首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Atransmission electron microscope (TEM) study of quartz-coesite inclusions in garnet in crustal rocks from the Western Alps is presented. Coesite shows a low dislocation density (<107 cm?2), and quartz a higher density of defects, Brasil twins (104 cm?1) and dislocations (108 cm?2). It is concluded that coesite has been not or only slightly plastically deformed and that the yield strength of coesite is higher than that of quartz. The large scale deformation implications are briefly discussed. TEM observations show no systematic topotactic relationship between the two polymorphs and their boundaries have a scalloped morphology which suggests that growth of quartz from coesite was controlled by a diffusion process.  相似文献   

2.
Geothermometry of eclogites and other high pressure (HP)/ultrahigh‐pressure (UHP) rocks has been a challenge, due to severe problems related to the reliability of the garnet–clinopyroxene Fe–Mg exchange thermometer to omphacite‐bearing assemblages. Likewise, reliable geobarometers for eclogites and related HP/UHP rocks are scarce. In this paper, a set of internally consistent geothermobarometric expressions have been formulated for reactions between the UHP assemblage garnet–clinopyroxene–kyanite–phengite–coesite, and the corresponding HP assemblage garnet–clinopyroxene–kyanite–phengite–quartz. In the system KCMASH, the end members grossular (Grs) and pyrope (Prp) in garnet, diopside (Di) in clinopyroxene, muscovite (Ms) and celadonite (Cel) in phengite together with kyanite and coesite or quartz define invariant points in the coesite and quartz stability field, respectively, depending on which SiO2 polymorph is stable. Thus, a set of net transfer reactions including these end members will uniquely define equilibrium temperatures and pressures for phengite–kyanite–SiO2‐bearing eclogites. Application to relevant eclogites from various localities worldwide show good consistency with petrographic evidence. Eclogites containing either coesite or polycrystalline quartz after coesite all plot within the coesite stability field, while typical quartz‐bearing eclogites with no evidence of former coesite fall within the quartz stability field. Diamondiferous coesite–kyanite eclogite and grospydite xenoliths in kimberlites all fall into the diamond stability field. The present method also yields consistent values as compared with the garnet–clinopyroxene Fe–Mg geothermometer for these kinds of rocks, but also indicates some unsystematic scatter of the latter thermometer. The net transfer geothermobarometric method presented in this paper is suggested to be less affected by later thermal re‐equilibration than common cation exchange thermometers.  相似文献   

3.
Monocrystalline quartz inclusions in garnet and omphacite from various eclogite samples from the Lanterman Range (Northern Victoria Land, Antarctica) have been investigated by cathodoluminescence (CL), Raman spectroscopy and imaging, and in situ X‐ray (XR) microdiffraction using the synchrotron. A few inclusions, with a clear‐to‐opalescent lustre, show ‘anomalous’ Raman spectra characterized by weak α‐quartz modes, the broadening of the main α‐quartz peak at 465 cm?1, and additional vibrations at 480–485, 520–523 and 608 cm?1. CL and Raman imaging indicate that this ‘anomalous’α‐quartz occurs as relicts within ordinary α‐quartz, and that it was preserved in the internal parts of small quartz inclusions. XR diffraction circular patterns display irregular and broad α‐quartz spots, some of which show an anomalous d‐spacing tightening of ~2%. They also show some very weak, hazy clouds that have d‐spacing compatible with coesite but not with α‐quartz. Raman spectrometry and XR microdiffraction characterize the anomalies with respect to α‐quartz as (i) a pressure‐induced disordering and incipient amorphization, mainly revealed by the 480–485 and 608‐cm?1 Raman bands, together with (ii) a lattice densification, evidenced by d‐spacing tightening; (iii) the cryptic development of coesite, 520–523 cm?1 being the main Raman peak of coesite and (iv) Brazil micro‐twinning. This ‘anomalous’α‐quartz represents the first example of pressure‐induced incipient amorphization of a metastable phase in a crustal rock. This issue is really surprising because pressure‐induced amorphization of metastable α‐quartz, observed in impactites and known to occur between 15 and 32 GPa during ultrahigh‐pressure (UHP) experiments at room temperature, is in principle irrelevant under normal geological P–T conditions. A shock (due to a seism?) or a local overpressure at the inclusion scale (due to expansion mismatch between quartz and its host mineral) seem the only geological mechanisms that can produce such incipient amorphization in crustal rocks. This discovery throws new light on the modality of the quartz‐coesite transition and on the pressure regimes (non‐lithostatic v. lithostatic) during high‐pressure/UHP metamorphism. In particular, incipient amorphization of quartz could favour the quartz‐coesite transition, or allow the growth of metastable coesite, as already experimentally observed.  相似文献   

