首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Arsenic is accumulated in groundwater in response to As desorption at an increase in the alkalinity of aqueous solution owing to (a) a decrease in the equilibrium concentration of the sorbed H3AsO30 and H3AsO40 species and (b) sorbent (iron hydroxide) decomposition, when Eh decreases below the line of the iron hydroxide-siderite equilibrium.  相似文献   

2.
A laboratory investigation was carried out to examine the mechanism of arsenic (As) mobilization under flooded conditions (24 and 240 h) in 18 alluvial soils of Punjab, North–West India. Total dissolved As increased from a range of 3–16 μg L?1 (mean 9 μg L?1) to a range of 33–1,761 μg L?1 (mean 392 μg L?1) with the increase in flooding period from 24 to 240 h. The amount of As mobilization varied depending upon redox potential (pe) created by flooding conditions. After 24 h of flooded conditions, pe of soil water suspension ranged from ?1.75 to 0.77 (mean ?0.24). Increasing the flooding period to 240 h, pe of soil water suspension decreased in the range of ?4.49 to ?2.74 (mean ?3.29). Pourbaix diagram identified arsenate (HAsO4 2?) as predominant species in most of the alluvial soil–water suspensions under oxidized conditions, after 24 h of equilibration period, which ultimately transformed to arsenite (H3AsO3 0) after 240 h of anaerobic condition due to more reduced status. The solid phase identified was orpiment (As2S3). Identification of iron and manganese species in alluvial soil water suspension by Pourbaix diagram indicated decline in both soluble Fe2+ and SO4 2? concentration due to the formation of iron sulfide mineral phase after 240 h under anaerobic conditions. In these soils, decline in soluble Fe was also due to the precipitation of vivianite [Fe3(PO4)2·8H2O]. Elevated arsenic content and low pe value were measured in aquifers located in paddy growing fields comparative to aquifers of other sites. Large degree of variability in As concentrations was recorded in aquifers located at same sites. Thus, it is better to analyze each aquifer for their As content rather than to depends on the prediction on As content of neighbouring wells. The present investigation elucidates that flood irrigation practices in Punjab for growing paddy crop could induce the geochemical conditions favorable to mobilize arsenic from surface soils which could eventually elevate its content in the underlying shallow aquifers. Water abstracted from these aquifers by hand pumps or tube wells for drinking purposes could create hazards for local population due to loading with arsenic concentration above the safe limits. Thus, to avoid further contamination of shallow aquifers with arsenic, it is advisable to shift the flooded rice cultivation to other upland crops having lesser water requirement.  相似文献   

3.
Speciation and colloid transport of arsenic from mine tailings   总被引:2,自引:0,他引:2  
In addition to affecting biogeochemical transformations, the speciation of As also influences its transport from tailings at inoperative mines. The speciation of As in tailings from the Sulfur Bank Mercury Mine site in Clear Lake, California (USA) (a hot-spring Hg deposit) and particles mobilized from these tailings have been examined during laboratory-column experiments. Solutions containing two common, plant-derived organic acids (oxalic and citric acid) were pumped at 13 pore volumes d−1 through 25 by 500 mm columns of calcined Hg ore, analogous to the pedogenesis of tailings. Chemical analysis of column effluent indicated that all of the As mobilized was particulate (1.5 mg, or 6% of the total As in the column through 255 pore volumes of leaching). Arsenic speciation was evaluated using X-ray absorption spectroscopy (XAS), indicating the dominance of arsenate [As(V)] sorbed to poorly crystalline Fe(III)-(hydr)oxides and coprecipitated with jarosite [KFe3(SO4, AsO4)2(OH)6] with no detectable primary or secondary minerals in the tailings and mobilized particles. Sequential chemical extractions (SCE) of <45 μm mine tailings fractions also suggest that As occurs adsorbed to Fe (hydr)oxides (35%) and coprecipitated within poorly crystalline phases (45%). In addition, SCEs suggest that As is associated with 1 N acid-soluble phases such as carbonate minerals (20%) and within crystalline Fe-(hydr)oxides (10%). The finding that As is transported from these mine tailings dominantly as As(V) adsorbed to Fe (hydr)oxides or coprecipitated within hydroxysulfates such as jarosite suggests that As release from soils and sediments contaminated with tailings will be controlled by either organic acid-promoted dissolution or reductive dissolution of host phases.  相似文献   

