共查询到20条相似文献,搜索用时 0 毫秒
1.
We conducted a laboratory study of the joint elastic‐electrical properties of sixty‐three brine‐saturated sandstone samples to assess the likely impact of differential pressure (confining minus pore fluid pressures) in the range 8–60 MPa on the joint interpretation of marine seismic and controlled‐source electromagnetic survey data. The samples showed a wide range of petrophysical properties representative of most sandstone reservoirs. We found that a regression equation comprising both a constant and an exponential part gave a good fit to the pressure dependence of all five measured geophysical parameters (ultrasonic P‐ and S‐wave velocity, attenuation and electrical resistivity). Electrical resistivity was more pressure‐sensitive in clay‐rich sandstones with higher concentrations of low aspect ratio pores and micropores than in clean sandstones. Attenuation was more pressure‐sensitive in clean sandstones with large open pores (macropores) than in clay‐rich sandstones. Pore shape did not show any influence on the pressure sensitivity of elastic velocity. As differential pressure increases, the effect of the low aspect ratio pores and micropores on electrical resistivity becomes stronger than the effect of the macropores on attenuation. Further analysis of correlations among the five parameters as a function of pressure revealed potentially diagnostic relationships for geopressure prediction in reservoir sandstones. 相似文献
2.
Angus I. Best Lucy M. MacGregor Jeremy Sothcott Tim A. Minshull 《Geophysical Prospecting》2011,59(4):777-786
Improvements in the joint inversion of seismic and marine controlled source electromagnetic data sets will require better constrained models of the joint elastic‐electrical properties of reservoir rocks. Various effective medium models were compared to a novel laboratory data set of elastic velocity and electrical resistivity (obtained on 67 reservoir sandstone samples saturated with 35 g/l brine at a differential pressure of 8 MPa) with mixed results. Hence, we developed a new three‐phase effective medium model for sandstones with pore‐filling clay minerals based on the combined self‐consistent approximation and differential effective medium model. We found that using a critical porosity of 0.5 and an aspect ratio of 1 for all three components, the proposed model gave accurate model predictions of the observed magnitudes of P‐wave velocity and electrical resistivity and of the divergent trends of clean and clay‐rich sandstones at higher porosities. Using only a few well‐constrained input parameters, the new model offers a practical way to predict in situ porosity and clay content in brine saturated sandstones from co‐located P‐wave velocity and electrical resistivity data sets. 相似文献
3.
We measured in the laboratory ultrasonic compressional and shear‐wave velocity and attenuation (0.7–1.0 MHz) and low‐frequency (2 Hz) electrical resistivity on 63 sandstone samples with a wide range of petrophysical properties to study the influence of reservoir porosity, permeability and clay content on the joint elastic‐electrical properties of reservoir sandstones. P‐ and S‐wave velocities were found to be linearly correlated with apparent electrical formation factor on a semi‐logarithmic scale for both clean and clay‐rich sandstones; P‐ and S‐wave attenuations showed a bell‐shaped correlation (partial for S‐waves) with apparent electrical formation factor. The joint elastic‐electrical properties provide a way to discriminate between sandstones with similar porosities but with different clay contents. The laboratory results can be used to estimate sandstone reservoir permeability from seismic velocity and apparent formation factor obtained from co‐located seismic and controlled source electromagnetic surveys. 相似文献
4.
The use of optimized arrays generated using the ‘Compare R’ method for cross‐borehole resistivity measurements is examined in this paper. We compare the performances of two array optimization algorithms, one that maximizes the model resolution and another that minimizes the point spread value. Although both algorithms give similar results, the model resolution maximization algorithm is several times faster. A study of the point spread function plots for a cross‐borehole survey shows that the model resolution within the central zone surrounded by the borehole electrodes is much higher than near the bottom end of the boreholes. Tests with synthetic and experimental data show that the optimized arrays generated by the ‘Compare R’ method have significantly better resolution than a ‘standard’ measurement sequence used in previous surveys. The resolution of the optimized arrays is less if arrays with both current (or both potential) electrodes in the same borehole are excluded. However, they are still better than the ‘standard’ arrays. 相似文献
5.