4.
苏鲁地体超高压矿物的三维空间分布   总被引:31,自引:9,他引:31       下载免费PDF全文
刘福来  张泽明  许志琴 《地质学报》2003,77(1):T004-T006
采用激光拉曼技术,配备电子探针和阴极发光测试,确认苏鲁地体大多数花岗质片麻岩,所有类型片麻岩、斜长角闪岩、蓝晶石英岩和大理岩的锆石中均隐藏以柯石英为代表的超高压包体矿物组合。其中花岗质片麻岩典型超高压包体矿物为柯石英±多硅白云母;副片麻岩为柯石英+石榴子石+绿辉石、柯石英±石榴子石+硬玉+多硅白云母+磷灰石、柯石英+多硅白云母±磷灰石;斜长角闪岩为柯石英+石榴子石+绿辉石±金红石;蓝晶石英岩为柯石英+蓝晶石+金红石+磷灰石、柯石英+蓝晶石+多硅白云母+金红石;大理岩为柯石英+透辉石、柯石英+橄榄石。表明苏鲁地体由榴辉岩及其围岩所组成的巨量陆壳物质曾普遍发生深俯冲,并经历了超高压变质作用。锆石的矿物包体分布特征及相应的阴极发光图像研究表明,在同一样品中,锆石的成因特征存在明显差异。有的锆石显示继承性(碎屑)锆石的核(core)、超高压变质的幔(mantle)和退变质的边(rim);有的锆石则具有超高压的核、幔和退变质的边;而有的锆石却记录了深俯冲的核、超高压的幔和退变质的边。标志着苏鲁超高压变质带各类岩石副矿物锆石均具有十分复杂的结晶生长演化历史。因此,在充分研究锆石中矿物包体性质、分布特征以及相应阴极发光图像的基础上,采用SHRIMP离子探针技术,在锆石晶体的不同  相似文献   

5.
Experimental constraints on phase relations in subducted continental crust   总被引:13,自引:1,他引:13  
. Synthesis piston cylinder experiments were carried out in the range 2.0-4.5 GPa and 680-1,050 °C to investigate phase relations in subducted continental crust. A model composition (KCMASH) has been used because all major ultrahigh-pressure (UHP) minerals of the whole range of rock types typical for continental crust can be reproduced within this system. The combination of experimental results with phase petrologic constraints permits construction of a UHP petrogenetic grid. The phase relations demonstrate that the most important UHP paragenesis consists of coesite, kyanite, phengite, clinopyroxene, and garnet in subducted continental crust. Below 700 °C talc is stable instead of garnet. As most of these minerals are also stable at much lower pressure and temperature conditions it is thus not easy to recognize UHP metamorphism in subducted crust. A general feature, however, is the absence of feldspars at H2O-saturated conditions. Plagioclase is never stable at UHP conditions, but K-feldspar can occur in H2O-undersaturated rocks. Mineral compositions in the experiments are fully buffered by coexisting phases. The Si content of phengite and biotite increase with increasing pressure. At 4.0 GPa, 780 °C, biotite contains 3.28 Si per formula unit, which is most probably caused by solid solution of biotite with talc. Above 800 °C, the CaAl2SiO6 component in clinopyroxene buffered with kyanite, coesite and a Mg-phase increases with increasing temperature, providing a tool to distinguish between 'cold' and 'hot' eclogites. Up to 10% Ca-eskolaite (Ca0.5[]0.5AlSi2O6) in clinopyroxene has been found at the highest temperature and pressure investigated (>900 °C, 4.5 GPa). Garnet buffered with coesite, kyanite and clinopyroxene displays an increase of grossular component with increasing pressure for a given temperature. Although the investigated system represents a simplification with respect to natural rocks, it helps to constrain general features of subducted continental crust. The observed phase relations and phase compositions demonstrate that at pressures >3.0 GPa and temperatures >800 °C continental crust can retain significant amounts of H2O (>1 wt%), whereas K-free mafic or ultramafic rocks are dry at these conditions. UHP parageneses are only preserved if the whole exhumation path is situated within the stability field of phengite, i.e. if there is cooling during exhumation or if the whole exhumation occurred at T <700 °C. In contrast, break down of phengite and concomitant partial melting in terranes that show isothermal decompression may lead to a complete recrystallization of the subducted crust during exhumation. The density of UHP rocks can be estimated on the basis of the established phase relations. Pelitic rocks are likely to have a density close to mantle rocks (3.3 g/cm3) because of significant amounts of dense garnet and kyanite whereas granitic rocks are less dense (3.0 g/cm3). Hence, subducted average continental crust is most probably buoyant with respect to mantle rocks and tends to get exhumed as soon as it is detached from the down-going slab. Electronic supplementary material to this paper can be obtained by using the Springer LINK server located at http://dx.doi.org/10.1007/s00410-001-0336-3.  相似文献   