4.
Arsenic is a natural component of the earth’s crust, and it is transported into surface water and groundwater through the dissolution of rocks, minerals and ores. In addition, arsenic leaching processes contaminate water sources and this geogenic arsenic contamination causes significant water quality problems in many parts of the world. In this study, water quality, arsenic contamination and human health risks of drinking water resources in the Tav?anl? District were determined and the origins were discussed. For this purpose, geological and hydrogeological properties were investigated. In situ measurements and chemical analyses were carried out on water samples taken from drinking water sources such as wells, springs and surface waters for hydrogeochemical studies. According to the obtained results, water resources are Ca–Mg–HCO3, Mg–HCO3 and Na–HCO3 type. Total As (AsT) concentration of the water samples sometimes exceeds the permissible limit given by the TSI-266 (Standards for drinking waters, Turkish Standards Institution, Ankara, 2005) and WHO (Guidelines for drinking-water quality, World Health Organization, Geneva, 2008) for drinking water. H3AsO 3 0 and HAsO4 2? are dominant arsenic species in groundwater and surface water, respectively. Typically high total arsenic concentrations can be found in regions characterized by magmatic rocks. In addition, As concentrations in surface waters were found to be higher than in groundwater in the region, due to the anthropogenic influence of mining activities in the region.  相似文献   

5.
Groundwater contaminated with arsenic (As), when extensively used for irrigation, causes potentially long term detrimental effects to surface soils. Such contamination can also directly affect human health when irrigated crops, such as rice, vegetable and fruits, are used for human consumption. Therefore, an understanding of the sorption and desorption behavior of As in surface soils is of high importance, because these processes regulate the bioavailability of As in the soil environment. In this study, we have collected soils from guava orchards of Baruipur, West Bengal, and characterized soil chemistry and batch sorption and desorption behavior in the laboratory. The sorption and desorption behavior of As in the soils were examined using the Langmuir and Freundlich sorption equation. Regression analysis of the soil chemical characteristics and sorption equation parameters were also performed. The results suggest that the sorption behavior of arsenate is highly dependent on soil characteristics, specifically organic carbon, clay and Al2O3 content of the soils. Whereas desorption behavior is critically influenced by the presence of high concentrations of amorphous and/or crystalline Fe2O3 in the soils. Retention of the significant portion of As in the soils (~ 84% of the total) suggests that As in the orchard soils may not be highly bioavailable to plants for uptake. However, more detailed studies will be required to ascertain the role of individual soil components on the As sorption and desorption processes.  相似文献   

6.
《Applied Geochemistry》2003,18(9):1297-1312
The concentrations of As in surface- and up to 90 °C ground waters in a tholeiite flood basalt area in N-Iceland lie in the range <0.03–10 μg/kg. With few exceptions surface waters contain <0.5 μg/kg As whereas ground waters generally contain >0.5 μg/kg As. The As content of ground waters increases on the whole with rising temperature. Arsenic is highly mobile in the basalt-water environment of the study area. An insignificant fraction of the As dissolved from the rock is taken up into secondary minerals. Arsenic is less mobile than B but considerably more mobile than Na which has the highest mobility among the major aqueous components. A significant fraction of the As in the basalt occurs in an easily soluble form. The As hosted in the primary minerals is expected to be concentrated in the titano-magnetite. This mineral is stable in contact with both surface- and ground waters and does not, therefore, supply As to the water, explaining the difference in mobility between As and B. Aqueous As concentrations are a reflection of water/rock ratios, i.e. how much rock a given quantity of water has dissolved. This ratio increases with increasing temperature and increasing residence time of the water in contact with the rock. The distribution of As species has been calculated on the assumption of equilibrium at the redox potential retrieved from measurement of aqueous Fe(II) and Fe(III) concentrations. These calculations indicate that pentavalent As is stable in surface waters and in ground waters with an in situ pH of <10 and would occur mostly as H2AsO4 and HAsO4−2. In higher pH ground waters the concentrations of the arsenite species H2AsO3 is significant at equilibrium, up to 65% of the total dissolved As.  相似文献   