Kenneth Bredesen Per Avseth Tor Arne Johansen Richard Olstad 《Geophysical Prospecting》2019,67(4):825-842
Understanding how physical properties and seismic signatures of present day rocks are related to ancient geological processes is important for enhanced reservoir characterization. In this paper, we have studied this relationship for the Kobbe Formation sandstone in the Barents Sea. These rocks show anomalous low shear velocities and high VP/VS ratios, which does not agree well with conventional rock physics models for moderately to well consolidated sandstones. These sandstones have been buried relatively deeply and subsequently uplifted 1–2 km. We compared well log data of the Kobbe sandstone with velocity–depth trends modelled by integrating basin modelling principles and rock physics. We found that more accurate velocity predictions were obtained when first honouring mechanical and chemical compaction during burial, followed by generation of micro-cracks during uplift. We suspect that these micro-cracks are formed as overburden is eroded, leading to changes in the subsurface stress-field. Moreover, the Kobbe Formation is typically heterogeneous and characterized by structural clays and mica that can reduce the rigidity of grain contacts. By accounting for depositional and burial history, our velocity predictions become more consistent with geophysical observables. Our approach yields more robust velocity predictions, which are important in prospect risking and net erosion estimates. 相似文献
6.
Seismic driven probabilistic classification of reservoir facies for static reservoir modelling: a case history in the Barents Sea 总被引:2,自引:0,他引:2
Dario Grana Enrico Paparozzi Silvia Mancini Cristiano Tarchiani 《Geophysical Prospecting》2013,61(3):613-629
In this paper we present a case history of seismic reservoir characterization where we estimate the probability of facies from seismic data and simulate a set of reservoir models honouring seismically‐derived probabilistic information. In appraisal and development phases, seismic data have a key role in reservoir characterization and static reservoir modelling, as in most of the cases seismic data are the only information available far away from the wells. However seismic data do not provide any direct measurements of reservoir properties, which have then to be estimated as a solution of a joint inverse problem. For this reason, we show the application of a complete workflow for static reservoir modelling where seismic data are integrated to derive probability volumes of facies and reservoir properties to condition reservoir geostatistical simulations. The studied case is a clastic reservoir in the Barents Sea, where a complete data set of well logs from five wells and a set of partial‐stacked seismic data are available. The multi‐property workflow is based on seismic inversion, petrophysics and rock physics modelling. In particular, log‐facies are defined on the basis of sedimentological information, petrophysical properties and also their elastic response. The link between petrophysical and elastic attributes is preserved by introducing a rock‐physics model in the inversion methodology. Finally, the uncertainty in the reservoir model is represented by multiple geostatistical realizations. The main result of this workflow is a set of facies realizations and associated rock properties that honour, within a fixed tolerance, seismic and well log data and assess the uncertainty associated with reservoir modelling. 相似文献
7.
The phenomenon of acoustic waves inducing electric fields in porous media is called the seismoelectric effect. Earlier investigators proposed the usage of seismoelectric effect for well logging. Soil texture has a strong influence on the coupled wave fields during shallow surface explorations. In this article, we study the borehole pure shear‐horizontal wave and the coupling transverse‐electric field (acoustic–electrical coupling wave fields) in the partially saturated soil. Combined with related theories, we expand the formation parameters to partially saturated forms and discuss the influence of soil texture conditions on the seismoelectric wave fields. The results show that the elastic and electrical properties of porous media are sensitive to water saturation. The compositions of the acoustic and electric fields for different soil textures do not change, but the waveforms differ. We also use the secant integral method to simulate the interface‐converted electromagnetic waves. The results show that interface response strength is greatly influenced by soil texture. In addition, considering the sensitivity of the inducing electric field to fluid salinity, we also simulate the time‐domain waveforms of electric field for different pore fluid salinity levels. The results show that as the salinity increases, the electric field amplitude decreases monotonically. The above conclusions have certain significance for the application of borehole shear wave and its coupled electric fields for resource exploration, saturation assessment and groundwater pollution monitoring. 相似文献
8.
