首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ocean plate stratigraphy (OPS) within an ancient accretionary complex provides important information for understanding the history of an oceanic plate from its origin at a mid‐ocean ridge to its subduction at a trench. Here, we report a recently discovered chert–clastic sequence (CCS) that comprises a continuous succession from pelagic sediments to terrigenous clastics and which constitutes part of the OPS in the Akataki Complex within the Cretaceous Shimanto Accretionary Complex on the central Kii Peninsula, SW Japan. As well as describing this sequence, we present U–Pb ages of detrital zircons from terrigenous clastic rocks in the CCS, results for which show that the youngest single grain and youngest cluster ages belong to the Santonian–Campanian and are younger than the radiolarian age from the underlying pelagic sedimentary rock (late Albian–Cenomanian). Thus, the CCS records the movement history of the oceanic plate from pelagic sedimentation (until the late Albian–Cenomanian) to a terrigenous sediment supply (Santonian–Campanian).  相似文献   

2.
Abstract Illite crystallinity (IC) and illite b, lattice spacing were measured across the Cretaceous Shimanto Belt, Kii Peninsula, Southwest Japan. For the IC survey, 103 samples of argillaceous rocks were analyzed from the central area and the western area of the belt. Values of IC (Kubler Index) vary between 0.28 and 0.71 Δ°2θ and indicate diagenetic and anchizone metamorphism respectively. The IC distribution reveals two contrasting patterns of thermal maturity. The Hanazono Formation, exposed in the northern area of the belt, generally dips north, but IC values increase systematically from 0.28 Δ°2θ in the north to 0.54 Δ°2θ in the south and indicate an inverted thermal structure. Values in other formations vary widely in the southern area of the belt ranging between 0.45 and 0.71 Δ°2θ, but the values do not show any systematic change from north to south and on average remain almost constant. Illite bo, lattice spacing values for 56 samples vary between 9.006 and 9.041 Å corresponding to intermediate pressure conditions of the metamorphic facies. These values, combined with paleotemperatures estimated from IC, indicate paleogeothermal gradients of 22 and 31°C/km for the northern and southern areas of the belt, respectively. The inverted thermal structure of the Hanazono Formation, together with a lower paleogeothermal gradient, possibly is a result of the subduction of a relatively cold oceanic plate during the Late Cretaceous. The higher geothermal gradient could be a product of late thermal overprinting caused by the later subduction of a comparatively younger and hotter oceanic plate during the Eocene.  相似文献   

3.
We have estimated the timescale of material circulation in the Sanbagawa subduction zone based on U–Pb zircon and K–Ar phengite dating in the Ikeda district, central Shikoku. The Minawa and Koboke units are major constituents of the high‐P Sanbagawa metamorphic complex in Shikoku, southwest Japan. For the Minawa unit, ages of 92–81 Ma for the trench‐fill sediments, are indicated, whereas the age of ductile deformation and metamorphism of garnet and chlorite zones are 74–72 Ma and 65 Ma, respectively. Our results and occurrence of c. 150 Ma Besshi‐type deposits formed at mid‐ocean ridge suggest that the 60‐Myr‐old Izanagi Plate was subducted beneath the Eurasian Plate at c. 90 Ma, and this observation is consistent with recent plate reconstructions. For the Koboke unit, the depositional ages of the trench‐fill sediments and the dates for the termination of ductile deformation and metamorphism are estimated at c. 76–74 and 64–62 Ma, respectively. In the Ikeda district, the depositional ages generally become younger towards lower structural levels in the Sanbagawa metamorphic complex. Our results of U–Pb and K–Ar dating show that the circulation of material from the deposition of the Minawa and Koboke units at the trench through an active high‐P metamorphic domain to the final exhumation from the domain occurred continuously throughout c. 30 Myr (from c. 90 to 60 Ma).  相似文献   

4.
Noriko  Hasebe  Hiroaki  Watanabe 《Island Arc》2004,13(4):533-543
Abstract   To determine how local geological events contributed to the evolution of accretionary complexes and eventual exposure of rocks with different structural levels, geochronological mapping was carried out using fission track (FT) analysis at the Kii Peninsula, southwest Japan. At this site, the original zonal structure of Cretaceous accretionary complexes parallel to the subduction zone is disturbed by the northward projection of the Shimanto accretionary complex. Twenty-six zircon FT ages were obtained from an area of ∼12 km in an east–west direction and ∼15 km in a north–south direction, and classified into three groups: (i) ages ∼15 Ma (range ∼10–20 Ma), which are distributed along the northwest–southeast valley; (ii) ages of ∼50 Ma in the northwest of the study area; and (iii) ages older than those in Groups 1 and 2. Based on results from eight zircon FT length distributions, the Miocene ages appear to be the result of spatial variations in heat influx and cooling after the regional exhumation of the area, as recorded by FT ages of ∼50 Ma.  相似文献   