7.
Groundwater contaminated with arsenic (As), when extensively used for irrigation, causes potentially long-term detrimental effects to surface soils. Such contamination can also directly affect human health when irrigated crops, such as rice, vegetable and fruits, are used for human consumption. Therefore, an understanding of the leaching behavior of As in surface soils is of high importance, because such behavior may increase the bioavailability of As in the soil horizon. In this study, we have investigated the role of phosphate ions in leaching and bioavailability of As in the soil horizon, where drinking groundwater contains elevated levels of As (≥50 μg/L). Soil and groundwater samples were characterized in the laboratory and measured for physical and chemical constituents. The soils are generally neutral to slightly alkaline in character (pH range 7.5–8.1) with low to moderate levels of free Fe2O3, Al2O3, CaCO3, organic carbon, and clay content. The measured electrical conductivity (mean 599 μS/cm) of the soils demonstrates their non-saline nature. The Eh values (range −37 to −151 mV) of the groundwater indicate anoxic condition with low to moderate levels of bicarbonate (range 100–630 mg/L) and phosphate (range 0.002–4.0 mg/L). The arsenic content (range 50–690 μg/L; mean 321 μg/L) in groundwater has exceeded both WHO recommended guideline values (10 μg/L) and the National safe drinking water limit (50 μg/L). Regression analyses demonstrate that the bioavailability of As in the soil horizon is mainly controlled by the composition of free Fe2O3 and CaCO3 content of the soils. However, application of P could increase bioavailability of As in the soil horizon and become available to plants for uptake.  相似文献   

8.
Following the appearance of symptoms of arsenic toxicity in the inhabitants of villages in the Muteh gold mining region, central Iran, the concentration of this element in various parts of biogeochemical cycle is investigated. For this purpose, rock, groundwater, soil, plant, livestock hair and wool, and human hair samples are collected and analysed. Total arsenic content ranges from 23 to 2,500?mg/kg in rock samples, 7?C1,061???g/l in water, 12?C232?mg/kg in soil, 0.5?C16?mg/kg in plant samples, 4.10?C5.69?mg/kg in livestock hair and wool, and 0.64?C5.82?mg/kg in human hair. Arsenic concentration in various parts of biogeochemical cycle near the gold deposit in a metamorphic complex, and also close to the gold-processing plant, is very high and decreases exponentially with increasing distance from them. Arsenic concentration in water from a well close to the Muteh gold mine is above 1?mg/L. Arsenic in hair samples taken from local inhabitants is above the recommended levels, and the control samples in Shahre-Kord city. Arsenic concentration is higher in male population and correlates positively with age. It is suggested that arsenic resulting from the decomposition of ore mineral such as orpiment (As2S3), realgar (As2S2) and arsenopyrite (FeAsS) is responsible for polluting natural resources and the human intake via drinking water and the food chain. Gold mining and processing has undoubtedly enhanced the release of arsenic and intensified the observed adverse effects in Muteh area.  相似文献   

9.
Redox properties of humic substances (HS) control important biogeochemical processes. Thus, accurate estimation of redox properties of HS is essential. However, there is no general consensus regarding the best available measurement method of HS redox properties. In this study, we compared several common HS redox property measurement methods using anthraquinone-2,6-disulfonate (AQDS) as model compound, and standard Elliot soil humic acid (1S102H, ESHA), reference Pahokee peat (1R103H, PPHA), and Suwannee River natural organic matter (1R101N, SRNOM) as representative HS. We found that the H2/Pd reduction method followed by incubation with ferric citrate (FeCit) reagent was incomplete, and the H2/Pd reduction method followed by incubation with potassium ferricyanide (K3Fe(CN)6) was insensitive. Stannous chloride (SnCl2) reduction followed by titration of excess stannous (Sn2+) by potassium dichromate (K2Cr2O7) was found to be most accurate. These findings will help in future investigations on detailed characterizations of functional groups of HS responsible for oxidation/reduction reactions.  相似文献   

