首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到5条相似文献,搜索用时 0 毫秒
1.
Abstract Dehydration-melting reactions, in which water from a hydrous phase enters the melt, leaving an anhydrous solid assemblage, are the dominant mechanism of partial melting of high-grade rocks in the absence of externally derived vapour. Equilibria involving melt and solid phases are effective buffers of aH2,o. The element-partitioning observed in natural rocks suggests that dehydration melting occurs over a temperature interval during which, for most cases, aH2o is driven to lower values. The mass balance of dehydration melting in typical biotite gneiss and metapelite shows that the proportion of melt in the product assemblage at T± 850°C is relatively small (10–20%), and probably insufficient to mobilize a partially melted rock body. Granulite facies metapelite, biotite gneiss and metabasic gneiss in Namaqualand contain coarse-grained, discordant, unfoliated, anhydrous segregations, surrounded by a finer grained, foliated matrix that commonly includes hydrous minerals. The segregations have modes consistent with the hypothesis that they are the solid and liquid products of the dehydration-melting reactions: Bt + Sil + Qtz + PI = Grt ° Crd + Kfs + L (metapelite), Bt + Qtz + Pl = Opx + Kfs + L (biotite gneiss), and Hbl + Qtz = Opx + Cpx + Pl + L (metabasic gneiss). The size, shape, distribution and modes of segregations suggest only limited migration and extraction of melt. Growth of anhydrous poikiloblasts in matrix regions, development of anhydrous haloes around segregations and formation of dehydrated margins on metabasic layers enclosed in migmatitic metapelites all imply local gradients in water activity. Also, they suggest that individual segregations and bodies of partially melted rock acted as sinks for soluble volatiles. The preservation of anhydrous assemblages and the restricted distribution of late hydrous minerals suggest that retrograde reaction between hydrous melt and solids did not occur and that H2O in the melt was released as vapour on crystallization. This model, combined with the natural observations, suggests that it is possible to form granulite facies assemblages without participation of external fluid and without major extraction of silicate melt.  相似文献   

2.
U–Pb (TIMS–ID and SIMS) and Sm–Nd analyses of zircons and garnet-whole rock pairs were applied on high-pressure granulite facies metapelites and metagranodiorite from Tcholliré and Banyo regions, respectively in the Adamawa–Yadé and Western Domains of the Central-African Fold Belt (CAFB) of Cameroon. Cathodoluminescence (CL) images of zircons reveal that they are made up of ubiquitous magmatitic xenocrystic cores, surrounded and/or overprinted by light unzoned recrystallized domains. U–Pb data on cores yield ages ranging from Paleoproterozoic to Neoproterozoic, which we consider as dating inheritances. Data on overgrowths and recrystallized domains give ages ranging between 594 and 604 Ma, interpreted as the time of HP granulite-facies metamorphism in the Tcholliré and Banyo regions. This is also supported by ages derived from Sm–Nd garnet-whole rock pairs. Sediments of the Tcholliré region were deposited after ca. 620 Ma from Paleoproterozoic, Mesoproteroszoic and Neoproterozoic protoliths, while those from the Banyo region were deposited after 617.6 ± 7.1 Ma essentially from Neoproterozoic protoliths.  相似文献   

3.
A low‐grade metamorphic “Coloured Mélange” in North Makran (SE Iran) contains lenses and a large klippe of low temperature, lawsonite‐bearing blueschists formed during the Cretaceous closure of the Tethys Ocean. The largest blueschist outcrop is a >1,000 m thick coherent unit with metagabbros overlain by interlayered metabasalts and metavolcanoclastic rocks. Blueschist metamorphism is only incipient in coarse‐grained rocks, whereas finer grained, foliated samples show thorough metamorphic recrystallization. The low‐variance blueschist peak assemblage is glaucophane, lawsonite, titanite, jadeite±phengitic mica. Investigated phase diagram sections of three blueschists with different protoliths yield peak conditions of ~300–380°C at 9–14 kbar. Magnesio‐hornblende and rutile cores indicate early amphibolite facies metamorphism at >460°C and 2–4 kbar. Later conditions at slightly higher pressures of 6–9 kbar at 350–450°C are recorded by barroisite, omphacite and rutile assemblages before entering into the blueschist facies and finally following a retrograde path through the pumpellyite–actinolite facies across the lawsonite stability field. Assuming that metamorphic pressure is lithostatic pressure, the corresponding counterclockwise P–T path is explained by burial along a warm geothermal gradient (~15°C/km) in a young subduction system, followed by exhumation along a cold gradient (~8°C/km); a specific setting that allows preservation of fresh undecomposed lawsonite in glaucophane‐bearing rocks.  相似文献   

