首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Metamorphic rocks experience change in the mode of deformation from ductile flow to brittle failure during their exhumation. We investigated the spatial variation of phengite K–Ar ages of pelitic schist of the Sambagawa metamorphic rocks (sensu lato) from the Saruta River area, central Shikoku, to evaluate if those ages are disturbed by faults or not. As a result, we found that these ages change by ca 5 my across the two boundaries between the lower‐garnet and albite–biotite, and the albite–biotite and upper‐garnet zones. These spatial changes in phengite K–Ar ages were perhaps caused by truncation of the metamorphic layers by large‐scale normal faulting at D2 phase under the brittle‐ductile transition conditions (ca 300°C) during exhumation, because an actinolite rock was formed along a fault near the former boundary. Assuming that the horizontal metamorphic layers and a previously estimated exhumation rate of 1 km/my before the D2 phase, the change of 5 my in phengite K–Ar ages is converted to a displacement of about 10 km along the north‐dipping, low‐angle normal fault documented in the previous study. Phengite 40Ar–39Ar ages (ca 85 to 78 Ma) in the actinolite rock could be reasonably comparable to the phengite K–Ar ages of the surrounding non‐faulted pelitic schist, because the K–Ar ages of pelitic schist could have been also reset at temperatures close to the brittle–ductile transition conditions far below the closure temperature for thermal retention of argon in phengite (about 500–600°C).  相似文献   

2.
It is essential to clarify the lithological, structural, and chronological relationships between the Sanbagawa Metamorphic Complex (MC) and the Cretaceous Shimanto Accretionary Complex (AC) for understanding the tectonic evolution of SW Japan. To this end, we carried out a detailed field survey of the Sanbagawa MC and the Cretaceous Shimanto AC on the central Kii Peninsula, where they are in direct contact with each other. We also conducted U–Pb dating of detrital zircons from these complexes. The field survey showed that the boundary between the Iro Complex of the Sanbagawa MC and the Mugitani Complex of the Shimanto AC, Narai Fault, shows a sinistral sense of shear with a reverse dip‐slip component, and there are significant differences in the strain intensity and the degree of recrystallization between the two complexes across this fault. Detrital zircon U–Pb dating indicates that the Iro Complex in the hanging wall of the Narai Fault shows a significantly younger maximum depositional age than the Mugitani Complex in the footwall of the fault, and an apparently large gap in the MDA of ca. 35 Myr exists across this fault. This large age gap across the Narai Fault suggests that this fault is an essential tectonic boundary fault within the Cretaceous accretionary–metamorphic complexes on the Kii Peninsula, and is considered to be an out‐of‐sequence thrust. In addition, a similar shear direction and a large age gap have been identified across the Ui Thrust, which marks the boundary between the Kouyasan and Hidakagawa belts of the Cretaceous Shimanto AC. The Cretaceous accretionary–metamorphic complexes record the large‐scale tectonic juxtapositions of complexes, and these juxtaposed structures had been caused by sinistral–reverse movements on the tectonic boundary faults such as the Narai Fault and the Ui Thrust.  相似文献   

3.
Zircons separated from Cretaceous granitoids are dated from a south‐central transect of the Abukuma metamorphic and granitic terrane. The zircon ages do not follow ‘older’ and ‘younger’ granitoid ages that are used conventionally. In the western part of the study area (Zones I, II and III) where the Takanuki and Gosaisho metamorphic rocks are exposed, the Iritono quartz dioritic stock intruding the greenschist facies rocks in Zone III exhibits the oldest age of 121 Ma in the studied region. Quartz diorite located northward shows 112 Ma, but the other four granitoids intruding into the Takanuki and Gosaisho metamorphic rocks are younger and 103–99 Ma. Two‐mica and biotite granites belong to the youngest age group of 99 Ma. The granitic activities of both the Abukuma and Ryoke belts were initiated by intrusion of quartz dioritic magmas and were ended by two‐mica granite activity. The ages of the eastern two batholiths vary from 110 to 106 Ma (four samples), and show no age common to the Kitakami granitoids farther to the north. Throughout the Japanese Islands arc, Cretaceous granitic activities became younger toward the marginal sea side from the Kitakami Mountains, to the Abukuma Highland, and the Ryoke Belt, then to the Sanin belt of the Inner Zone of Southwest Japan.  相似文献   

