首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 505 毫秒
1.
We report the properties of more than 800 bursts detected from the repeating fast radio burst(FRB) source FRB20201124A with the Five-hundred-meter Aperture Spherical radio Telescope(FAST) during an extremely active episode on UTC 2021 September 25–28 in a series of four papers. In this second paper of the series, we study the energy distribution of 881 bursts(defined as significant signals separated by dips down to the noise level) detected in the first four days of our 19 hr observational campa...  相似文献   

2.
We report the properties of more than 600 bursts(including cluster-bursts) detected from the repeating fast radio burst(FRB) source FRB 20201124A with the Five-hundred-meter Aperture Spherical radio Telescope during an extremely active episode on UTC 2021 September 25–28, in a series of four papers. The observations were carried out in the band of 1.0–1.5 GHz by using the center beam of the L-band 19-beam receiver. We monitored the source in sixteen1 hr sessions and one 3 hr session spanning 23 ...  相似文献   

3.
The physical mechanism of fast radio bursts(FRBs) is still unknown. On 2020 April 28, a special radio burst, FRB200428, was detected and believed to be associated with the Galactic magnetar SGR 1935+2154. It confirms that at least some of the FRBs were generated by magnetars, although the radiation mechanism continues to be debated.To this end, we study in detail the multiband afterglows of FRB 200428 described by the synchrotron fireball shock model. We find the prediction for the optical and r...  相似文献   

4.
Quasi-periodic oscillation(QPO) signals are discovered in some fast radio bursts(FRBs) such as FRB 20191221A,as well as in the X-ray burst associated with the galactic FRB from SGR 1935+2154. We revisit the intermediatefield FRB model where the radio waves are generated as fast-magnetosonic waves through magnetic reconnection near the light cylinder. The current sheet in the magnetar wind is compressed by a low frequency pulse emitted from the inner magnetosphere to trigger magnetic reconnection...  相似文献   

5.
Solar type Ⅲ radio bursts are an important diagnostic tool in the understanding of solar accelerated electron beams. They are a signature of propagating beams of nonthermal electrons in the solar atmosphere and the solar system. Consequently, they provide information on electron acceleration and transport, and the conditions of the background ambient plasma they travel through. We review the observational properties of type Ⅲ bursts with an emphasis on recent results and how each property can help identify attributes of electron beams and the ambient background plasma. We also review some of the theoretical aspects of type Ⅲ radio bursts and cover a number of numerical efforts that simulate electron beam transport through the solar corona and the heliosphere.  相似文献   

6.
We study the statistical property of fast radio bursts(FRBs) based on a selected sample of 190 one-off FRBs in the first CHIME/FRB catalog.Three power law models are used in the analysis,and we find the cumulative distribution functions of energy can be well fitted by bent power law and thresholded power law models.The distribution functions of fluctuations of energy well follow the Tsallis q-Gaussian distribution.The q values in the Tsallis q-Gaussian distribution are constant with small fluctu...  相似文献   

7.
Seventy-one occurrences of coronal mass ejections(CMEs) associated with radio bursts,seemingly associated with type Ⅲ bursts/fine structures(FSs),in the centimeter-metric frequency range during 2003-2005,were obtained with the spectrometers at the National Astronomical Observatories,Chinese Academy of Sciences(NAOC) and the Culgoora radio spectrometer and are presented.The statistical results of 68 out of 71 events associated with the radio type III bursts or FSs during the initiation or early stages of the...  相似文献   

8.
Three particularly complex radio bursts (2001 October 19, 2001 April 10 and 2003 October 26) obtained with the spectrometers (0.65-7.6GHz) at the National Astronomical Observatories, Chinese Academy of Sciences (NAOC, Beijing and Yunnan) and other in- struments (NoRH, TRACE and SXT) are presented. They each have two groups of peaks occurring in different frequency ranges (broad-band microwave and narrow-band decimeter wavelengths). We stress that the second group of burst peaks that occurred in the late phase of the flares and associated with post-flare loops may be homologous radio bursts. We think that they are driven by the post-flare loops. In contrast to the time profiles of the radio bursts and the images of coronal magnetic polarities, we are able to find that the three events are caused by the active regions including main single-bipole magnetic structures, which are associated with multipole magnetic structures during the flare evolutions. In particular, we point out that the later decimetric radio bursts are possibly the radio counterparts of the homologous flares (called "homologous radio bursts" by us), which are also driven by the single-bipole mag- netic structures. By examining the evolutions of the magnetic polarities of sources (17GHz), we could presume that the drivers of the homologous radio bursts are new and/or recurring appearances/disappearances of the magnetic polarities of radio sources, and that the triggers are the magnetic reconnections of single-bipole configurations.  相似文献   

9.
We investigate the formation of multiple images as the radio signals from fast radio bursts(FRBs) pass through the plane of a plasma clump. The exponential model for the plasma clump is adopted to analyze the properties of the multiple images. By comparing with the classical dispersion relations, we find that one image has exhibited specific inverse properties to others, such as their delay times at high frequency is higher than that at low frequency, owing to the lensing effects of the plasma c...  相似文献   