10.
In the oxidation zone of the Berezovskoe gold deposit in the middle Urals, Russia, minerals of the beudantite–segnitite series (idealized formulas PbFe3 3+ AsO4)(SO4)(OH)6 and PbFe3 3+ AsO4)(AsO3OH)(OH)6, respectively) form a multicomponent solid solution system with wide variations in the As, S, Fe, Cu, and Sb contents and less variable P, Cr, Zn, Pb, and contents K. The found minerals of this system correspond to series from beudantite with 1.25 S apfu to S-free segnitite, with segnitite lacking between 1.57 and 1.79 As apfu. Segnitite at the Berezovskoe deposit contains presumably pentavalent Sb (up to 15.2 wt % Sb2O5 = 0.76 Sb apfu, the highest Sb content in the alunite supergroup minerals), which replaces Fe3+. The Sb content increases with increasing As/S value. On the contrary, beudantite is free of or very poor in Sb (0.00–0.03 Sb apfu). Many samples of segnitite are enriched in Cu (up to 8.2 wt% CuO = 0.83 Cu apfu, uncommonly high Cu content for this mineral) and/or in Zn (up to 2.0 wt% ZnO = 0.19 Zn apfu). Both Cu and Zn replace Fe. The generalized formula of a hypothetic end member of the segnitite series with 1 Sb apfu is Pb(Fe3+ M 2+Sb5+)(AsO4)2(OH)6, where M = Cu, Zn, Fe2+. The chemical evolution of beudantite–segnitite series minerals at the Berezovskoe deposit is characterized by an increase in the S/As value with a decrease in the Sb content from early to late generations.  相似文献   

11.
Chromium (Cr) is a heavy metal that exists in soils in two stable oxidation states, +III and +VI. The trivalent species is an essential nutrient, whereas the hexavalent species is highly toxic. This study investigated the environmental impact of CrIII potentially released into soil from wastes and various materials by determining the risk of oxidation of initially soluble inorganic CrIII into hazardous CrVI. The principal aim was to describe the pH-dependent mechanisms that regulate 1) the formation of CrVI from the easily soluble CrIII and 2) the potential bioavailability of CrIII and that of CrVI species produced in the oxidation of CrIII in agricultural soil (fine sand, organic carbon 3.2%). The amount of CrVI formed in oxic soil conditions was regulated by two counteracting reactions: 1) oxidation of CrIII into CrVI by manganese oxide (MnIVO2) and 2) the subsequent reduction of CrVI by organic matter back to CrIII. The effect of pH on this net-oxidation of CrIII and on the chemical availability of both CrIII and CrVI species was investigated in soil samples incubated with or without excessive amounts of synthetic MnO2, over the chemically adjusted pH range of 3.9–6.3 (+22 °C, 47 d). In soil subsamples without added MnO2, the net-oxidation of CrIII into CrVI (1 mM CrCl3 in soil suspensions, 1:10 w/V) was negligible. As for the MnO2-treated soils, at maximum only 4.7% of added CrIII was oxidized – regardless of the high oxidation potential of these subsamples. The lowest production of CrVI was observed under acidic soil conditions at pH ∼4. At low pH, the net-oxidation diminished as result of enhanced reduction of CrVI back to CrIII. At higher pHs, the oxidation was limited by enhanced precipitation (or adsorption) of CrIII, which lowered the overall amount of CrIII susceptible for oxidation. Moreover, the oxidation reactions by MnO2 were inhibited by formation of Cr(OH)3 coverage on its surface. The pH-dependent chemical bioavailability of added CrIII differed from that of the CrVI formed. At elevated pHs the chemical availability of CrIII decreased, whereas that of CrVI produced increased. However, the risk of CrVI formation through oxidation of the easily soluble inorganic CrIII was considered to be low in agricultural soils high in organic matter and low in innate MnO2.  相似文献   

12.
Rhizosphere: A new frontier for soil biogeochemistry   总被引:9,自引:0,他引:9  
A range of key biological functions of plant roots such as uptake, respiration and exudation can considerably alter biogeochemical parameters of the soil in the vicinity of the roots, i.e., the rhizosphere: concentrations of nutrients, toxic elements (e.g., aluminium) and pollutants, concentrations of complexing or chelating compounds, pH and redox potential, partial pressures of gases such as O2 and CO2, etc. Such parameters can also be directly influenced by the activities of soil microorganisms that are known to be stimulated by root exudation in the rhizosphere. Changes of biogeochemical parameters of the soil solution occurring in the rhizosphere influence a whole range of reactions at the soil solid/soil solution interface. Higher plants thereby play a key role in (i) the weathering of soil minerals, (ii) soil formation processes (pedogenesis) and (iii) the biogeochemistry of elements that are either beneficial or toxic to themselves and other soil biota.  相似文献   

