首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 592 毫秒
1.
The technique of seismic amplitude-versus-angle inversion has been widely used to estimate lithology and fluid properties in seismic exploration. The amplitude-versus-angle inversion problem is intrinsically ill-posed and generally stabilized by the use of L2-norm regularization methods but with drawback of smoothing important boundaries between adjacent layers. In this study, we propose a sparse Bayesian linearized solution for amplitude-versus-angle inversion problem to preserve the sharp geological interfaces. In this regard, a priori constraint term with two regularization functions is presented: the sparse constraint regularization and the low-frequency model information. In addition, to obtain high-resolution reflectivity estimation, the model parameters decorrelation technique combined with dipole decomposition method is employed. We validate the applicability of the presented method by both synthetic and real seismic data from the Gulf of Mexico. The accuracy improvement of the presented method is also confirmed by comparing the results with the commonly used Bayesian linearized amplitude-versus-angle inversion.  相似文献   

2.
常规的基于贝叶斯理论的稀疏脉冲反演中,各约束项的拉格朗日算子均采用的是恒定的常系数。反演实际资料发现,波阻抗反演剖面与钻井资料的油气显示并不能很好地对应。考虑到反演不同地震道数据时,低频趋势模型所起的约束作用应当不同。本文在常规反演的基础上做出了改进,假定阻抗约束系数是一个空间变量,由各地震道的实际地震数据与合成记录之间的振幅残差来确定该道的阻抗约束系数。实际资料应用表明,改进后的反演结果更稳定,能更准确地反映地下阻抗信息。   相似文献   

3.
Cauchy priori distribution-based Bayesian AVO reflectivity inversion may lead to sparse estimates that are sensitive to large reflectivities. For the inversion, the computation of the covariance matrix and regularized terms requires prior estimation of model parameters, which makes the iterative inversion weakly nonlinear. At the same time, the relations among the model parameters are assumed linear. Furthermore, the reflectivities, the results of the inversion, or the elastic parameters with cumulative error recovered by integrating reflectivities are not well suited for detecting hydrocarbons and fuids. In contrast, in Bayesian linear AVO inversion, the elastic parameters can be directly extracted from prestack seismic data without linear assumptions for the model parameters. Considering the advantages of the abovementioned methods, the Bayesian AVO reflectivity inversion process is modified and Cauchy distribution is explored as a prior probability distribution and the time-variant covariance is also considered. Finally, we propose a new method for the weakly nonlinear AVO waveform inversion. Furthermore, the linear assumptions are abandoned and elastic parameters, such as P-wave velocity, S-wave velocity, and density, can be directly recovered from seismic data especially for interfaces with large reflectivities. Numerical analysis demonstrates that all the elastic parameters can be estimated from prestack seismic data even when the signal-to-noise ratio of the seismic data is low.  相似文献   

4.
Seismic inversion is an important tool that transfers interface information of seismic data to formation information, which renders the seismic data easily understood by geologists or petroleum engineers. In this study, a novel multi-trace basis-pursuit inversion method based on the Bayesian theory is proposed to enhance the vertical resolution and overcome the lateral instability of inversion results between different traces occasionally seen in the traditional trace-by-trace basis-pursuit inversion method. The Markov process is initially introduced to describe the relationship between adjacent seismic traces and their correlation, which we then close couple in the equation of our new inversion method. A recursive function is further derived to simplify the inversion process by considering the particularity of the coefficient matrix in the multi-trace inversion equation. A series of numerical-analysis and field data examples demonstrates that both the traditional and the new methods for P-wave impedance inversion are helpful in enhancing the resolution of thin beds that are usually difficult to discern from original seismic profiles, thus highlighting the importance of acoustic-impedance inversion for thin bed interpretation. Furthermore, in addition to yielding thin bed inversion results with enhanced lateral continuity and high vertical resolution, our proposed method is robust to noise and cannot be easily contaminated by it, which we verify using both synthetic and field data.  相似文献   

5.
基于贝叶斯线性AVAZ的TTI介质裂缝参数反演   总被引:2,自引:0,他引:2       下载免费PDF全文
裂缝储层岩石物理参数的准确获得对地下裂缝预测具有重要意义,而叠前方位AVA地震反演是获得裂缝岩石物理参数的有效手段.假设地下岩石为倾斜横向各向同性(TTI)介质,本文从裂缝岩石物理等效模型的构建出发,从测井数据中估计出纵横波相对反射系数和裂缝柔度参数.通过推导含裂缝柔度的方位各向异性反射系数公式,基于贝叶斯反演框架建立了P波线性AVAZ反演方法.合成地震数据应用表明基于贝叶斯理论的TTI介质裂缝柔度反演方法具有一定抗噪性,可以降低裂缝柔度估测的不确定性,为地下裂缝预测提供有力的依据.  相似文献   