6.
Coesite is typically found as inclusions in rock‐forming or accessory minerals in ultrahigh‐pressure (UHP) metamorphic rocks. Thus, the survival of intergranular coesite in UHP eclogite at Yangkou Bay (Sulu belt, eastern China) is surprising and implies locally “dry” conditions throughout exhumation. The dominant structures in the eclogites at Yangkou are a strong D2 foliation associated with tight‐to‐isoclinal F2 folds that are overprinted by close‐to‐tight F3 folds. The coesite‐bearing eclogites occur as rootless intrafolial isoclinal F1 fold noses wrapped by a composite S1–S2 foliation in interlayered phengite‐bearing quartz‐rich schists. To evaluate controls on the survival of intergranular coesite, we determined the number density of intergranular coesite grains per cm2 in thin section in two samples of coesite eclogite (phengite absent) and three samples of phengite‐bearing coesite eclogite (2–3 vol.% phengite), and measured the amount of water in garnet and omphacite in these samples, and also in two samples of phengite‐bearing quartz eclogite (6–7 vol.% phengite, coesite absent). As coesite decreases in the mode, the amount of primary structural water stored in the whole rock, based on the nominally anhydrous minerals (NAMs), increases from 107/197 ppm H2O in the coesite eclogite to 157–253 ppm H2O in the phengite‐bearing coesite eclogite to 391/444 ppm H2O in the quartz eclogite. In addition, there is molecular water in the NAMs and modal water in phengite. If the primary concentrations reflect differences in water sequestered during the late prograde evolution, the amount of fluid stored in the NAMs at the metamorphic peak was higher outside of the F1 fold noses. During exhumation from UHP conditions, where NAMs became H2O saturated, dehydroxylation would have generated a free fluid phase. Interstitial fluid in a garnet–clinopyroxene matrix at UHP conditions has dihedral angles >60°, so at equilibrium fluid will be trapped in isolated pores. However, outside the F1 fold noses strong D2 deformation likely promoted interconnection of fluid and migration along the developing S2 foliation, enabling conversion of some or all of the intergranular coesite into quartz. By contrast, the eclogite forming the F1 fold noses behaved as independent rigid bodies within the composite S1–S2 foliation of the surrounding phengite‐bearing quartz‐rich schists. Primary structural water concentrations in the coesite eclogite are so low that H2O saturation of the NAMs is unlikely to have occurred. This inherited drier environment in the F1 fold noses was maintained during exhumation by deformation partitioning and strain localization in the schists, and the fold noses remained immune to grain‐scale fluid infiltration from outside allowing coesite to survive. The amount of inherited primary structural water and the effects of strain partitioning are important variables in the survival of coesite during exhumation of deeply subducted continental crust. Evidence of UHP metamorphism may be preserved in similar isolated structural settings in other collisional orogens.  相似文献   

7.
Microstructures in minerals from ultrahigh‐pressure metamorphic (UHPM) terranes are keys to understanding the rheological properties and the exhumation mechanisms of rocks from subduction zones. Kyanite‐bearing whiteschist, associated with eclogite lenses, is part of UHPM unit II located south‐west of Lake Zheltau in the Kulet region of the Kokchetav Massif. The equilibrium assemblage is kyanite + garnet + talc + phengite + coesite/quartz. Previously reported peak pressure–temperature (P–T) conditions are ~3.5 GPa at 750 °C. A strong foliation is defined by the talc and phengite, with a corresponding weak shape preferred alignment of kyanite. Crystallographic orientation maps and analysis of kyanite blades were performed using electron backscatter diffraction methods. The data are consistent with a (100)[001] slip system for the formation of undulose extinction and kink bands in kyanite. Rotations measured across individual kink bands are 10–50° about <010>, and rotations along kyanite with undulose extinction are up to 50° about <010> with variations between adjacent points typically <2°. The undulose extinction is interpreted to have developed through crystal plastic deformation by dislocation creep. Kink bands mark the development of high‐angle grain boundaries by dislocation climb. The deformation of kyanite occurred in the fault‐bounded terrane during the exhumation of the Kokchetav Massif.  相似文献   

8.
Thirty‐three samples, including 22 eclogites, collected from the Dabie ultrahigh‐pressure (UHP) metamorphic belt in eastern China, have been studied for seismic properties. Compressional (Vp) and shear wave (Vs) velocities in three mutually perpendicular directions under hydrostatic pressures up to 1.0 GPa were measured for each sample. At 1.0 GPa, Vp (7.5–8.4 km s?1), Vs (4.2–4.8 km s?1), and densities (3.2–3.6 g cm?3) in the UHP eclogites are higher than those of UHP orthopyroxenite (7.3–7.5 km s?1, 4.1–4.3 km s?1, 3.2–3.3 g cm?3, respectively) and HP eclogites (7.1–7.9 km s?1, 4.0–4.5 km s?1, 3.1–3.5 g cm?3, respectively). Kyanitites (with 99.5% kyanite) show extremely high velocities and density (9.37 km s?1, 5.437 km s?1, 3.581 g cm?3, respectively). The eclogites show variation of Vp‐ and Vs‐anisotropy up to 9.70% and 9.17%, respectively. Poisson’s ratio (σ) ranges from 0.218 to 0.278 (with a mean of 0.255) for eclogites, 0.281–0.298 for granulites and 0.248 to 0.255 for amphibolites. The σ values for serpentinite (0.341) and marble (0.321) are higher than for other lithologies. The elastic moduli K, G, E of kyanitite were obtained as 163, 102 and 253 GPa, respectively. The Vp and density of representative UHP metamorphic rocks (eclogite & kyanitite) were extrapolated to mantle depth (15 GPa) following a reasonable geotherm, and compared to the one dimension mantle velocity and density model. The comparison shows that Vp and density in eclogite and kyanitite are greater than those of the ambient mantle, with differences of up to ΔVp > 0.3 km s?1 and Δρ > 0.3–0.4 g cm?3, respectively. This result favours the density‐induced delamination model and also provides evidence in support of distinguishing subducted high velocity materials in the upper mantle by means of seismic tomography. Such ultra‐deep subduction and delamination processes have been recognized by seismic tomography and geochemical tracing in the postcollisional magmatism in the Dabie region.  相似文献   