10.
Solar type III radio bursts are an important diagnostic tool in the understanding of solar accelerated electron beams. They are a signature of propagating beams of nonthermal electrons in the solar atmosphere and the solar system. Consequently, they provide information on electron acceleration and transport, and the conditions of the background ambient plasma they travel through. We review the observational properties of type III bursts with an emphasis on recent results and how each property can help identify attributes of electron beams and the ambient background plasma. We also review some of the theoretical aspects of type III radio bursts and cover a number of numerical efforts that simulate electron beam transport through the solar corona and the heliosphere.  相似文献   

11.
We present a statistical study of decimetric type Ⅲ radio bursts,coronal mass ejections(CMEs),and Hα flares observed in the period from July 2000 to March2005.In total,we investigated 395 decimetric type Ⅲ radio burst events,21% of which showed apparent correlation to CMEs that were associated with Hα flares.We noticed that the Hα flares which were strongly associated with CMEs were gradual events,and82% of them took place before CMEs appeared in the field of view of LASCO C2;that most of the CME-associated radio bursts started in the frequency range around750 MHz with a frequency drifting rate of several hundred MHz s-1,of which both positive and negative ones were recognized; and that the correlation of type Ⅲ radio bursts to CMEs without associated flares is fairly vague,less than 9%.  相似文献   

12.
We investigated 64 pairs of interacting-CME events identified from simultaneous observations by the SOHO and STEREO spacecraft from January 2010 to August 2014, to examine the relationship between large SEP events in the energy range of ~25 to~60 MeV and properties of the interacting CMEs.We found that during CME interactions, the large SEP events in this study were all generated by CMEs with the presence of enhanced type Ⅱ radio bursts, which also have wider longitudinal distributions compared to events without a type Ⅱ radio burst or its enhancement(almost always associated with small SEP events).It seems that the signature of type Ⅱ radio burst enhancement is a good discriminator between large SEP and small or no SEP event producers during CME interactions. The type Ⅱ radio burst enhancement is more likely to be generated by CME interactions, with the main CME having a larger speed(v), angular width(WD), mass(m) and kinetic energy(Ek), and taking over the preceding CMEs. The preceding CMEs in these instances have higher v, WD, m and Ekthan those in CME pairs missing type Ⅱ radio bursts or enhancements. Generally, the values of these properties in the type-Ⅱ-enhanced events are typically higher than the corresponding non-type-Ⅱ or non-type-Ⅱ-enhanced cases for both the main and preceding CMEs. Our analysis also revealed that the intensities of associated SEP events correlate negatively with the intersection height of the two CMEs. Moreover, the overlap width of two CMEs is typically larger in type-Ⅱ-enhanced events than in non-type-Ⅱ or non-type-Ⅱ-enhanced events. Most type-Ⅱ-enhanced events and SEP events are coincident and are almost always made by the fast and wide main CMEs that sweep fully over relatively slower and narrower preceding CMEs. We suggest that a fast CME with enough energy completely overtaking a relatively narrower preceding CME, especially at low height, can drive a more energetic shock signified by the enhanced type Ⅱ radio bursts. The shock may accelerate ambient particles(likely provided by the preceding CME) and lead to large SEP events more easily.  相似文献   

13.
The role of T50 in classifying gamma-ray bursts (GRBs) is investigated. We take T50=0.7s as the line of division and find that some bursts belonging to the class of long bursts defined by T90≥2s now become short bursts (sample 1), while some belonging to the class of short bursts defined by T90 < 2 s now become long bursts (sample 2). We study how these sources are affected by the two methods of classification and find the change of classes of sample 1 is due to some peculiar properties of the light curves. Based on their characters, most of the bursts of sample 1 should be taken as short bursts.  相似文献   

14.
Synchrotron emission polarization is very sensitive to the magnetic field configuration.Recently,polarization of synchrotron emission with a mixed(SM)magnetic field in the gamma-ray burst(GRB)afterglow phase has been developed.Here,we apply these SM models to the GRB prompt phase and compare their polarization properties with that of synchrotron emission in purely ordered(SO)magnetic field.We find that the polarization properties in an SM model are very similar to these in a corresponding SO model(e.g.,synchrotron emission in a mixed magnetic field with an aligned ordered part(SMA)and synchrotron emission with a purely ordered aligned magnetic field(SOA)),only with a lower polarization degree(PD).We also discuss the statistical properties of the models.We find PDs of the simulated bursts are concentrated around 25%for both SOA and synchrotron emission in a purely ordered toroidal magnetic field(SOT),while they can range from 0%to 25%for SMA and synchrotron emission in a mixed magnetic field with a toroidal ordered part(SMT),depending onξ_B value,i.e.,the ratio of magnetic reduction of the ordered magnetic field over that of random magnetic field.From statistics,if PDs of majority GRBs are non-zero,then it favors SO and SM models.Further,if there are some bright GRBs with prominently lower PDs than that of the majority GRBs,it favors SOT(SMT)models;if all the bright GRBs have comparable PDs with the majority ones,it favors SOA(SMA)models.Finally,we apply our results to POLAR’s data and find that~10%time-integrated PDs of the observed bursts favor SMA and SMT models,and theξ_B parameter of these bursts is constrained to be around 1.135.  相似文献   