A land controlled‐source electromagnetic experiment using a deep vertical electric dipole: experimental settings,processing, and first data interpretation 下载免费PDF全文
E. Vilamajó B. Rondeleux P. Queralt A. Marcuello J. Ledo 《Geophysical Prospecting》2015,63(6):1527-1540
A multichannel borehole‐to‐surface controlled‐source electromagnetic experiment was carried out at the onshore CO2 storage site of Hontomín (Spain). The electromagnetic source consisted of a vertical electric dipole located 1.5 km deep, and the electric field was measured at the surface. The subsurface response has been obtained by calculating the transfer function between the transmitted signal and the electric field at the receiver positions. The dataset has been processed using a fast processing methodology, appropriate to be applied on controlled‐source electromagnetics (CSEM) data with a large signal‐to‐noise ratio. The dataset has been analysed in terms of data quality and repeatability errors, showing data with low experimental errors and good repeatability. We evaluate if the induction of current along the casing of the injection well can reproduce the behaviour of the experimental data. 相似文献
9.
A workflow for simultaneous joint PP‐PS prestack inversion of data from the Schiehallion field on the United Kingdom Continental Shelf is presented and discussed. The main challenge, describing reasonable PS to PP data registration before any prestack or joint PP‐PS inversion, was overcome thanks to a two‐stage process addressing the signal envelope, then working directly on the seismic data to estimate appropriate time‐variant time‐shift volumes. We evaluated the benefits of including PS along with PP prestack seismic data in a joint inversion process to improve the estimated elastic property quality and also to enable estimation of density compared with other prestack and post‐stack inversion approaches. While the estimated acoustic impedance exhibited a similar quality independent of the inversion used (PP post‐stack, PP prestack or joint PP‐PS prestack inversion) the shear impedance estimation was noticeably improved by the joint PP‐PS prestack inversion when compared to the PP prestack inversion. Finally, the density estimated from joint PP and PS prestack data demonstrated an overall good quality, even where not well‐controlled. The main outcome of this study was that despite several data‐related limitations, inverting jointly correctly processed PP and PS data sets brought extra value for reservoir delineation as opposed to PP‐only or post‐stack inversion. 相似文献
10.
为了更深入的研究电成像测井资料在储层评价方面的应用,针对碎屑岩、碳酸盐岩及薄互层三种类型的储层建立了三种新技术.通过对环井周电阻率数据进行统计,建立了电阻率谱技术及分选指数的计算方法,根据谱峰的宽窄及分选指数大小对碎屑岩储层分选性及非均质性进行评价,对于预测高产储层具有一定的指导意义;通过阿尔奇公式将环井周电阻率转换为孔隙度,并对孔隙度数据进行统计,建立了孔隙度谱技术及基质孔隙度及次生孔隙度的计算方法,对于评价碳酸盐岩储集层次生孔隙发育情况具有重要作用;利用电成像高分辨的优势,通过对薄互层电阻率进行统计,根据砂泥岩电阻率的差异,建立了薄互层有效厚度的计算方法,成为评价薄互层的一种重要手段.阐述了这些方法的基本原理及适应的岩性条件,拓展了电成像测井资料在储层评价方面的应用. 相似文献
11.
Seismic wave propagation through a fluid-saturated poroelastic layer might be strongly affected by media heterogeneities. Via incorporating controlled laboratory simulation experiments, we extend previous studies of time-lapse seismic effects to evaluate the wave scattering influence of the heterogeneous nature of porous permeable media and the associated amplification effects on 4D seismic response characteristics of reservoir fluid substitution. A physical model consisted of stratified thin layers of shale and porous sandstone reservoir with rock heterogeneities was built based on the geological data of a real hydrocarbon-saturated reservoir in Northeast China. Multi-surveys data of good quality were acquired by filling poroelastic reservoir layers with gas, water and oil in sequence. Experimental observations show that reservoir heterogeneity effect causes significantly magnified abnormal responses to the fluid-saturated media. Specifically, reflection signatures of the gas-filled reservoir are dramatically deviated from those of the liquid fluid-filled reservoir, compared with ones of the homogeneous media. By removing the influences unrelated to reservoir property alterations, 4D seismic estimates of travel-time and frequency-dependent characteristic are reasonably consistent with fluid variations. Nevertheless, strong 4D amplitude difference anomalies might not correspond to the regions where fluid variations occur. We also find that 4D seismic difference attributes are evident between oil- and water-filled models, whereas significant between oil- and gas-filled models. Meanwhile, rock physics modelling results reveal the predicted 4D seismic differences are obviously smaller than those calculated from seismic observations. The results in this paper, therefore, implicate that the effect of a reservoir's heterogeneous nature might be beneficial for hydrocarbons detection as well as monitoring small variations in pore fluids. 相似文献
12.