9.
中国大陆科学钻探主孔0-4500米的岩心主要由榴辉岩、斜长角闪岩、副片麻岩、正片麻岩以及少量的超基性岩所组成。岩相学研究结果表明,榴辉岩的围岩普遍经历了强烈角闪岩相退变质作用的改造,峰期超高压变质的矿物组合已完全被后期退变质过程中角闪岩相矿物组合所替代。采用激光拉曼技术,配备电子探针和阴极发光测试,发现主孔224件岩心中有121件(包括榴辉岩、斜长角闪岩、副片麻岩和正片麻岩)样品的锆石中普遍隐藏以柯石英为代表的超高压矿物包体,且不同岩石类型锆石中所保存的超高压矿物包体组合存在明显差异。(含多硅白云母)金红石石英榴辉岩锆石中保存的典型超高压包体矿物组合为柯石英 石榴石、柯石英 石榴石 绿辉石 金红石和柯石英 多硅白云母 磷灰石。黑云绿帘斜长角闪岩锆石中保存的超高压矿物组合为柯石英 石榴石 绿辉石、柯石英 石榴石 多硅白云母和柯石英 绿辉石 金红石,与榴辉岩所保存的超高压矿物组合十分相似,表明该类斜长角闪岩是由超高压榴辉岩在构造折返过程中退变质而成。在副片麻岩类岩石,如石榴绿帘黑云二长片麻岩锆石中,代表性的超高压包体矿物组合为柯石英 多硅白云母和柯石英 石榴石等;而在石榴黑云角闪钠长片麻岩锆石中,则保存柯石英 硬玉 石榴石 磷灰石、柯石英 硬玉 多硅白云母 磷灰石和柯石英 石榴石 磷灰石等超高压矿物包体。在正片麻岩锆石中,标志性的超高压矿物包体为柯石英、柯石英 多硅白云母、柯石英 蓝晶石 磷灰石和柯石英 蓝晶石 榍石等。此外,在南苏鲁东海至临沭一带的地表露头以及一系列卫星孔岩心的锆石中,也普遍发现以柯石英为代表的标志性超高压矿物包体,表明在南苏鲁地区由榴辉岩及其围岩的原岩所组成的巨量陆壳物质(方圆>5000km2,厚度超过4.5km)曾整体发生深俯冲,并经历了超高压变质作用。该项研究对于重塑苏鲁-大别超高压变质带俯冲-折返的动力学模式有着重要的科学意义。  相似文献   

10.
Eclogite, orthogneiss and, by association, metapelite from an island at 78°N in North‐East Greenland experienced ultrahigh‐pressure (UHP) metamorphism at approximately 970 °C and 3.6 GPa, at the end of the Caledonian collision, 360–350 Ma. Hydrous metapelites contain abundant leucocratic layers and lenses composed of medium‐grained, anhedral, equigranular quartz, antiperthitic plagioclase and K‐feldspar with minor small garnet and kyanite crystals. Leucosomes are generally parallel to the matrix foliation, are interlayered with residual quartz bands, anastomose around residual garnet and commonly cross‐cut micaceous segregations. Textures suggest that the leucosomes crystallized from a syntectonic melt, but crystallized at the end of local high‐grade deformation. The metapelite outcrop is < 1.5 km from kyanite eclogites with confirmed coesite, but the metapelites lack coesite and palisade textures diagnostic of coesite pseudomorphs. They do contain highly fractured garnet megacrysts with polycrystalline quartz inclusions (some surrounded by radial fractures) and Ti‐rich phengite inclusions that suggest the former presence of coesite. Polyphase inclusions in garnet contain reactants and products of the inferred dehydration melting reaction: Phe + Qtz = Ky + Kfs + Rt + melt. The reactants are thought to have been early inclusions of hydrous phases within garnet that melted and then crystallized new phases. Garnet surrounding these inclusions has patchy zoning with elevated Ca, consistent with experiments that produced similar patchy microstructures in garnet around inclusions with an unequivocal melt origin. The peak UHP metamorphic assemblage in these rocks is inferred to have been phengite, coesite, garnet, kyanite, rutile, fluid ± omphacite ± epidote. Phase diagrams indicate that dehydration melting of phengite in this assemblage would have occurred after decompression from peak pressure, but still above the coesite to quartz transition. Unusual crown‐ and moat‐like textures in garnet around some polycrystalline quartz inclusions are also consistent with the inference that melting took place at UHP conditions.  相似文献   