4.
Accurate pressure–temperature–time (P–T–t) paths of rocks from sedimentation through maximum burial to exhumation are needed to determine the processes and mechanisms that form high‐pressure and low‐temperature type metamorphic rocks. Here, we present a new method combining laser ablation–inductively coupled plasma–mass spectrometry (LA–ICP–MS) U–Pb with fission track (FT) dates for detrital zircons from two psammitic rock samples collected from the Harushinai unit of the Kamuikotan metamorphic rocks. The concordant zircon U–Pb ages for these samples vary markedly, from 1980 to 95 Ma, with the youngest age clusters in both samples yielding Albian‐Cenomanian weighted mean ages of 100.8 ± 1.1 and 99.3 ± 1.0 Ma (2σ uncertainties). The zircon U–Pb ages were not reset by high‐P/T type metamorphism, because there is no indication of overgrowth within the zircons with igneous oscillatory zoning. Therefore, these weighted mean ages are indicative of the maximum age of deposition of protolithic material. By comparison, the zircon FT data yield a pooled age of ca. 90 Ma, which is almost the same as the weighted mean age of the youngest U–Pb age cluster. This indicates that the zircon FT ages were reset at ca. 90 Ma while still at their source, but have not been reset since. This conclusion is supported by recorded temperature conditions of less than about 300 °C (the closure temperature of zircon FTs), as estimated from microstructures in the deformed detrital quartz grains in psammitic rocks, and no shortening of fission track lengths in the zircon. Combining these new data with previously reported white mica K–Ar ages indicates that the Harushinai unit was deposited after ca. 100 Ma, and underwent burial to its maximum depth before being subjected to a localized thermal overprint during exhumation at ca. 58 Ma.  相似文献   

5.
New U–Pb ages of zircons from migmatitic pelitic gneisses in the Omuta district, northern Kyushu, southwest Japan are presented. Metamorphic zonation from the Suo metamorphic complex to the gneisses suggests that the protolith of the gneisses was the Suo metamorphic complex. The zircon ages reveal the following: (i) a transformation took place from the high‐P Suo metamorphic complex to a high‐T metamorphic complex that includes the migmatitic pelitic gneisses; (ii) the detrital zircon cores in the Suo pelitic rocks have two main age components (ca 1900–1800 Ma and 250 Ma), with some of the detrital zircon cores being supplied (being reworked) from a high‐grade metamorphic source; and (iii) one metamorphic zircon rim yields 105.1 ±5.3 Ma concordant age that represents the age of the high‐T metamorphism. The high‐P to high‐T transformation of metamorphic complexes implies the seaward shift of a volcanic arc or a landward shift of the metamorphic complex from a trench to the sides of a volcanic arc in an arc–trench system during the Early Cretaceous. The Omuta district is located on the same geographical trend as the Ryoke plutono‐metamorphic complex, and our estimated age of the high‐T metamorphism is similar to that of the Ryoke plutono‐metamorphism in the Yanai district of western Chugoku. Therefore, the high‐T metamorphic complex possibly represents the western extension of the Ryoke plutono‐metamorphic complex. The protolith of the metamorphic rocks of the Ryoke plutono‐metamorphic complex was the Jurassic accretionary complex of the inner zone of southwest Japan. The high‐P to high‐T transformation in the Omuta district also suggests that the geographic trend of the Jurassic accretionary complex was oblique to that of the mid‐Cretaceous high‐T metamorphic field.  相似文献   

6.
Nguyen D.  Nuong  Tetsumaru  Itaya    Hironobu  Hyodo  Kazumi  Yokoyama 《Island Arc》2009,18(2):282-292
Conglomerates of the Kuma Group, central Shikoku, southwest Japan contain Sanbagawa schist clasts with a variety of metamorphic grades and lithologies. K–Ar and 40Ar/39Ar dating of phengite show all the pelitic schist clasts from low- to high-grade zones have similar phengite ages (82–84 Ma) that are significantly older than those from the in situ Sanbagawa sequence of central Shikoku. This is because the Kuma–Sanbagawa sequence was exhumed earlier than the in situ Asemi sequence with an exhumation process intermediate between those for the Kanto Mountains and the in situ Asemi sequences. 40A/39Ar plateau ages (103 and 117 Ma) of phengite in amphibolites indicate the timing of the early stage of the exhumation of the metamorphic pile, probably close to the peak metamorphic age.  相似文献   