6.
Seismic amplitudes contain important information that can be related to fluid saturation. The amplitude‐versus‐offset analysis of seismic data based on Gassmann's theory and the approximation of the Zoeppritz equations has played a central role in reservoir characterization. However, this standard technique faces a long‐standing problem: its inability to distinguish between partial gas and “fizz‐water” with little gas saturation. In this paper, we studied seismic dispersion and attenuation in partially saturated poroelastic media by using frequency‐dependent rock physics model, through which the frequency‐dependent amplitude‐versus‐offset response is calculated as a function of porosity and water saturation. We propose a cross‐plotting of two attributes derived from the frequency‐dependent amplitude‐versus‐offset response to differentiate partial gas saturation and “fizz‐water” saturation. One of the attributes is a measure of “low frequency”, or Gassmann, of reflectivity, whereas the other is a measure of the “frequency dependence” of reflectivity. This is in contrast to standard amplitude‐versus‐offset attributes, where there is typically no such separation. A pragmatic frequency‐dependent amplitude‐versus‐offset inversion for rock and fluid properties is also established based on Bayesian theorem. A synthetic study is performed to explore the potential of the method to estimate gas saturation and porosity variations. An advantage of our work is that the method is in principle predictive, opening the way to further testing and calibration with field data. We believe that such work should guide and augment more theoretical studies of frequency‐dependent amplitude‐versus‐offset analysis.  相似文献   

7.
Acoustic impedance is one of the best attributes for seismic interpretation and reservoir characterisation. We present an approach for estimating acoustic impedance accurately from a band‐limited and noisy seismic data. The approach is composed of two stages: inverting for reflectivity from seismic data and then estimating impedance from the reflectivity inverted in the first stage. For the first stage, we achieve a two‐step spectral inversion that locates the positions of reflection coefficients in the first step and determines the amplitudes of the reflection coefficients in the second step under the constraints of the positions located in the first step. For the second stage, we construct an iterative impedance estimation algorithm based on reflectivity. In each iteration, the iterative impedance estimation algorithm estimates the absolute acoustic impedance based on an initial acoustic impedance model that is given by summing the high‐frequency component of acoustic impedance estimated at the last iteration and a low‐frequency component determined in advance using other data. The known low‐frequency component is used to restrict the acoustic impedance variation tendency in each iteration. Examples using one‐ and two‐dimensional synthetic and field seismic data show that the approach is flexible and superior to the conventional spectral inversion and recursive inversion methods for generating more accurate acoustic impedance models.  相似文献   

8.
Despite their apparent high dimensionality, spatially distributed hydraulic properties of geologic formations can often be compactly (sparsely) described in a properly designed basis. Hence, the estimation of high-dimensional subsurface flow properties from dynamic performance and monitoring data can be formulated and solved as a sparse reconstruction inverse problem. Recent advances in statistical signal processing, formalized under the compressed sensing paradigm, provide important guidelines on formulating and solving sparse inverse problems, primarily for linear models and using a deterministic framework. Given the uncertainty in describing subsurface physical properties, even after integration of the dynamic data, it is important to develop a practical sparse Bayesian inversion approach to enable uncertainty quantification. In this paper, we use sparse geologic dictionaries to compactly represent uncertain subsurface flow properties and develop a practical sparse Bayesian method for effective data integration and uncertainty quantification. The multi-Gaussian assumption that is widely used in classical probabilistic inverse theory is not appropriate for representing sparse prior models. Following the results presented by the compressed sensing paradigm, the Laplace (or double exponential) probability distribution is found to be more suitable for representing sparse parameters. However, combining Laplace priors with the frequently used Gaussian likelihood functions leads to neither a Laplace nor a Gaussian posterior distribution, which complicates the analytical characterization of the posterior. Here, we first express the form of the Maximum A-Posteriori (MAP) estimate for Laplace priors and then use the Monte-Carlo-based Randomize Maximum Likelihood (RML) method to generate approximate samples from the posterior distribution. The proposed Sparse RML (SpRML) approximate sampling approach can be used to assess the uncertainty in the calibrated model with a relatively modest computational complexity. We demonstrate the suitability and effectiveness of the SpRML formulation using a series of numerical experiments of two-phase flow systems in both Gaussian and non-Gaussian property distributions in petroleum reservoirs and successfully apply the method to an adapted version of the PUNQ-S3 benchmark reservoir model.  相似文献   