11.
Zircon is the best mineral to record the complex evolution history of ultrahigh-pressure (UHP) metamorphic rocks as mineralogical and geochemical tracers of UHP metamorphism are almost obliterated in matrix assemblages resulted from subsequent retrogression during exhumation. Zircons from Dabie–Sulu UHP rocks, including outcrop and core samples from drill holes ranging from 432 to 5158 m in depth contain abundant mineral inclusions of protolith, prograde, peak (UHP) and retrograde minerals in different domains; these minute inclusions were identified by laser Raman spectroscopy and/or electronic microprobe analysis. Systematic studies on inclusions in zircons from previous and present studies indicate that the Dabie–Sulu UHP terrane extends for >2000 km, is about 50 km wide, and has at least 10 km thick, probably the largest UHP terrane recognized in the world thus far. The internal structure of zircon revealed by cathodoluminescence (CL) imaging displays a distinct zonation, which comprises an inherited (magmatic or detrital) core, prograde, peak (UHP), and outmost retrograde domains, each with distinctive mineral inclusion assemblages. Low-pressure, igneous mineral inclusions are common in the inherited (magmatic or detrital) zircon cores. In contrast, quartz eclogite-facies inclusion assemblages occur in prograde domains, coesite eclogite-facies inclusion assemblages are preserved in UHP domains, and amphibolite-facies inclusion assemblages are enclosed in outmost retrograde rims. Parageneses and compositions of inclusion minerals preserved in distinct zircon domains were used to constrain the metamorphic PT path of many Dabie–Sulu UHP rocks. The results indicate that Neoproterozoic supracrustal rocks together with minor mafic-ultramafic rocks were subjected to a prograde subduction-zone metamorphism at 570–690 °C and 1.7–2.1 GPa, and UHP metamorphism at 750–850 °C and 3.4–4.0 GPa, following by rapid decompression to amphibolite-facies retrograde metamorphism at 550–650 °C and 0.7–1.05 GPa. Sensitive high-resolution ion microprobe (SHRIMP) U–Pb spot analyses of the zoned zircons show four discrete and meaningful ages of the Dabie–Sulu metamorphic evolution: (1) Neoproterozoic protolith ages (800–750 Ma); (2) 246–244 Ma for early-stage quartz eclogite-facies prograde metamorphism; (3) 235–225 Ma for UHP metamorphism; and (4) 215–208 Ma for late-stage amphibolite-facies retrogression. This indicates that Neoproterozoic voluminous igneous protoliths of orthogneiss in response to the breakup of Rodinia supercontinent, together with various sedimentary rocks, and minor mafic-ultramafic intrusive and extrusive rocks, were subjected to coeval Triassic subduction to mantle depths and exhumation during the collision between the South China Block and North China Block. The estimated subduction and exhumation rates for the Dabie–Sulu UHP terrane would be up to 4.7–9.3 km Myr?1 and 5.0–11.3 km Myr?1, respectively. The zonal distribution of mineral inclusions and the preservation of index UHP minerals such as coesite imply that zircon is the best mineral container for each metamorphic stage, particular for supracrustal rocks as their metamorphic evolution and UHP evidence have been almost or completely obliterated. Similar conclusions have been documented elsewhere for other UHP terranes.  相似文献   

12.
赵中岩  方爱民 《岩石学报》2005,21(4):1109-1116
超高压变质岩是大陆深俯冲作用的产物。超高压变质岩在深俯冲和快速折返过程中,经历了长距离地构造搬运和构造力的作用。其构造变形主要集中在韧性剪切带中,并发生强烈地塑性流变。研究超高压变质构造岩的显微构造及其变形机制对于深入了解大陆壳岩石在深俯冲过程中的流变学行为有十分重要的意义,山东仰口的超高压韧性剪切带中榴辉岩质和花岗质糜棱岩记录了超高压变形的历史。在超高压条件下的稳定矿物绿辉石、多硅白云母、兰晶石和钾长石具有不规则波状消光、亚晶界、核幔构造和动态重结晶等显微构造特征,TEM 研究揭示了大量的位错构造,表明位错蠕变是其主要的变形机制。在花岗质糜棱岩中,金红石在刚性矿物的压力影中沉积,细粒的石榴石条带平行片理延伸,都说明超高压变形过程中有流体存在,流体助力的物质扩散迁移是又一个重要的变形机制。依据现有的流变学定律估算的流变应力应该在几十兆帕以上。  相似文献   