5.
Abstract A systematic geochemical study of sandstones from the Cretaceous Shimanto Supergroup and psammitic schists from the Oboke unit in Shikoku has been carried out in order to clarify the depositional age of the protoliths of the Oboke psammitic schists. The geochemical data, together with chronological and geologic data, led to the following conclusions. (i) It is inferred that Oboke psammitic schists are metamorphically equivalent to sandstones in the Hiwasa Formation of the Shimanto accretionary complex, deposited in a trench area during the Campanian, in eastern Shikoku. (ii) The protolith attained to maximum metamorphic conditions within 20 million years after the deposition. (iii) The accumulation of a large amount of coarse-grained clastic sediments in the trench area induced offscraping and underplating of the sediments in the subduction zone, forming the Hiwasa Formation and Oboke unit, respectively.  相似文献   

6.
Zircon U–Pb dating of the Tonaru metagabbro body in the Sanbagawa metamorphic belt, southwest Japan, suggests that igneous events at ca 200–180 Ma were involved in the protolith formation. The trace element compositions of the Tonaru zircons are enriched in U (a fluid‐mobile element) and Sc (an amphibole‐buffered element), and depleted in Nb (a fluid‐immobile element), suggesting that the parental magmas related to the Tonaru metagabbros formed in an arc setting. Integration of our results with previous studies of the metasedimentary rocks in the Tonaru body clearly indicates that the protoliths of the Tonaru body were produced by oceanic‐arc magmatism. With the previous geochronological and geological studies, the tectono‐magmatic–metamorphic history of the Tonaru and other mafic bodies in the Sanbagawa metamorphic belt may be summarized as follows: (i) the protolith formation by the oceanic‐arc magmatic event had occurred at 200–180 Ma; (ii) the protoliths were accreted in the trench at ca 130–120 Ma; and (iii) they were completely subducted into the depth of the eclogite‐facies condition after 120 Ma.  相似文献   

7.
Detrital zircon multi‐chronology combined with provenance and low‐grade metamorphism analyses enables the reinterpretation of the tectonic evolution of the Cretaceous Shimanto accretionary complex in Southwest Japan. Detrital zircon U–Pb ages and provenance analysis defines the depositional age of trench‐fill turbidites associated with igneous activity in provenance. Periods of low igneous activity are recorded by youngest single grain zircon U–Pb ages (YSG) that approximate or are older than the depositional ages obtained from radiolarian fossil‐bearing mudstone. Periods of intensive igneous activity recorded by youngest cluster U–Pb ages (YC1σ) that correspond to the younger limits of radiolarian ages. The YC1σ U–Pb ages obtained from sandstones within mélange units provide more accurate younger depositional ages than radiolarian ages derived from mudstone. Determining true depositional ages requires a combination of fossil data, detrital zircon ages, and provenance information. Fission‐track ages using zircons estimated YC1σ U–Pb ages are useful for assessing depositional and annealing ages for the low‐grade metamorphosed accretionary complex. These new dating presented here indicates the following tectonic history of the accretionary wedge. Evolution of the Shimanto accretionary complex from the Albian to the Turonian was caused by the subduction of the Izanagi plate, a process that supplied sediments via the erosion of Permian and Triassic to Early Jurassic granitic rocks and the eruption of minor amounts of Early Cretaceous intermediate volcanic rocks. The complex subsequently underwent intensive igneous activity from the Coniacian to the early Paleocene as a result of the subduction of a hot and young oceanic slab, such as the Kula–Pacific plate. Finally, the major out‐of‐sequence thrusts of the Fukase Fault and the Aki Tectonic Line formed after the middle Eocene, and this reactivation of the Shimanto accretionary complex as a result of the subduction of the Pacific plate.  相似文献   