13.
Riparian soils are periodically flooded, leading to temporarily reducing conditions. Diffusion of O2 through plants into the rhizosphere maintains oxic conditions around roots, thereby promoting trace element fractionation along a redox gradient from the reduced soil matrix towards the oxic rhizosphere. The aim of this study was to determine the distribution and speciation of arsenic around plant roots in a contaminated (170-280 mg/kg As) riparian floodplain soil (gleyic Fluvisol). The analysis of soil thin sections by synchrotron micro-X-ray fluorescence (μ-XRF) spectrometry showed that As and Fe were enriched around roots and that As was closely correlated with Fe. Arsenic contents of three manually separated rhizosphere soil samples from the subsoil were 5-9 times higher than respective bulk As contents. This corresponds to the accumulation of about half of the total As in the subsoil in Fe-enrichments around roots. The speciation of As in the soil was assessed by oxalate extractions at pH 3.0 as well as by X-ray absorption near edge structure (XANES) and extended X-ray fine structure (EXAFS) spectroscopy. More than 77% of the total As was oxalate extractable in all samples. XANES and EXAFS spectra demonstrated that As was predominantly As(V). For the accurate analysis of the EXAFS data with respect to the bonding of As(V) to the Fe- or Al-octahedra of (hydr)oxides and clays, all 3-leg and 4-leg multiple scattering paths within the As(V)O4-tetrahedron were considered in a fully constrained fitting scheme. We found that As(V) was predominantly associated with Fe-(hydr)oxides, and that sorption to Al- and Mn-hydroxides was negligible. The accumulation of As in the rhizosphere may affect As uptake by plants. Regarding the mobility of As, our results suggest that by oxygenation of the rhizosphere, plants attenuate the leaching of As from riparian floodplain soils during periods of high groundwater levels or flooding.  相似文献   

14.
This paper describes the concentrations of heavy metals in soils and in raisins (sultanas) cultivated upon the Gediz Plain (Manisa), western Turkey, which is cut by major roads from ?zmir to ?stanbul and ?zmir to Ankara. A total of 212 samples of surface soil and 82 raisin samples were analysed. Soil samples have nearly same mineralogy, quartz, calcite, magnetite, pseudo-rutile and clay minerals. Dolomite is seen especially in areas close to Neogene sediments. Clay minerals are mainly mica (illite?Cmuscovite), chlorite/kaolinite, smectite and mixed layers (Sm-Il). The concentrations of 21 elements (Ba, Ni, Mo, Cu, Pb, Zn, Co, Mn, As, U, Sr, Cd, Sb, Bi, Cr, B, W, Hg, Sn, Li and organic C) were determined in the surface soils. The degree of element enrichment in soil can be measured in many ways, the most common of which are the geoaccumulation index (Igeo), enrichment factor and the pollution index. Arsenic and Sb showed the highest Igeo values, corresponding to Igeo classes 3?C4. Hence, the area is characterised as ??being heavily contaminated to polluted?? by As and Sb. Arsenic contamination has been reported from all over world. Arsenic-related pollutants enter the groundwater system by gradually moving with the flow of groundwater from rains and irrigation. Gediz Plain forms the main groundwater supply of ?zmir city. The enrichment factor (EFarsenic) of the analysed soil samples is around 76, which corresponds to ??extremely high enrichment??. The concentrations of 33 elements (Al, Sb, As, Ba, Be, Bi, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mn, Hg, Mo, Ni, K, Se, Ag, Na, Sr, Ta, Th, Sn, Ti, U, V, Zn and Zr) were determined in the raisin samples. The Pb and Cd contents of raisins are of great concern due to their toxicity. Pb contents ranged between 0.05 and 0.46?mg?kg?1, and average Cd content was 0.04?mg?kg?1. Only one sample contained high level of Cd, 0.23?mg?kg?1. After cleaning the raisins, the heavy metal concentrations were low as in the European Community (EC) regulation No: 466/2001 for allowable levels of Pb (0.2?mg?kg?1) and Cd (0.05?mg?kg?1).  相似文献   