13.
The long prism/needle‐shaped polycrystalline quartz aggregates and square/parallelogram‐shaped singlephase quartz inclusions in omphacite and garnet of ultrahigh pressure eclogite were first discovered from the Jiangalesayi area, South Altyn UHP belt. Based on their morphology, these quartz inclusions are quartz paramorphs after stishovite. The minimum peak pressure of the eclogite is estimated to be >8–9 GPa at 800– 1000 °C based on the stability field of stishovite. This new evidence, together with previous stishovite exsolution microstructure in the gneiss from the same region, suggests an ultra‐deep subduction and exhumation of the South Altyn continental rocks to/from mantle depths in stishovite stability field. Evidence of ultra‐deep subduction of continental materials might be more common and diverse than previous thought. Exhumation of subducted continental rocks from≥300 km has been considered impossible because they are denser than mantle at these depths. How did the stishovite bearing continental rocks of the South Altyn exhumated? As we all know, the densities of stishovite (4.3 g/cm3) are much higher than coesite (2.9 g/cm3), and stishovite transforms into coesite with temperature increases. Density calculations were performed for subducted continental rocks along phase transition of stishovite to coesite, using the third‐order Birch‐Murnaghan equation of state based on mineral fractions obtained from experiments and Perple_X. The results show that the density of Siliceous rocks decrease remarkably, lower than the surrounding mantle in coesite stability field, whereas the density of Oligosiliceous and Silicon unsaturated rocks is higher than surrounding mantle. Thus, we propose that the thermal induced transformation could provide an initial driven force for the exhumation of ultra‐deep subducted silica‐enriched felsic continental rocks. Temperature increase could be derived from an increased geothermal gradient from convective mantle or mantle plume. Mafic to ultra‐mafic rocks and silica‐deficient rocks may be captured by the upwelling subducted continental rocks and exhumated together.  相似文献   

14.
Various combinations of diamond, moissanite, zircon, quartz, corundum, rutile, titanite, almandine garnet, kyanite, and andalusite have been recovered from the Dangqiong peridotites. More than 80 grains of diamond have been recovered, most of which are pale yellow to reddish-orange to colorless. The grains are all 100-200 μm in size and mostly anhedral, but with a range of morphologies including elongated, octahedral and subhedral varieties. Their identification was confirmed by a characteristic shift in the Raman spectra between 1325 cm~(-1) and 1333 cm~(-1), mostly at 1331.51 cm~(-1) or 1326.96 cm~(-1). Integration of the mineralogical, petrological and geochemical data for the Dongqiong peridotites suggests a multi-stage formation for this body and similar ophiolites in the Yarlung-Zangbo suture zone. Chromian spinel grains and perhaps small bodies of chromitite crystallized at various depths in the upper mantle, and encapsulated the UHP, highly reduced and crustal minerals. Some oceanic crustal slabs containing the chromian spinel and their inclusion were later trapped in suprasubduction zones(SSZ), where they were modified by island arc tholeiitic and boninitic magmas, thus changing the chromian spinel compositions and depositing chromitite ores in melt channels.  相似文献   

15.
Quartzofeldspathic ultramylonites from the Alpine Fault Zone, one of the world's major, active plate boundary-scale fault zones have quartz crystallographic preferred orientations (CPO) and abundant low-angle (<10° misorientation) boundaries, typical microstructures for dislocation creep-dominated deformation. Geometrically necessary dislocation density estimates indicate mean dislocation densities of ∼109 cm−2. A significant proportion (∼30%) of grain boundaries (>10° misorientation) are decorated by faceted pores, commonly with uniformly-oriented pyramidal shapes. Only grain boundaries with >10° misorientation angles in polymineralic aggregates are decorated by pores. Mean grain boundary pore densities are ∼5 × 108 cm−2. Grain boundary pores are dissolution pits generated during syn-deformational transient grain boundary permeability, nucleating on dislocation traces at dilatant grain boundary interfaces. They have not been removed by subsequent grain boundary closure or annealing. Pore decoration could have led to grain boundary pinning, triggering a switch in the dominant deformation mechanism to grain boundary sliding, which is supported by evidence of CPO destruction in matrix quartz. Pore-decorated grain boundaries have significantly reduced surface area available for adhesion and cohesion, which would reduce the tensile and shear strength of grain boundaries, and hence, the bulk rock. Grain boundary decoration also significantly decreased the mean distance between pores, potentially facilitating dynamic permeability. Consequently, these microstructures provide a new explanation for strain weakening and evidence of fluid flow along grain boundaries in mylonites at mid-crustal conditions.  相似文献   