8.
Tetsuya  Tokiwa 《Island Arc》2009,18(2):306-319
Paleomagnetic studies and hotspot track analyses show that the Kula Plate was subducted dextrally with respect to the Eurasian Plate from the Coniacian to Campanian. However, geological evidence for dextral subduction of the Kula Plate has not been reported from Southwest Japan. Studies of the Coniacian to lower Campanian Miyama Formation of the Shimanto Belt reveal that the mélange fabrics show a dextral sense of shear both at outcrop and microscopic scales. In addition, thrust systems at map-scale also show dextral shearing. Restored shear directions in the mélange indicate dextral oblique subduction of an oceanic plate. This indicates that the Kula Plate subducted dextrally along the eastern margin of Asia during the Coniacian to early Campanian. Combinations with other published kinematic and age constraints suggest that Southwest Japan experienced a change from sinistral to dextral and back to sinistral shear between 89–76 Ma. This history is compatible with global-scale plate reconstructions and places good constraints on the timing of plate boundary interaction with the Cretaceous East Asian margin.  相似文献   

9.
Zircons separated from Cretaceous granitoids are dated from a south‐central transect of the Abukuma metamorphic and granitic terrane. The zircon ages do not follow ‘older’ and ‘younger’ granitoid ages that are used conventionally. In the western part of the study area (Zones I, II and III) where the Takanuki and Gosaisho metamorphic rocks are exposed, the Iritono quartz dioritic stock intruding the greenschist facies rocks in Zone III exhibits the oldest age of 121 Ma in the studied region. Quartz diorite located northward shows 112 Ma, but the other four granitoids intruding into the Takanuki and Gosaisho metamorphic rocks are younger and 103–99 Ma. Two‐mica and biotite granites belong to the youngest age group of 99 Ma. The granitic activities of both the Abukuma and Ryoke belts were initiated by intrusion of quartz dioritic magmas and were ended by two‐mica granite activity. The ages of the eastern two batholiths vary from 110 to 106 Ma (four samples), and show no age common to the Kitakami granitoids farther to the north. Throughout the Japanese Islands arc, Cretaceous granitic activities became younger toward the marginal sea side from the Kitakami Mountains, to the Abukuma Highland, and the Ryoke Belt, then to the Sanin belt of the Inner Zone of Southwest Japan.  相似文献   

10.
The main tectono‐stratigraphic unit (Shirataki unit) of the Sanbagawa metamorphic complex in central Shikoku is characterized by abundant mafic schist layers that show the mid‐ocean ridge basalt (MORB) affinity. These MORB‐derived schist layers are absent in a southern (structurally lower) domain within the unit. Instead, sporadic occurrences of small metabasite lenses that contain relict igneous minerals (Ti‐rich augite and kaersutite) indicative of alkali basalt magmatism are newly recognized in the southern domain. Compositions of relict clinopyroxene in metabasalt are useful to identify the tectonic setting and origin of the protolith basalt, and those in each unit of the Sanbagawa metamorphic complex are presented. The metamorphic grade of the Shirataki unit generally increases structurally upwards in the southern side of the highest‐grade zone, and metamorphic zonation is subparallel to lithostratigraphic succession. The protolith assemblage of the Shirataki unit shows a distinct change from the southern low‐grade domain (lower Shirataki subunit) composed of terrigenous sedimentary rocks (mudstone and sandstone) with minor alkali basalt to the northern higher‐grade domain (upper Shirataki subunit) consisting of terrigenous and pelagic sedimentary rocks with abundant MORB. The youngest detrital zircon U–Pb ages (ca 95–90 Ma) suggest that both domains have Late Cretaceous depositional ages at the trench. Progressive peeling of oceanic plate stratigraphy during subduction can account for the observed change of lithological association in the Shirataki unit.  相似文献   

11.
The Sindong Group forms the lowermost basin‐fill of the Gyeongsang Basin, the largest Cretaceous nonmarine basin located in southeastern Korea, and comprises the Nakdong, Hasandong, and Jinju Formations with decreasing age. The depositional age of the Sindong Group has not yet been determined well and the reported age ranges from the Valanginian to Albian. Detrital zircons from the Sindong Group have been subjected to U–Pb dating using laser ablation inductively coupled plasma mass spectrometry. The Sindong Group contains noticeable amounts of detrital magmatic zircons of Cretaceous age (138–106 Ma), indicative of continuous magmatic activity prior to and during deposition of the Sindong Group. The youngest detrital zircon age of three formations becomes progressively younger stratigraphically: 118 Ma for the Nakdong Formation, 109 Ma for the Hasandong Formation, and 106 Ma for the Jinju Formation. Accordingly, the depositional age of the Sindong Group ranges from the late Aptian to late Albian, which is much younger than previously thought. Lower Cretaceous magmatic activity, which supplied detrital zircons to the Sindong Group, changed its location spatially through time; it occurred in the middle and northern source areas during the early stage, and then switched to the middle to southern source areas during the middle to late stages. This study reports first the Lower Cretaceous magmatic activity from the East Asian continental margin, which results in a narrower magmatic gap (ca 20 m.y.) than previously known.  相似文献   