4.
An Al‐rich, SiO2‐deficient sapphirine–garnet‐bearing rock occurs as a metapelitic boudin within granulite facies Proterozoic charnockitic gneisses and migmatites on the island of Hisøy, Bamble Sector, SE Norway. The boudin is made up of peraluminous sapphirine, garnet, corundum, spinel, orthopyroxene, sillimanite, cordierite, staurolite and biotite in a variety of assemblages. Thermobarometric calculations based on coexisting sapphirine–spinel, garnet–corundum–spinel–sillimanite, sapphirine–orthopyroxene, and garnet–orthopyroxene indicate peak‐metamorphic conditions near to 930 °C at 10 kbar. Corundum occurs as single 200 to 3000 micron sized skeletal crystal intergrowths in cores of optically continuous pristine garnet porphyroblasts. Quartz occurs as 5–60 micron‐sized euhedral to lobate inclusions in the corundum where it is in direct contact with the corundum with no evidence of a reaction texture. Some crystal inclusions exhibit growth zoning, which indicates that textural equilibrium was achieved. Electron Back‐Scatter Diffraction (EBSD) studies reveal that the quartz inclusions share a common c‐axis with the host corundum crystal. The origin of the quartz inclusions in corundum is enigmatic as recent experimental studies have confirmed the instability of quartz–corundum over geologically realistic P–T ranges. The combined EBSD and textural observations suggest the presence of a former silica‐bearing proto‐corundum, which underwent exsolution during post‐peak‐metamorphic uplift and cooling. Exsolution of quartz in corundum is probably confined to fluid‐absent conditions where phase transitions by coupled dissolution–precipitation mechanisms are prevented.  相似文献   

5.
We report two new eclogite localities (at Kanayamadani and Shinadani) in the high‐P (HP) metamorphic rocks of the Omi area in the western most region of Niigata Prefecture, Japan, which form part of the Hida Gaien Belt, and determine metamorphic conditions and pressure–temperature (PT) paths. The metamorphic evolution of the eclogites is characterized by a tight hairpin‐shaped PT path from prograde epidote–blueschist facies to peak eclogite facies and then retrograde blueschist facies. The prograde metamorphic stage is characterized by various amphibole (winchite, barroisite, glaucophane) inclusions in garnet, whereas the peak eclogite facies assemblage is characterized by omphacite, garnet, phengite and rutile. Peak PT conditions of the eclogites were estimated to be ~600°C and up to 2.0 GPa by conventional cation‐exchange thermobarometry, Ti‐in‐zircon thermometry and quartz inclusion Raman barometry respectively. However, the Raman spectra of carbonaceous material thermometry of metapelites associated with the eclogites gave lower peak temperatures, possibly due to metamorphism at different conditions before being brought together during exhumation. The blueschist facies overprint following the peak of metamorphism is recognized by the abundance of glaucophane in the matrix. Zircon grains in blueschist facies metasedimentary samples from two localities adjacent to the eclogites have distinct oscillatory‐zoned cores and overgrowth rims. Laser ablation inductively coupled plasma mass spectrometry U–Pb ages of the detrital cores yield a wide range between 3,200 and 400 Ma, with a peak at 600–400 Ma. In the early Palaeozoic, proto‐Japan was located along the continental margin of the South China craton, providing the source of the older population of detrital zircon grains (3,200–600 Ma) deposited in the trench‐fill sediments. In addition, subduction‐related magmatism c. 500–400 Ma is recorded in the crust below proto‐Japan, which might have been the source for the younger detrital zircon grains. The peak metamorphic age was constrained by SHRIMP dating of the overgrowth rims, yielding Tournaisian ages of 347 ± 4 Ma, suggesting subduction in the early Carboniferous. Our results provide clear constraints on the initiation of subduction, accretion and the development of an arc‐trench system along the active continental margin of the South China craton and help to unravel the Palaeozoic tectonic history of proto‐Japan.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号