9.
针对利用地震道进行相对波阻抗反演中遇到的横向连续性难以保持、初始子波容错度差以及随机噪声干扰影响反演结果等问题,提出了一种基于矩阵Toeplitz稀疏分解的相对波阻抗反演方法.该方法将地震数据剖面的Toeplitz稀疏分解问题分解为两个子反演问题,其一以Toeplitz子波矩阵元素为待反演的参数,用Fused Lasso方法求解,可保证子波具有紧支集且是光滑的;其二以稀疏反射系数矩阵元素为待反演参数,用基于回溯的快速萎缩阈值迭代算法求解,大大降低了目标函数中参数选择的难度.通过交替迭代求解上述两个子反演问题可将地震数据剖面因式分解为一个Toeplitz子波矩阵和一个稀疏反射系数矩阵;然后由反射系数矩阵递推反演可以得到高分辨率的相对波阻抗剖面;利用测井资料加入低频分量后,也可得到高分辨率的绝对波阻抗剖面.Marmousi2模型生成的合成记录算例和实际地震资料算例均表明:本文方法可以从带限地震数据中有效地反演相对波阻抗,反演结果分辨率高并且能够很好地保持地震数据的横向连续性;即使在初始估计子波存在误差和地震数据被随机噪声污染的情况下也能取得较好的效果.  相似文献   

10.
针对常规大地电磁(Magnetotelluric,MT)反演方法对电阻率异常体边界不太敏感的问题,本文尝试基于贝叶斯理论开展二维大地电磁电阻率尖锐边界反演研究.在反演中,模型参数由边界位置及内部电阻率组成,通过贝叶斯理论将模型参数与数据相联系,采用Markov Chain Monte Carlo(MCMC)的Metropolis-Hastings(MH)方法对后验概率密度函数(Posteriori Probability Density,PDD)进行采样.采样过程中无罚值函数约束,完全以数据自身所包含的信息对模型进行约束,同时与有限约束进行比较,并考虑不同起始采样点对结果的影响.以接受率为参考,用模型算例说明MH方法中建议分布函数选择的重要性.当模型参数间相关性较弱时,使用边缘概率分布对采样结果进行分析.该方法能给出模型参数的分布范围,并给出该模型参数范围对应的数据范围.通过与已知模型的对比及数据拟合情况分析检验了该反演方法的有效性.该方法有助于提高大地电磁尖锐边界反演的分辨能力.  相似文献   

11.
为了提高AVO(amplitude versus offset)反演结果的精度和横向连续性,本文提出了一种新的AVO反演约束方法,该方法结合贝叶斯原理和卡尔曼滤波算法实现了对反演参数纵向和横向的同时约束.文章首先结合反演参数的纵向贝叶斯先验概率约束和反演参数的横向连续性假设建立了与卡尔曼滤波算法对应的AVO反演系统的数学模型,然后将该数学模型代入卡尔曼滤波算法框架,利用卡尔曼滤波算法实现了双向约束AVO反演.二维模型测试和实际数据测试结果表明,相对于单纯的纵向贝叶斯先验概率约束,双向约束能更准确地刻画参数的横向变化,得到更准确、横向连续性更好的反演结果.  相似文献   

12.
Full‐waveform inversion is re‐emerging as a powerful data‐fitting procedure for quantitative seismic imaging of the subsurface from wide‐azimuth seismic data. This method is suitable to build high‐resolution velocity models provided that the targeted area is sampled by both diving waves and reflected waves. However, the conventional formulation of full‐waveform inversion prevents the reconstruction of the small wavenumber components of the velocity model when the subsurface is sampled by reflected waves only. This typically occurs as the depth becomes significant with respect to the length of the receiver array. This study first aims to highlight the limits of the conventional form of full‐waveform inversion when applied to seismic reflection data, through a simple canonical example of seismic imaging and to propose a new inversion workflow that overcomes these limitations. The governing idea is to decompose the subsurface model as a background part, which we seek to update and a singular part that corresponds to some prior knowledge of the reflectivity. Forcing this scale uncoupling in the full‐waveform inversion formalism brings out the transmitted wavepaths that connect the sources and receivers to the reflectors in the sensitivity kernel of the full‐waveform inversion, which is otherwise dominated by the migration impulse responses formed by the correlation of the downgoing direct wavefields coming from the shot and receiver positions. This transmission regime makes full‐waveform inversion amenable to the update of the long‐to‐intermediate wavelengths of the background model from the wide scattering‐angle information. However, we show that this prior knowledge of the reflectivity does not prevent the use of a suitable misfit measurement based on cross‐correlation, to avoid cycle‐skipping issues as well as a suitable inversion domain as the pseudo‐depth domain that allows us to preserve the invariant property of the zero‐offset time. This latter feature is useful to avoid updating the reflectivity information at each non‐linear iteration of the full‐waveform inversion, hence considerably reducing the computational cost of the entire workflow. Prior information of the reflectivity in the full‐waveform inversion formalism, a robust misfit function that prevents cycle‐skipping issues and a suitable inversion domain that preserves the seismic invariant are the three key ingredients that should ensure well‐posedness and computational efficiency of full‐waveform inversion algorithms for seismic reflection data.  相似文献   