12.
Illite crystallinity, K–Ar dating of illite, and fission‐track dating of zircon are analyzed in the hanging wall (Sampodake unit) and footwall (Mikado unit) of a seismogenic out‐of‐sequence thrust (Nobeoka thrust) within the Shimanto accretionary complex of central Kyushu, southwest Japan. The obtained metamorphic temperatures, and timing of metamorphism and cooling, reveal the tectono‐metamorphic evolution of the complex, and related development of the Nobeoka thrust. Illite crystallinity data indicate that the Late Cretaceous Sampodake unit was metamorphosed at temperatures of around 300 to 310°C, while the Middle Eocene Mikado unit was metamorphosed at 260 to 300°C. Illite K–Ar ages and zircon fission‐track ages constrain the timing of metamorphism of the Sampodake unit to the early Middle Eocene (46 to 50 Ma, mean = 48 Ma). Metamorphism of the Mikado unit occurred no earlier than 40 Ma, which is the youngest depositional age of the unit. The Nobeoka thrust is inferred to have been active during about 40 to 48 Ma, as the Sampodake unit started its post metamorphic cooling after 48 Ma and was thrust over the Mikado unit at about 40 Ma along the Nobeoka thrust. These results indicate that the Nobeoka thrust was active for more than 10 million years.  相似文献   

13.
Accurate pressure–temperature–time (P–T–t) paths of rocks from sedimentation through maximum burial to exhumation are needed to determine the processes and mechanisms that form high‐pressure and low‐temperature type metamorphic rocks. Here, we present a new method combining laser ablation–inductively coupled plasma–mass spectrometry (LA–ICP–MS) U–Pb with fission track (FT) dates for detrital zircons from two psammitic rock samples collected from the Harushinai unit of the Kamuikotan metamorphic rocks. The concordant zircon U–Pb ages for these samples vary markedly, from 1980 to 95 Ma, with the youngest age clusters in both samples yielding Albian‐Cenomanian weighted mean ages of 100.8 ± 1.1 and 99.3 ± 1.0 Ma (2σ uncertainties). The zircon U–Pb ages were not reset by high‐P/T type metamorphism, because there is no indication of overgrowth within the zircons with igneous oscillatory zoning. Therefore, these weighted mean ages are indicative of the maximum age of deposition of protolithic material. By comparison, the zircon FT data yield a pooled age of ca. 90 Ma, which is almost the same as the weighted mean age of the youngest U–Pb age cluster. This indicates that the zircon FT ages were reset at ca. 90 Ma while still at their source, but have not been reset since. This conclusion is supported by recorded temperature conditions of less than about 300 °C (the closure temperature of zircon FTs), as estimated from microstructures in the deformed detrital quartz grains in psammitic rocks, and no shortening of fission track lengths in the zircon. Combining these new data with previously reported white mica K–Ar ages indicates that the Harushinai unit was deposited after ca. 100 Ma, and underwent burial to its maximum depth before being subjected to a localized thermal overprint during exhumation at ca. 58 Ma.  相似文献   

14.
To constrain the depositional age of the lowermost Nakdong Formation in the Early Cretaceous Gyeongsang Basin, SHRIMP U–Pb age determination was carried out on zircon separates. The U–Pb compositions of detrital zircons from the Nakdong Formation yield a wide range of ages from the Archean to the Cretaceous but show a marked contrast in age distribution according to the geographical locations within the basin. The provenance of the southern Nakdong Formation is dominantly the surrounding Yeongnam Massif, which is composed of Paleoproterozoic metamorphic rocks and Triassic to Jurassic plutonic rocks, whereas the central to northern Nakdong Formation records significant sediment derivation from the Okcheon Metamorphic Belt, which is distributed to the northwest, in addition to the contribution from the Yeongnam Massif. It is suggested that the maximum depositional age of the Nakdong Formation is ca 127 Ma, based on its youngest detrital zircon age population. The onset of its deposition at 127 Ma coincided with the tectonic inversion in East Asia from a compressional to an extensional geodynamic setting, probably due to the contemporaneous change in the drift direction of the Izanagi Plate and its subsequent oblique subduction.  相似文献   