15.
Fast radio bursts show large dispersion measures,much larger than the Galactic dispersion measure foreground.Therefore,they evidently have an extragalactic origin.We investigate possible contributions to the dispersion measure from host galaxies.We simulate the spatial distribution of fast radio bursts and calculate the dispersion measures along the sightlines from fast radio bursts to the edge of host galaxies by using the scaled NE2001 model for thermal electron density distributions.We find that contributions to the dispersion measure of fast radio bursts from the host galaxy follow a skew Gaussian distribution.The peak and the width at half maximum of the dispersion measure distribution increase with the inclination angle of a spiral galaxy,to large values when the inclination angle is over 70°.The largest dispersion measure produced by an edge-on spiral galaxy can reach a few thousand pc cm~(-3),while the dispersion measures from dwarf galaxies and elliptical galaxies have a maximum of only a few tens of pc cm~(-3).Notice,however,that additional dispersion measures of tens to hundreds of pc cm~(-3) can be produced by high density clumps in host galaxies.Simulations that include dispersion measure contributions from the Large Magellanic Cloud and the Andromeda Galaxy are shown as examples to demonstrate how to extract the dispersion measure from the intergalactic medium.  相似文献   

16.
We present a, large complex radio burst and its associated fast tune structures observed on 2001 April 10 in the frequency range of 0.65-7.6 GHz. The NoRH radio image observation shows very complex radio source structures which include preexisting, newly emerging, submerging/cancelling polarities and a bipolar, a tripolar (a 'bipolar + remote unipolar'), and a quadrupolar structure. This suggests that the radio burst is generated from a very complicated loop structure. According to the spectral and image observations, we assume that the beginning of this flare was caused by a single bipolar loop configuration with a 'Y-type' re-connection structure. A composite of radio continuum and fast time structures is contained in this flare. The various fast radio emission phenomena include normal and reverse drifting type III bursts, and slowly drifting and no-drift structures. The tripolar configurations may form a double-loop with a 'three-legged' structure, which is an important source of the various types of fast time structures. The two-loop reconnection model can lead simultaneously to electron acceleration and corona heating. We have also analyzed the behaviors of coronal magnetic polarities and the emission processes of different types radio emission qualitatively. Interactions of a bipolar or multi-polar loop are consistent with our observational results. Our observations favor the magnetic reconnection configurations of the 'inverted Y-type' (bipolar) and the 'three-legged' structures (tripolar or quadrupolar).  相似文献   

17.
A rare Type I-like noise storm was observed with the solar radio spectrometers (1.0-2.0 GHz and 2.60-3.8 GHz) at National Astronomical Observatories of China (NAOC) on September 23, 1998. We concentrate on checking the Type I-like noise storm occurred in the decay phase of a Type Ⅳ radio burst. This noise storm consists of many Type I bursts and isolated Type Ⅲ or Type Ⅲ pair bursts. It has a bandwidth of ≤0.5 GHz. The duration of each Type I burst is of the order of 100-300 ms. The total duration is greater than 11 minutes. The circular polarization  相似文献   

18.
Superluminal Motion and Polarization in Blazars   总被引:3,自引:0,他引:3  
A relativistic beaming model has been successfully used to explain the observed properties of active galactic nuclei (AGNs). In this model there are two emission components, a boosted one and an unbeamed one, shown up in the radio band as the core and lobe components. The luminosity ratio of the core to the lobe is denned as the core-dominance parameter (R = LCore/LLobe). The de-beamed radio luminosity (Ldbjet) in the jet is assumed to be proportional to the unbeamedluminosity (Lub) in the co-moving frame, i.e., f = Ldbjet/Lub, and f is determined in ourprevious paper. We further discuss the relationship between BL Lacertae objects (BLs) and flat spectrum radio quasars (FSRQs), which are subclasses of blazars with different degrees of polarization, using the calculated values of the ratio f for a sample of superluminal blazars. We found 1) that the BLs show smaller averaged Doppler factors and Lorentz factors, larger viewing angles and higher core-dominance parameters than do the FSRQs, and 2) that in th  相似文献   

19.
The extremely low frequency( f < 40 MHz) is a very important frequency band for modern radio astronomy observations. It is also a key frequency band for solar radio bursts, planetary radio bursts, fast radio bursts detected in the lunar space electromagnetic environment, and the Earth’s middle and upper atmosphere with low dispersion values. In this frequency band, the solar stellar activity, the early state of the universe, and the radiation characteristics of the planetary magnetosphere and...  相似文献   

20.
The active region AR 5395, which was on solar dish from March 6 1989 to March 20 1989, was extraordinary for its flare production for a complete disk transit and for one of the largest geomagnetic storms on record. It aroused big interests of many people. During this period, we received more than 60 microwave bursts at 2 cm wavelength. We show only a preliminary analysis to the quasi-periodic amplitude oscillations with double peak structures superimposed on the radio bursts on March 9, 11, 13 associated with the flares occurred in the AR 5395 in this paper.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号