13.
Knowledge about the spatial distribution of the fracture density and the azimuthal fracture orientation can greatly help in optimizing production from fractured reservoirs. Frequency-dependent seismic velocity and attenuation anisotropy data contain information about the fractures present in the reservoir. In this study, we use the measurements of velocity and attenuation anisotropy data corresponding to different seismic frequencies and azimuths to infer information about the multiple fracture sets present in the reservoir. We consider a reservoir model with two sets of vertical fractures characterized by unknown azimuthal fracture orientations and fracture densities. Frequency-dependent seismic velocity and attenuation anisotropy data is computed using the effective viscoelastic stiffness tensor and solving the Christoffel equation. A Bayesian inversion method is then applied to measurements of velocity and attenuation anisotropy data corresponding to different seismic frequencies and azimuth to estimate the azimuthal fracture orientations and the fracture densities, as well as their uncertainties. Our numerical examples suggest that velocity anisotropy data alone cannot recover the unknown fracture parameters. However, an improved estimation of the unknown fracture parameters can be obtained by joint inversion of velocity and attenuation anisotropy data.  相似文献   

14.
15.
频率域航空电磁数据变维数贝叶斯反演研究   总被引:5,自引:2,他引:3       下载免费PDF全文
传统的梯度反演方法已经广泛应用于频率域航空电磁数据处理中,然而此类方法受初始模型影响较大,且容易陷入局部极小.为解决这一问题,本文采用改进的变维数贝叶斯反演方法实现航空电磁数据反演.该方法根据建议分布对反演模型进行随机采样,并依据接受概率筛选合理的候选模型,最终获得反演模型的概率分布和不确定度信息.为解决贝叶斯反演方法对深部低阻层反演效果不佳的问题,本文通过引入合理加权系数,调整对反演模型约束强度,在很大程度上改善了反演效果.通过对模型统计方法进行改进,在遵循原有模型采样方法和接受标准的基础上,将满足数据拟合要求的模型纳入统计范围,削弱不合理模型对统计结果的干扰.本文最后通过对含有高斯噪声的理论数据和实测数据进行反演,并与Occam反演结果进行对比,验证了该方法的有效性.  相似文献   

16.
多尺度地震资料联合反演方法研究   总被引:9,自引:3,他引:6       下载免费PDF全文
常规三维地面地震反演不可避免的存在多解性和分辨率不高的缺陷,而油藏地球物理阶段丰富的多尺度地震资料为减小多解性、提高分辨率提供了可能.基于贝叶斯反演理论,通过联合概率分布建立新的似然函数,将三维地面地震、VSP和井间地震三种多尺度资料有机地融合在一起,完善了多尺度地震资料联合反演框架及反演流程.模型测试及实际资料处理表明,联合反演算法有效地引入了小尺度地震资料中的高频信息对大尺度资料进行约束,反演结果在保留大尺度地震资料特征的基础上提高了分辨率,降低了多解性,同时促进了多种地震资料之间的相互匹配.  相似文献   

17.
基于贝叶斯理论的AVO三参数波形反演   总被引:31,自引:7,他引:24       下载免费PDF全文
在实际的AVO反演问题中,叠前数据体中的噪声或其他因素严重影响了AVO反演问题的适定性,而采用先验地质信息作为AVO反演问题的约束条件是解决AVO反演问题不适定的一种可行方法. 文中的似然函数采用了[WTBX]ι[WTBX]p范数的解,并用Cauchy分布表示先验模型参数的分布. 以此为基础,在反演中建立了测井数据的参数协方差矩阵对反演过程进行约束,并采用了共轭梯度算法实现多参数非线性的反演过程. 同时,为了提高反演精度,避免动校正拉伸及依赖于炮检距的调谐效应对参数估计的影响,反演采用动校前地震数据进行参数估计. 从应用效果分析来看,即使叠前道集的信噪比不高,反演的结果也能较好地与实际情况相匹配,为识别储层流体性质提供了新的手段.  相似文献   