16.
After the discovery of metamorphic coesite in crustal rocks from the Western Alps (Italy) and the Western gneiss region (Norway) in the mid 1980s of the last century, metamorphic diamond was observed only a few years later “in situ” in the Kokchetav Massif (Kazakhstan). Findings of such coesite- and diamond-bearing ultrahigh pressure metamorphic (UHP) rocks with protoliths formed or embedded in crustal levels and subsequently experienced PT-conditions within or even higher than the coesite stability field have dramatically changed our geodynamic view of orogenetic processes. These occurrences provide evidence that crustal rocks were subducted into mantle depths and exhumed to the surface. Recent studies even suggest continental subduction to depths exceeding 300 km. These rocks have been extensively studied and many new and important observations have been made. Thus far, more than 350 papers have been published on various aspects of Kokchetav UHP rocks.The Kokchetav Massif of northern Kazakhstan is part of one of the largest suture zones in Central Asia and contains slices of HP and UHP metamorphic rocks. Classical UHP rocks mainly occur in the Kumdy Kol, Barchi Kol and Kulet areas, and include a large variety of lithologies such as calcsilicate rocks, eclogite, gneisses, schists, marbles of various compositions, garnet–pyroxene–quartz rocks, and garnet peridotite. Most of them contain microdiamonds; some of which reach a grain size of 200 μm. Most diamond grains show cuboid shapes but in rare cases, diamonds within clinozoisite gneiss from Barchi Kol occur as octahhedral form. Microdiamonds contain highly potassic fluid inclusions, as well as solid inclusions like carbonates, silicates and metal sulfides, which favour the idea of diamond formation from a C–O–H bearing fluid. Nitrogen isotope data and negative δ13C values of Kokchetav diamonds indicate a metasedimentary origin.PT-estimates of Kokchetav UHP rocks yield peak metamorphic conditions of at least 43 kbar at temperatures of about 950–1000 °C. Some zircon separates show inherited Proterozoic cores and 537–530 Ma UHP metamorphic mantle zones. Several Ar–Ar-ages on micas scatter around 529–528 and 521–517 Ma and reflect different stages of the exhumation history. Migmatization occurred during exhumation at about 526–520 Ma.Isotopic studies on calcsilicate rocks confirm a metasedimentary origin: δ18O values of garnet and clinopyroxene of a layered calcsilicate rock rule out the possibility having a primitive mantle protolith. Similar studies on eclogites indicate their basaltic protolith having experienced water–rock interaction prior to UHP metamorphism.A number of unique mineralogical findings have been made on Kokchetav UHP rocks. K-feldspar exsolutions in clinopyroxene demonstrate that potassium can be incorporated into the cpx-structure under upper mantle pressures. Other significant observations are coesite exsolutions in titanite, quartz-rods in cpx, the discovery of K-tourmaline as well as new minerals like kokchetavite, a hexagonal polymorph of K-feldspar and kumdykolite, an orthorhombic polymorph of albite.The Kokchetav UHP rocks represent a unique and challenging stomping ground for geoscientists of various disciplines. From crystallography, petrology and geochemistry to geophysics and geodynamics/geotectonics – it concerns all who are interested in the diverse metamorphic processes under upper mantle conditions.  相似文献   

17.
New petrographic evidence and a review of the latest radiometric age data are taken to indicate that formation of the ultra‐high pressure (UHP) eclogites within the Western Gneiss Region of Norway probably occurred within the 400–410 Ma time frame. Thus, this event took place significantly later than the previous, widely accepted age of c. 425 Ma for the timing of the high pressure metamorphism in this part of the Scandinavian Caledonides. Garnet growth under UHP (coesite‐stable) conditions is recognised as a discrete, younger event following on from earlier garnet formed under firstly amphibolite facies then quartz‐stable, eclogite facies conditions. Currently, the best constrained and most precise age, specifically for UHP mineral growth, is the 402 ± 2 Ma U–Pb age for metamorphic zircon (some of which retain coesite inclusions) from the Hareidland eclogite. Exhumation must have followed shortly thereafter and, based on synoptic pressure–temperature and depth–time curves, must have been very fast. Our data and those of others indicate an initial fast exhumation to about 35 km depth by about 395 Ma at a mean rate of about 10 mm a?1. This rapid exhumation rate may have been driven by the appreciable residual buoyancy of the deeply subducted continental crustal slab due to incomplete eclogitization of the dominant Proterozoic orthogneisses during the short‐lived UHP event. Subsequent exhumation to 8–10 km depth by about 375 Ma occurred at a much slower mean rate of about 1.3 mm a?1 with the late‐stage extensional collapse of the Caledonian orogen playing an increasingly important role, especially in the final unroofing of the Western Gneiss Region with some remarkably preserved UHP rocks.  相似文献   

