image. The estimated ranges of the upper limit on neutral hydrogen number density and column density are 10^-4-10^-3 atoms per cm3 and 10^19-10^20 atoms per cm^2, respectively. No positive H I signal is detected even after combining all the four available H I images(with inverse variance weighting). This clearly rules out an H I dominated superdisk as a viable model to explain these structures, however, the possibility of a superdisk being composed of warm/hot gas still remains open.  相似文献   

19.
The measurement of positions and sizes of radio sources in the observations of the fine structure of solar radio bursts is a determining factor for the selection of the radio emission mechanism. The identical parameters describing the radio sources for zebra structures(ZSs) and fiber bursts confirm there is a common mechanism for both structures. It is very important to measure the size of the source in the corona to determine if it is distributed along the height or if it is point-like. In both models of ZSs(the double plasma resonance(DPR) and the whistler model) the source must be distributed along the height, but by contrast to the stationary source in the DPR model, in the whistler model the source should be moving. Moreover, the direction of the space drift of the radio source must correlate with the frequency drift of stripes in the dynamic spectrum. Some models of ZSs require a local source, for example,the models based on the Bernstein modes, or on explosive instability. The selection of the radio emission mechanism for fast broadband pulsations with millisecond duration also depends on the parameters of their radio sources.  相似文献   

20.
We investigated 64 pairs of interacting-CME events identified from simultaneous observations by the SOHO and STEREO spacecraft from January 2010 to August 2014, to examine the relationship between large SEP events in the energy range of ~25 to~60 MeV and properties of the interacting CMEs.We found that during CME interactions, the large SEP events in this study were all generated by CMEs with the presence of enhanced type Ⅱ radio bursts, which also have wider longitudinal distributions compared to events without a type Ⅱ radio burst or its enhancement(almost always associated with small SEP events).It seems that the signature of type Ⅱ radio burst enhancement is a good discriminator between large SEP and small or no SEP event producers during CME interactions. The type Ⅱ radio burst enhancement is more likely to be generated by CME interactions, with the main CME having a larger speed(v), angular width(WD), mass(m) and kinetic energy(Ek), and taking over the preceding CMEs. The preceding CMEs in these instances have higher v, WD, m and Ekthan those in CME pairs missing type Ⅱ radio bursts or enhancements. Generally, the values of these properties in the type-Ⅱ-enhanced events are typically higher than the corresponding non-type-Ⅱ or non-type-Ⅱ-enhanced cases for both the main and preceding CMEs. Our analysis also revealed that the intensities of associated SEP events correlate negatively with the intersection height of the two CMEs. Moreover, the overlap width of two CMEs is typically larger in type-Ⅱ-enhanced events than in non-type-Ⅱ or non-type-Ⅱ-enhanced events. Most type-Ⅱ-enhanced events and SEP events are coincident and are almost always made by the fast and wide main CMEs that sweep fully over relatively slower and narrower preceding CMEs. We suggest that a fast CME with enough energy completely overtaking a relatively narrower preceding CME, especially at low height, can drive a more energetic shock signified by the enhanced type Ⅱ radio bursts. The shock may accelerate ambient particles(likely provided by the preceding CME) and lead to large SEP events more easily.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号