Leonardo Azevedo Rúben Nunes Amílcar Soares Guenther Schwedersky Neto Teresa S. Martins 《Geophysical Prospecting》2018,66(Z1):116-131
Seismic inversion plays an important role in reservoir modelling and characterisation due to its potential for assessing the spatial distribution of the sub‐surface petro‐elastic properties. Seismic amplitude‐versus‐angle inversion methodologies allow to retrieve P‐wave and S‐wave velocities and density individually allowing a better characterisation of existing litho‐fluid facies. We present an iterative geostatistical seismic amplitude‐versus‐angle inversion algorithm that inverts pre‐stack seismic data, sorted by angle gather, directly for: density; P‐wave; and S‐wave velocity models. The proposed iterative geostatistical inverse procedure is based on the use of stochastic sequential simulation and co‐simulation algorithms as the perturbation technique of the model parametre space; and the use of a genetic algorithm as a global optimiser to make the simulated elastic models converge from iteration to iteration. All the elastic models simulated during the iterative procedure honour the marginal prior distributions of P‐wave velocity, S‐wave velocity and density estimated from the available well‐log data, and the corresponding joint distributions between density versus P‐wave velocity and P‐wave versus S‐wave velocity. We successfully tested and implemented the proposed inversion procedure on a pre‐stack synthetic dataset, built from a real reservoir, and on a real pre‐stack seismic dataset acquired over a deep‐water gas reservoir. In both cases the results show a good convergence between real and synthetic seismic and reliable high‐resolution elastic sub‐surface Earth models. 相似文献
13.
The added value of the joint pre-stack inversion of PP (incident P-wave and reflected P-wave) and PS (incident P-wave and reflected S-wave) seismic data for the time-lapse application is shown. We focus on the application of this technique to the time-lapse (four-dimensional) multicomponent Jubarte field permanent reservoir monitoring seismic data. The joint inversion results are less sensitive to noise in the input data and show a better match with the rock physics models calibrated for the field. Further, joint inversion improves S-impedance estimates and provides a more robust quantitative interpretation, allowing enhanced differentiation between pore pressure and fluid saturation changes, which will be extremely useful for reservoir management. Small changes in reservoir properties are expected in the short time between the time-lapse seismic acquisitions used in the Jubarte project (only 1 year apart). The attempt to recover subtle fourth-dimensional effects via elastic inversion is recurrent in reservoir characterization projects, either due to the small sensitivity of the reservoirs to fluid and pressure changes or the short interval between the acquisitions. Therefore, looking for methodologies that minimize the uncertainty of fourth-dimensional inversion outputs is of fundamental importance. Here, we also show the differences between PP only and joint PP–PS inversion workflows and parameterizations that can be applied in other projects. We show the impact of using multicomponent data as input for elastic seismic inversions in the analysis of the time-lapse differences of the elastic properties. The larger investment in the acquisition and processing of multicomponent seismic data is shown to be justified by the improved results from the fourth-dimensional joint inversion. 相似文献
14.