18.
Attempts have previously been made to predict anisotropic permeability in fractured reservoirs from seismic Amplitude Versus Angle and Azimuth data on the basis of a consistent permeability‐stiffness model and the anisotropic Gassmann relations of Brown and Korringa. However, these attempts were not very successful, mainly because the effective stiffness tensor of a fractured porous medium under saturated (drained) conditions is much less sensitive to the aperture of the fractures than the corresponding permeability tensor. We here show that one can obtain information about the fracture aperture as well as the fracture density and orientation (which determines the effective permeability) from frequency‐dependent seismic Amplitude Versus Angle and Azimuth data. Our workflow is based on a unified stiffness‐permeability model, which takes into account seismic attenuation by wave‐induced fluid flow. Synthetic seismic Amplitude Versus Angle and Azimuth data are generated by using a combination of a dynamic effective medium theory with Rüger's approximations for PP reflection coefficients in Horizontally Transversely Isotropic media. A Monte Carlo method is used to perform a Bayesian inversion of these synthetic seismic Amplitude Versus Angle and Azimuth data with respect to the parameters of the fractures. An effective permeability model is then used to construct the corresponding probability density functions for the different components of the effective permeability constants. The results suggest that an improved characterization of fractured reservoirs can indeed be obtained from frequency‐dependent seismic Amplitude Versus Angle and Azimuth data, provided that a dynamic effective medium model is used in the inversion process and a priori information about the fracture length is available.  相似文献   

19.
基于地质统计先验信息的储层物性参数同步反演   总被引:4,自引:1,他引:3  
本文提出的储层物性参数同步反演是一种高分辨率的非线性反演方法,该方法综合利用岩石物理和地质统计先验信息,在贝叶斯理论框架下,首先通过变差结构分析得到合理的变差函数,进而利用快速傅里叶滑动平均模拟算法(Fast Fourier TransformMoving Average,FFT-MA)和逐渐变形算法(Gradual Deformation Method,GDM)得到基于地质统计学的储层物性参数先验信息,然后根据统计岩石物理模型建立弹性参数与储层物性参数之间的关系,构建似然函数,最终利用Metropolis算法实现后验概率密度的抽样,得到物性参数反演结果。并将此方法处理了中国陆上探区的一块实际资料,本方法的反演结果具有较高的分辨率,与测井数据吻合度较高;由于可以直接反演储层物性参数,避免了误差的累积,大大减少了不确定性的传递,且计算效率较高。  相似文献   

20.
Horizontally layered (1D) earth models are often assumed as a model estimate for the interpretation of geophysical data measured along 2D geological structures. In this process, the individual data sets are usually inverted independently, and it is considered only in a later phase of interpretation that these local (1D) models have common characteristic features. Taking account of these common attributes, instead of the successive independent interpretations, the lateral variations of geometrical and petrophysical parameters can be efficiently determined for the whole 2D structure by applying a series expansion. Using global basis functions, two advantages can be achieved: (i) choosing an appropriate number of basis functions helps us to restrict the complexity of the model; (ii) the integration of all the data sets measured along the profile gives rise to the application of simultaneous or joint inversion methods. This results in a decrease of the number of independent unknowns, a higher stability during the inversion and a more accurate and reliable parameter estimation.In this paper, a joint inversion algorithm is presented using DC geoelectric apparent resistivities and refraction seismic travel times measured along various layouts above a 2D geological model. To describe lateral variations series, expansions are used, and furthermore, to improve the often used approximation of a (locally) 1D forward modelling, the integral mean value of the horizontally changing model parameters (calculated along an appropriately defined interval) is introduced. We call the inversion procedure that combines series expansions and the concept of integral mean Generalised Series Expansion (GSE) inversion. The method was developed and tested for both the simultaneous (integrating data sets of one method or methods on the same physical basis) and the joint inversion (where data sets of methods on different physical bases are joined together), using synthetic and field data sets. It is also demonstrated that the equivalence problem inherent in the independent inversion of DC geoelectric data can efficiently be resolved by the use of the joint GSE inversion method in the cases of conductive and resistive equivalent geological models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号