7.
A new U–Pb zircon geochronological study for the Hida metamorphic and plutonic rocks from the Tateyama area in the Hida Mountains of north central Japan is presented. The U–Pb ages of metamorphic zircon grains with inherited/detrital cores in paragneisses suggest that a metamorphic event took place at around 235–250 Ma; the cores yield ages around 275 Ma, 300 Ma, 330 Ma, 1 850 Ma, and 2 650 Ma. New age data, together with geochronological and geological context of the Hida Belt, indicate that a sedimentary protolith of the paragneisses is younger than 275 Ma and was crystallized at around 235–250 Ma. Detrital ages support a model that the Hida Belt was located in the eastern margin of the North China Craton, which provided zircon grains from Paleoproterozoic to Paleozoic rocks and also from Archean and rare Neoproterozoic rocks. Triassic regional metamorphism possibly reflects collision between the North and South China Cratons.  相似文献   

8.
The Upper Cretaceous Himenoura Group in the Amakusa‐Kamishima Island area, southwest Japan is subdivided into the Hinoshima and Amura Formations. In order to determine the numerical depositional age of the formations, zircon U–Pb ages were investigated using laser ablation inductively coupled plasma mass spectrometry (LA–ICP–MS) for acidic tuff samples from the lower part of the Hinoshima Formation and the upper part of the Amura Formation. Although the two samples contain some accidental zircons, the samples have a definite youngest age cluster and their weighted mean ages are 85.4 ± 1.3 and 81.5 ± 1.1 Ma, respectively (errors are 95 % confidence interval). These age data indicate that the Himenoura Group in the Amakusa‐Kamishima Island area was deposited mainly in the early Santonian to early Campanian which is consistent with biostratigraphic ages. Additionally, zircon age distributions of the two tuff samples from the upper part of the Hinoshima Formation do not show a distinct youngest peak of eruption age but characteristics of detrital zircons suggestive of maximum depositional age of the host sediments. These results demonstrate that the mean age of the youngest zircon age cluster of a tuff sample does not always indicate depositional age of the tuff, and statistical evaluation of age data is effective to determine depositional age of a tuff bed using zircon U–Pb ages.  相似文献   

9.
The dating of radiolarian biostratigraphic zones from the Silurian to Devonian is only partially understood. Dating the zircons in radiolarian‐bearing tuffaceous rocks has enabled us to ascribe practical ages to the radiolarian zones. To extend knowledge in this area, radiometric dating of magmatic zircons within the radiolarian‐bearing Hitoegane Formation, Japan, was undertaken. The Hitoegane Formation is mainly composed of alternating beds of tuffaceous sandstones, tuffaceous mudstones and felsic tuff. The felsic tuff and tuffaceous mudstone yield well‐preserved radiolarian fossils. Zircon grains showing a U–Pb laser ablation–inductively coupled plasma–mass spectrometry age of 426.6 ± 3.7 Ma were collected from four horizons of the Hitoegane Formation, which is the boundary between the Pseudospongoprunum tauversi to Futobari solidus–Zadrappolus tenuis radiolarian assemblage zones. This fact strongly suggests that the boundary of these assemblage zones is around the Ludlowian to Pridolian. The last occurrence of F. solidus is considered to be Pragian based on the reinterpretation of a U–Pb sensitive high mass‐resolution ion microprobe (SHRIMP) zircon age of 408.9 ± 7.6 Ma for a felsic tuff of the Kurosegawa belt, Southwest Japan. Thus the F. solidus–Z. tenuis assemblage can be assigned to the Ludlowian or Pridolian to Pragian. The present data also contribute to establishing overall stratigraphy of the Paleozoic rocks of the Fukuji–Hitoegane area. According to the Ordovician to Carboniferous stratigraphy in this area, Ordovician to Silurian volcanism was gradually reduced to change the sedimentary environment into a tropical lagoon in the early Devonian. And the quiet Carboniferous environment was subsequently interrupted, throwing it once more into the volcanic conditions in the Middle Permian.  相似文献   