The reassignment method remaps the energy of each point in a time‐frequency spectrum to a new coordinate that is closer to the actual time‐frequency location. Two applications of the reassignment method are developed in this paper. We first describe time‐frequency reassignment as a tool for spectral decomposition. The reassignment method helps to generate more clear frequency slices of layers and therefore, it facilitates the interpretation of thin layers. The second application is to seismic data de‐noising. Through thresholding in the reassigned domain rather than in the Gabor domain, random noise is more easily attenuated since seismic events are more compactly represented with a relatively larger energy than the noise. A reconstruction process that permits the recovery of seismic data from a reassigned time‐frequency spectrum is developed. Two approaches of the reassignment method are used in this paper, one of which is referred to as the trace by trace time reassignment that is mainly used for seismic spectral decomposition and another that is the spatial reassignment that is mainly used for seismic de‐noising. Synthetic examples and two field data examples are used to test the proposed method. For comparison, the Gabor transform method, inversion‐based method and common deconvolution method are also used in the examples. 相似文献
15.
This paper discusses the asymptotic behaviour of the electromagnetic fields received on the sea‐bed (target response), as well as the fields distributed inside a thin resistive target, generated by a horizontal electric dipole above the sea‐bed in marine controlled‐source electromagnetics for hydrocarbon exploration. It is found that the guided wave supported by a thin resistive target can be expressed as a single‐mode exponential function. A simple closed‐form expression is derived to relate the single‐mode wavenumber of the guided wave to the model parameters: the resistivity and thickness of the target layer, the sea‐bed resistivity and the frequency. When the air‐wave is removed, the guided wave is dominant among the fields received on the sea‐bed at far offset. Hence the wavenumber of the guided wave can be calculated from the fields measured on the sea‐bed. The closed‐form expression can then be used to invert the target property from the calculated wavenumber and hence, can be considered as a hydrocarbon indicator. 相似文献
16.
Updating of reservoir models by history matching of 4D seismic data along with production data gives us a better understanding of changes to the reservoir, reduces risk in forecasting and leads to better management decisions. This process of seismic history matching requires an accurate representation of predicted and observed data so that they can be compared quantitatively when using automated inversion. Observed seismic data is often obtained as a relative measure of the reservoir state or its change, however. The data, usually attribute maps, need to be calibrated to be compared to predictions. In this paper we describe an alternative approach where we normalize the data by scaling to the model data in regions where predictions are good. To remove measurements of high uncertainty and make normalization more effective, we use a measure of repeatability of the monitor surveys to filter the observed time‐lapse data. We apply this approach to the Nelson field. We normalize the 4D signature based on deriving a least squares regression equation between the observed and synthetic data which consist of attributes representing measured acoustic impedances and predictions from the model. Two regression equations are derived as part of the analysis. For one, the whole 4D signature map of the reservoir is used while in the second, 4D seismic data is used from the vicinity of wells with a good production match. The repeatability of time‐lapse seismic data is assessed using the normalized root mean square of measurements outside of the reservoir. Where normalized root mean square is high, observations and predictions are ignored. Net: gross and permeability are modified to improve the match. The best results are obtained by using the normalized root mean square filtered maps of the 4D signature which better constrain normalization. The misfit of the first six years of history data is reduced by 55 per cent while the forecast of the following three years is reduced by 29 per cent. The well based normalization uses fewer data when repeatability is used as a filter and the result is poorer. The value of seismic data is demonstrated from production matching only where the history and forecast misfit reductions are 45% and 20% respectively while the seismic misfit increases by 5%. In the best case using seismic data, it dropped by 6%. We conclude that normalization with repeatability based filtering is a useful approach in the absence of full calibration and improves the reliability of seismic data. 相似文献
17.
目前世界上水力压裂技术是老油田增产和低渗透油气田开发所应用最为广泛、最为有效的技术措施,油气储层裂缝分布规律监测对于油田勘探开发具有重要意义.本文利用压裂液在地层中的低阻特性与极化特性,基于井地电阻率法与激发极化法联合,根据位场理论镜像原理,采用三维有限差分,计算了多种压裂模型的地表传导电位与极化电位;通过非等权值的数据融合算法,计算了地表双参数异常,仿真数据的研究结果表明,双参数融合技术在异常提取方面具有明显优势.在此基础上,基于双波大功率联合发射技术、时分复用低噪声接收技术,研制了井地电法双参数联合监测仪器系统,共模抑制比达110 dB,有效地提取了微弱异常信号.通过陕西省富县华北局油田的压裂野外联合监测试验,表明了井地电法双参数联合监测仪器系统在水力压裂裂缝监测中具有较好的监测效果和较高的分辨率,解决了在低电阻率储层压裂或深井压裂情况下监测困难以及单一方法的监测结果多解性等问题,实现对油田水力压裂裂缝的实时监测. 相似文献
18.