15.
Bolar earths deposits from Mt Amiata (Central Italy) consist of nanosized pseudo-spherical goethite, with average crystal size of 10–15 nm (as determined by X-ray powder diffraction and transmission electron microscopy observations), possibly associated to amorphous silica and minor sheet silicates, quartz and feldspars. Chemical analyses revealed high As contents (up to 7.4 wt% As2O5), thus indicating the occurrence of a potentially dangerous contaminant. Arsenic doesn’t occur as a specific As phase, but it is strictly associated with goethite nanocrystals. Eh and pH measurements suggest that As occurs as arsenate anions (H2AsO4 and HAsO42−), which are easily and strongly adsorbed to goethite surfaces. The high specific surface area, resulting from goethite nanosize, and the absence of competitive anions explain the extremely efficient adsorption of arsenate and the anomalously high As content in bolar earths. Overall physical/chemical data suggest stable arsenate adsorption, with very limited risk for As release to the environment.  相似文献   

16.
Equilibrium reactions involving Cu(II) and As(V) have been studied with respect to formation of complexes in aqueous solutions as well as formation of solid phases. Potentiometric titrations performed at 25 °C (I = 0.1 M Na(Cl)) and at different Cu to As ratios gave no evidence for the existence of Cu(II) arsenate complexes in solution below the pH of the precipitation boundaries (pH ≈ 4), irrespective of the Cu to As ratio and pH. Mixing of solutions of Cu(II) and As(V) at different proportions and adjusting pH to values ranging from 4 to 9 resulted in precipitation of five different solid phases. The elemental composition of the solids was determined using X-ray Photoelectron Spectroscopy, and Environmental Scanning Microscopy-Field Emission Gun equipped with an energy dispersive spectroscopy detector. The average Cu/As ratio was determined by dissolving the solids. Total soluble concentrations of the components Cu(II) and As(V), as well as the basicity of the solid phases were determined by analysis of aqueous solutions. Based upon these experimental data the stoichiometric composition of the solid phases and their stability were determined. The resulting equilibrium model includes the solid phases Cu3(AsO4)2, Cu3(AsO4)(OH)3, Cu2(AsO4)(OH), Cu5Na(HAsO4)(AsO4)3 and Cu5Na2AsO4)4, where Cu5Na(HAsO4)(AsO4)3 and Cu5Na2(AsO4)4 have not been reported previously. In 0.1 M Na(Cl), Na+ was found to be a significant component in two of the solid phases. The Cu5Na2(AsO4)4 was formed in weakly alkaline conditions with pNa < 2.5. Stability constants for all solid phases have been determined. Distribution diagrams as well as predominance area (pNa-pH) diagrams are presented to illustrate stability fields of the different solid phases.  相似文献   

17.
Sediments from a core retrieved during installation of a shallow drinking water well in Ambikanagar (West Bengal, India) were analyzed for various physical and chemical parameters. The geochemical analyses included: (1) a 4-step sequential extraction scheme to determine the distribution of As between different fractions, (2) As speciation (As3+ vs. As5+), and (3) C, N and S isotopes. The sediments have a low percentage of organic C and N (0.10-0.56% and 0.01-0.05%, respectively). Arsenic concentration is between 2 and 7 mg kg−1, and it is mainly associated with the residual fraction, less susceptible to chemical weathering. The proportion of As3+ in these sediments is high and ranges from 24% to 74%. Arsenic in the second fraction (reducible) correlates well with Mn, and in the residual fraction As correlates well with several transition elements. The stable isotope results indicate microbial oxidation of organic matter involving SO4 reduction. Oxidation of primary sulfide minerals and release of As from reduction of Fe-(oxy)hydroxides do not seem important mechanisms in As mobilization. Instead, the dominance of As3+ and presence of As5+ reducing microorganisms in this shallow aquifer imply As remobilization involving microbial processes that needs further investigations.  相似文献   