18.
Metamorphic diamond in crustal rocks provides important information on the deep subduction of continental crust. Here, we present a new occurrence of diamond within the Seve Nappe Complex (SNC) of the Scandinavian Caledonides, on Åreskutan in Jämtland County, Sweden. Microdiamond is found in situ as single and composite (diamond+carbonate) inclusions within garnet, in kyanite‐bearing paragneisses. The rocks preserve the primary peak pressure assemblage of Ca,Mg‐rich garnet+phengite+kyanite+rutile, with polycrystalline quartz surrounded by radial cracks indicating breakdown of coesite. Calculated P–T conditions for this stage are 830–840 °C and 4.1–4.2 GPa, in the diamond stability field. The ultrahigh‐pressure (UHP) assemblage has been variably overprinted under granulite facies conditions of 850–860 °C and 1.0–1.1 GPa, leading to formation of Ca,Mg‐poor garnet+biotite+plagioclase+K‐feldspar+sillimanite+ilmenite+quartz. This overprint was the result of nearly isothermal decompression, which is corroborated by Ti‐in‐quartz thermometry. Chemical Th–U–Pb dating of monazite yields ages between 445 and 435 Ma, which are interpreted to record post‐UHP exhumation of the diamond‐bearing rocks. The new discovery of microdiamond on Åreskutan, together with other evidence of ultrahigh‐pressure metamorphism (UHPM) within gneisses, eclogites and peridotites elsewhere in the SNC, provide compelling arguments for regional (at least 200 km along strike of the unit) UHPM of substantial parts of this far‐travelled allochthon. The occurrence of UHPM in both rheologically weak (gneisses) and strong lithologies (eclogites, peridotites) speaks against the presence of large tectonic overpressure during metamorphism.  相似文献   

19.
Raman microprobe (RMP) spectra of synthetic coesiste and three natural coesites from eclogite — facies rocks are provided and evaluated for characterisation purposes. The main coesite line lies at 521 cm?1 and the other characteristic lines attributed to coesite occur at 117, 177 and 271 cm?1. Two petrologically useful applications were (a) the confirmation of the coesite structure in very small natural crystals deduced to be coesite from petrographic observations only, and (b) the recognition of sub-microscopic crystallites of quartz in incipiently — transformed coesite in all the natural samples.  相似文献   

20.
Composite granite–quartz veins occur in retrogressed ultrahigh pressure (UHP) eclogite enclosed in gneiss at General's Hill in the central Sulu belt, eastern China. The granite in the veins has a high‐pressure (HP) mineral assemblage of dominantly quartz+phengite+allanite/epidote+garnet that yields pressures of 2.5–2.1 GPa (Si‐in‐phengite barometry) and temperatures of 850–780°C (Ti‐in‐zircon thermometry) at 2.5 GPa (~20°C lower at 2.1 GPa). Zircon overgrowths on inherited cores and new grains of zircon from both components of the composite veins crystallized at c. 221 Ma. This age overlaps the timing of HP retrograde recrystallization dated at 225–215 Ma from multiple localities in the Sulu belt, consistent with the HP conditions retrieved from the granite. The εHf(t) values of new zircon from both components of the composite veins and the Sr–Nd isotope compositions of the granite consistently lie between values for gneiss and eclogite, whereas δ18O values of new zircon are similar in the veins and the crustal rocks. These data are consistent with zircon growth from a blended fluid generated internally within the gneiss and the eclogite, without any ingress of fluid from an external source. However, at the peak metamorphic pressure, which could have reached 7 GPa, the rocks were likely fluid absent. During initial exhumation under UHP conditions, exsolution of H2O from nominally anhydrous minerals generated a grain boundary supercritical fluid in both gneiss and eclogite. As exhumation progressed, the volume of fluid increased allowing it to migrate by diffusing porous flow from grain boundaries into channels and drain from the dominant gneiss through the subordinate eclogite. This produced a blended fluid intermediate in its isotope composition between the two end‐members, as recorded by the composite veins. During exhumation from UHP (coesite) eclogite to HP (quartz) eclogite facies conditions, the supercritical fluid evolved by dissolution of the silicate mineral matrix, becoming increasingly solute‐rich, more ‘granitic’ and more viscous until it became trapped. As crystallization began by diffusive loss of H2O to the host eclogite concomitant with ongoing exhumation of the crust, the trapped supercritical fluid intersected the solvus for the granite–H2O system, allowing phase separation and formation of the composite granite–quartz veins. Subsequently, during the transition from HP eclogite to amphibolite facies conditions, minor phengite breakdown melting is recorded in both the granite and the gneiss by K‐feldspar+plagioclase+biotite aggregates located around phengite and by K‐feldspar veinlets along grain boundaries. Phase equilibria modelling of the granite indicates that this late‐stage melting records P–T conditions towards the end of the exhumation, with the subsolidus assemblage yielding 0.7–1.1 GPa at <670°C. Thus, the composite granite–quartz veins represent a rare example of a natural system recording how the fluid phase evolved during exhumation of continental crust. The successive availability of different fluid phases attending retrograde metamorphism from UHP eclogite to amphibolite facies conditions will affect the transport of trace elements through the continental crust and the role of these fluids as metasomatic agents interacting with the mantle wedge in the subduction channel.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号