15.
A new U–Pb zircon geochronological study for the Hida metamorphic and plutonic rocks from the Tateyama area in the Hida Mountains of north central Japan is presented. The U–Pb ages of metamorphic zircon grains with inherited/detrital cores in paragneisses suggest that a metamorphic event took place at around 235–250 Ma; the cores yield ages around 275 Ma, 300 Ma, 330 Ma, 1 850 Ma, and 2 650 Ma. New age data, together with geochronological and geological context of the Hida Belt, indicate that a sedimentary protolith of the paragneisses is younger than 275 Ma and was crystallized at around 235–250 Ma. Detrital ages support a model that the Hida Belt was located in the eastern margin of the North China Craton, which provided zircon grains from Paleoproterozoic to Paleozoic rocks and also from Archean and rare Neoproterozoic rocks. Triassic regional metamorphism possibly reflects collision between the North and South China Cratons.  相似文献   

16.
The relationships between the intrusion of gneissose granitoids and the attainment of regional high‐T conditions recorded in metamorphic rocks from the Ryoke belt of the Mikawa area, central Japan, are explored. Seven gneissose granitoid samples (tonalite, granodiorite, granite) were collected from three distinct plutonic bodies that are mapped as the so‐called “Older Ryoke granitoids.” Based on bulk‐rock compositions and U–Pb zircon ages obtained by laser ablation inductively coupled plasma mass spectrometry, the analyzed granitoids can be separated into two groups. Gneissose granitoids from the northern part of the area give weighted mean 206Pb/238U ages of 99 ±1 Ma (two samples) and 95 ±1 Ma (one sample), whereas those from the southern part yield 81 ±1 Ma (two samples) and 78–77 ±1 Ma (two samples). Regional comparisons allow correlation of the northern granitoids (99–95 Ma) with the Kiyosaki granodiorite, and mostly with the Kamihara tonalite found to the east. The southern granitoids are tentatively renamed as “78–75 Ma (Hbl)?Bt granite” and “81–75 Ma Hbl?Bt tonalite” (Hbl, hornblende; Bt, biotite). and seem to be broadly coeval members of the same magmatic suite. With respect to available age data, no gneissose granitoid from the Mikawa area shows a U–Pb zircon age which matches that of high‐T metamorphism (ca 87 Ma). The southern gneissose granitoids (81–75 Ma), although they occur in the highest‐grade metamorphic zone, do not seem to represent the heat source which produced the metamorphic field gradient with a low dP/dT slope.  相似文献   

17.
The Upper Cretaceous Himenoura Group in the Amakusa‐Kamishima Island area, southwest Japan is subdivided into the Hinoshima and Amura Formations. In order to determine the numerical depositional age of the formations, zircon U–Pb ages were investigated using laser ablation inductively coupled plasma mass spectrometry (LA–ICP–MS) for acidic tuff samples from the lower part of the Hinoshima Formation and the upper part of the Amura Formation. Although the two samples contain some accidental zircons, the samples have a definite youngest age cluster and their weighted mean ages are 85.4 ± 1.3 and 81.5 ± 1.1 Ma, respectively (errors are 95 % confidence interval). These age data indicate that the Himenoura Group in the Amakusa‐Kamishima Island area was deposited mainly in the early Santonian to early Campanian which is consistent with biostratigraphic ages. Additionally, zircon age distributions of the two tuff samples from the upper part of the Hinoshima Formation do not show a distinct youngest peak of eruption age but characteristics of detrital zircons suggestive of maximum depositional age of the host sediments. These results demonstrate that the mean age of the youngest zircon age cluster of a tuff sample does not always indicate depositional age of the tuff, and statistical evaluation of age data is effective to determine depositional age of a tuff bed using zircon U–Pb ages.  相似文献   