18.
Biogeochemical processes were investigated in alpine river—Kamni?ka Bistrica River (North Slovenia), which represents an ideal natural laboratory for studying anthropogenic impacts in catchments with high weathering capacity. The Kamni?ka Bistrica River water chemistry is dominated by HCO3 ?, Ca2+ and Mg2+, and Ca2+/Mg2+ molar ratios indicate that calcite weathering is the major source of solutes to the river system. The Kamni?ka Bistrica River and its tributaries are oversaturated with respect to calcite and dolomite. pCO2 concentrations were on average up to 25 times over atmospheric values. δ13CDIC values ranged from ?12.7 to ?2.7 ‰, controlled by biogeochemical processes in the catchment and within the stream; carbonate dissolution is the most important biogeochemical process affecting carbon isotopes in the upstream portions of the catchment, while carbonate dissolution and organic matter degradation control carbon isotope signatures downstream. Contributions of DIC from various biogeochemical processes were determined using steady state equations for different sampling seasons at the mouth of the Kamni?ka Bistrica River; results indicate that: (1) 1.9–2.2 % of DIC came from exchange with atmospheric CO2, (2) 0–27.5 % of DIC came from degradation of organic matter, (3) 25.4–41.5 % of DIC came from dissolution of carbonates and (4) 33–85 % of DIC came from tributaries. δ15N values of nitrate ranged from ?5.2 ‰ at the headwater spring to 9.8 ‰ in the lower reaches. Higher δ15N values in the lower reaches of the river suggest anthropogenic pollution from agricultural activity. Based on seasonal and longitudinal changes of chemical and isotopic indicators of carbon and nitrogen in Kamni?ka Bistrica River, it can be concluded that seasonal changes are observed (higher concentrations are detected at low discharge conditions) and it turns from pristine alpine river to anthropogenic influenced river in central flow.  相似文献   

19.
Epikarst water, which is one of the most important water resources in karst mountain areas, is extremely sensitive to mining activities. Acid mine drainage (AMD) with high levels of heavy metals can degrade the water quality. A typical coalfield basin was chosen to research the migration process of heavy metals. It was found that the chemical compositions of the stream water in the research field were controlled by the dissolution of carbonate rocks or/and the weathering and oxidation of pyrite in the mining area. Excluding a few sites in the mining area, As(V) was dominant species of arsenic in the form of H2AsO4 ? or HAsO4 2? in the research field. Based on the mass balance concept, it was found that fluxes of As, Zn, Cu and Cd in water from the mining area (site 17) affected by AMD were 18, 871, 281 and 12 kg year?1, respectively. Also, concentrations of Cd, Zn, As and Cu in the stream water decreased along the flow, because these ions deposited from the water to the stream bed as the redistribution processes in environment.  相似文献   

20.
Nitrogen oxides (NO x ) are involved in acid rain and ozone formation, as well as destruction. NO x are climate-relevant trace gases in the atmosphere. Atmospheric NO x originate from anthropogenic emissions (mainly combustion processes). NO from natural processes derives from thunderstorms and soil microbial processes. They may play a crucial role in soil?Catmosphere feedback processes. This study aims to investigate NO x -emissions from soils under different land use, geographical and meteorological conditions. NO x -emissions were quantified in both field and laboratory experiments with a closed static chamber. Disturbed soil samples have been used for laboratory experiments. A climate chamber was used to regulate soil temperature of the samples. Field experiments showed that NO-soil emissions strongly depend on soil temperature. NO-emissions from a soil under meadow showed significant daily variations, unlike soil below spruce forest. Peak emission values were 18???g NO?CN?m?2?h?1 above meadow and 1.3???g NO?CN?m?2?h?1 under forest canopy. In addition, NO-emissions of meadow and forest soil were studied in a climate chamber, enhanced by an additional experiment with agricultural soil. These experiments revealed strong exponential correlations of NO-emissions and soil temperature. Maximum values reached above 400???g NO?CN?m?2?h?1 from agricultural soils at soil temperatures above 50°C. This study shows that soil NO-emissions strongly depend on temperature, vegetation type and geographical position. Consequently, NO-emissions may have a positive feedback effect on climate change.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号