Ismael Himar Falcon-Suarez Kelvin Amalokwu Jordi Delgado-Martin Ben Callow Katleen Robert Laurence North Sourav K. Sahoo Angus I. Best 《Geophysical Prospecting》2019,67(4):784-803
Synthetic rock samples can offer advantages over natural rock samples when used for laboratory rock physical properties studies, provided their success as natural analogues is well understood. The ability of synthetic rocks to mimic the natural stress dependency of elastic wave, electrical and fluid transport properties is of primary interest. Hence, we compare a consistent set of laboratory multi-physics measurements obtained on four quartz sandstone samples (porosity range 20–25%) comprising two synthetic and two natural (Berea and Corvio) samples, the latter used extensively as standards in rock physics research. We measured simultaneously ultrasonic (P- and S-wave) velocity and attenuation, electrical resistivity, permeability and axial and radial strains over a wide range of differential pressure (confining stress 15–50 MPa; pore pressure 5–10 MPa) on the four brine saturated samples. Despite some obvious physical discrepancies caused by the synthetic manufacturing process, such as silica cementation and anisotropy, the results show only small differences in stress dependency between the synthetic and natural sandstones for all measured parameters. Stress dependency analysis of the dry samples using an isotropic effective medium model of spheroidal pores and penny-shaped cracks, together with a granular cohesion model, provide evidence of crack closure mechanisms in the natural sandstones, seen to a much lesser extent in the synthetic sandstones. The smaller grain size, greater cement content, and cementation under oedometric conditions particularly affect the fluid transport properties of the synthetic sandstones, resulting in lower permeability and higher electrical resistivity for a similar porosity. The effective stress coefficients, determined for each parameter, are in agreement with data reported in the literature. Our results for the particular synthetic materials that were tested suggest that synthetic sandstones can serve as good proxies for natural sandstones for studies of elastic and mechanical properties, but should be used with care for transport properties studies. 相似文献
19.
Controlled‐source electromagnetic monitoring of reservoir oil saturation using a novel borehole‐to‐surface configuration 下载免费PDF全文
To advance and optimize secondary and tertiary oil recovery techniques, it is essential to know the areal propagation and distribution of the injected fluids in the subsurface. We investigate the applicability of controlled‐source electromagnetic methods to monitor fluid movements in a German oilfield (Bockstedt, onshore Northwest Germany) as injected brines (highly saline formation water) have much lower electrical resistivity than the oil within the reservoir. The main focus of this study is on controlled‐source electromagnetic simulations to test the sensitivity of various source–receiver configurations. The background model for the simulations is based on two‐dimensional inversion of magnetotelluric data gathered across the oil field and calibrated with resistivity logs. Three‐dimensional modelling results suggest that controlled‐source electromagnetic methods are sensitive to resistivity changes at reservoir depths, but the effect is difficult to resolve with surface measurements only. Resolution increases significantly if sensors or transmitters can be placed in observation wells closer to the reservoir. In particular, observation of the vertical electric field component in shallow boreholes and/or use of source configurations consisting of combinations of vertical and horizontal dipoles are promising. Preliminary results from a borehole‐to‐surface controlled‐source electromagnetic field survey carried out in spring 2014 are in good agreement with the modelling studies. 相似文献
20.
A new formulation is proposed for the electrical potential developed inside a horizontally‐layered half‐space for a direct current point‐source at the surface. The recursion formula for the kernel coefficient in the potential integral is simpler than the generally used two‐coefficient recursion. The numerical difficulties that may occur during the computation of the integrals and near the source axis are examined and solutions are proposed. The set of equations permits a stable and accurate computation of the tabular potential everywhere in the medium. 相似文献