18.
The Japanese archipelago underwent two arc–arc collisions during the Neogene. Southwest Honshu arc collided with the Izu‐Bonin‐Mariana arc and the northeast Honshu arc collided with the Chishima arc. The complicated geological structure of the South Fossa Magna region has been attributed to the collision between the Izu‐Bonin‐Mariana arc and the southwest Honshu arc. Understanding the geotectonic evolution of this tectonically active region is crucial for delineating the Neogene tectonics of the Japanese archipelago. Many intrusive granitoids occur around the Kofu basin, in the South Fossa Magna region. Although the igneous ages of these granitoids have been mainly estimated through biotite and hornblende K–Ar dating, here, we perform U–Pb dating of zircon to determine the igneous ages more precisely. In most cases, the secondary post‐magmatic overprint on the zircon U–Pb system was minor. Based on our results, we identify four groups of U–Pb ages: ca 15.5 Ma, ca 13 Ma, ca 10.5 Ma, and ca 4 Ma. The Tsuburai pluton belongs to the first group, and its age suggests that the granite formation within the Izu‐Bonin‐Mariana arc dates back to at least 15.5 Ma. The granitoids of the second group intruded into the boundary between the Honshu arc and the ancient Izu‐Bonin‐Mariana arc, suggesting that the arc–arc collision started by ca 13 Ma. As in the case of the Kaikomagatake pluton, the Chino pluton likely corresponds to a granodiorite formed in a rear‐arc setting in parallel with the other granodiorites of the third group. The U–Pb age of the Kogarasu pluton, which belongs to the fourth group, is the same as those of the Tanzawa tonalitic plutons. This might support a syncollisional rapid granitic magma formation in the South Fossa Magna region.  相似文献   

19.
U–Pb geochronology and trace element chemistry of zircons in a microscale analysis were applied to the Ishizuchi caldera in the Outer Zone of Southwest Japan in order to estimate the timescale of the magma process, in particular, the magma differentiation. This caldera is composed mainly of ring fault complexes, major pyroclastic flow deposits, and felsic intrusion including central plutons. Using SHRIMP‐IIe, our new U–Pb zircon ages obtained from the major pyroclastic flow deposits (Tengudake pyroclastic flow deposits), granitic rocks from central plutons (Soushikei granodiorite and Teppoishigawa quartz monzonite), and rhyolite from the outer ring dike (Tenchuseki rhyolite) and the inner ring dike (Bansyodani rhyolite) are 14.80 ±0.11 Ma, 14.56 ±0.10 Ma, 14.53 ±0.12 Ma, 14.55 ±0.11 Ma and 14.21 ±0.19 Ma, respectively. Based on the U–Pb ages, the Hf contents and the REE patterns of the zircons, three stages are recognized in the evolutionary history of the magma chamber beneath the Ishizuchi caldera: (i) climactic Tengudake pyroclastic flow eruption; (ii) Tenchuseki rhyolite intrusion into the outer ring dike and central pluton intrusion; and (iii) Bansyodani rhyolite intrusion in the inner ring dike. These results indicate a magma evolution history of the Ishizuchi caldera system which took at least ca 600 kyr from the climatic caldera‐forming eruption to the post‐caldera intrusions. Our new geochronological data suggest that the Ishizuchi caldera formed as part of the voluminous and episodic magmatism that occurred in the wide zone along the Miocene forearc basin of Southwest Japan during the inception of the young Philippine Sea Plate subduction.  相似文献   

20.
Zircon U–Pb ages of two acidic tuff and two turbidite sandstone samples from the Nakanogawa Group, Hidaka Belt, were measured to estimate its depositional age and the development of the Hokkaido Central Belt, northeast Japan. In the northern unit, homogeneous zircons from pelagic acidic tuff from a basal horizon dated to 58–57 Ma, zircons from sandstone from the upper part of the unit dated to 56–54 Ma, and zircons from acidic tuff from the uppermost part dated to 60–56 Ma and 69–63 Ma. Both of the tuff U–Pb ages are significantly older than the youngest radiolarian fossil age (66–48 Ma). Therefore, the maximum depositional age of the turbidite facies in the northern unit is 58 Ma and the younger age limit, estimated from the fossil age, is 48 Ma. In the southern unit, homogeneous zircons from turbidite sandstone dated to 58–57 Ma. Thus the depositional age of this turbidite facies was interpreted to be 66–56 Ma from the fossil age, probably close to 57 Ma. Most of the zircon U–Pb ages from the Nakanogawa Group are younger than 80 Ma, with a major peak at 60 Ma. This result implies that around Hokkaido volcanic activity occurred mainly after 80 Ma. Older zircon ages (120–80 Ma, 180–140 Ma, 340–220 Ma, 1.9 Ga, 2.2 Ga, and 2.7 Ga) give information about the provenance of other rocks in the Hidaka Belt. It is inferred that the Nakanogawa Group comprises protoliths of the upper sequence of the Hidaka Metamorphic Zone, which therefore has the same depositional age as the Nakanogawa Group (66–48 Ma). The depositional ages of the lower sequence of the Hidaka Metamorphic Zone and the Nakanogawa Group are probably the same.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号