10.
The Okinoshima Formation crops out on Okinoshima Island and comprises a thick sequence (> 200 m) of pyroclastic rocks and alternating beds of sandstone and mudstone. Because Okinoshima Island is located between Honshu and Tsushima Island, the Okinoshima Formation potentially provides an important record of volcanism during the opening of the Japan Sea in northwest Kyushu, as well as a record of the formation of the present Genkai Sea region. In consideration of the lack of previous geochronological work, dating (fission‐track and U–Pb) of igneous zircons extracted from the Okinoshima Formation were undertaken and studied the clay mineral alteration in the pyroclastic material in order to reveal its thermal history. These data are used to constrain the age of the Okinoshima Formation and the present Genkai Sea region. Our results show that no thermal event has reset the fission‐track age after deposition of the pyroclastic rocks, and that the Okinoshima Formation was deposited at 16.2 Ma. The present Genkai Sea region is a deep‐sea basin, and its formation at 16.2 Ma was accompanied by submarine volcanism and rapid subsidence that marked the climactic stage of Japan Sea formation. After 16 Ma, the tectonic setting of the present Genkai Sea region changed from one of extension (related to the formation of the Japan Sea) to one of compression, with uplift occurring under the influence of the clockwise rotation of southwest Japan. Consequently, after 16 Ma the present Genkai Sea region became isolated from the forming processes of the Japan Sea.  相似文献   

11.
Detrital zircon multi‐chronology combined with provenance and low‐grade metamorphism analyses enables the reinterpretation of the tectonic evolution of the Cretaceous Shimanto accretionary complex in Southwest Japan. Detrital zircon U–Pb ages and provenance analysis defines the depositional age of trench‐fill turbidites associated with igneous activity in provenance. Periods of low igneous activity are recorded by youngest single grain zircon U–Pb ages (YSG) that approximate or are older than the depositional ages obtained from radiolarian fossil‐bearing mudstone. Periods of intensive igneous activity recorded by youngest cluster U–Pb ages (YC1σ) that correspond to the younger limits of radiolarian ages. The YC1σ U–Pb ages obtained from sandstones within mélange units provide more accurate younger depositional ages than radiolarian ages derived from mudstone. Determining true depositional ages requires a combination of fossil data, detrital zircon ages, and provenance information. Fission‐track ages using zircons estimated YC1σ U–Pb ages are useful for assessing depositional and annealing ages for the low‐grade metamorphosed accretionary complex. These new dating presented here indicates the following tectonic history of the accretionary wedge. Evolution of the Shimanto accretionary complex from the Albian to the Turonian was caused by the subduction of the Izanagi plate, a process that supplied sediments via the erosion of Permian and Triassic to Early Jurassic granitic rocks and the eruption of minor amounts of Early Cretaceous intermediate volcanic rocks. The complex subsequently underwent intensive igneous activity from the Coniacian to the early Paleocene as a result of the subduction of a hot and young oceanic slab, such as the Kula–Pacific plate. Finally, the major out‐of‐sequence thrusts of the Fukase Fault and the Aki Tectonic Line formed after the middle Eocene, and this reactivation of the Shimanto accretionary complex as a result of the subduction of the Pacific plate.  相似文献   

12.
Zircon U–Pb ages of two acidic tuff and two turbidite sandstone samples from the Nakanogawa Group, Hidaka Belt, were measured to estimate its depositional age and the development of the Hokkaido Central Belt, northeast Japan. In the northern unit, homogeneous zircons from pelagic acidic tuff from a basal horizon dated to 58–57 Ma, zircons from sandstone from the upper part of the unit dated to 56–54 Ma, and zircons from acidic tuff from the uppermost part dated to 60–56 Ma and 69–63 Ma. Both of the tuff U–Pb ages are significantly older than the youngest radiolarian fossil age (66–48 Ma). Therefore, the maximum depositional age of the turbidite facies in the northern unit is 58 Ma and the younger age limit, estimated from the fossil age, is 48 Ma. In the southern unit, homogeneous zircons from turbidite sandstone dated to 58–57 Ma. Thus the depositional age of this turbidite facies was interpreted to be 66–56 Ma from the fossil age, probably close to 57 Ma. Most of the zircon U–Pb ages from the Nakanogawa Group are younger than 80 Ma, with a major peak at 60 Ma. This result implies that around Hokkaido volcanic activity occurred mainly after 80 Ma. Older zircon ages (120–80 Ma, 180–140 Ma, 340–220 Ma, 1.9 Ga, 2.2 Ga, and 2.7 Ga) give information about the provenance of other rocks in the Hidaka Belt. It is inferred that the Nakanogawa Group comprises protoliths of the upper sequence of the Hidaka Metamorphic Zone, which therefore has the same depositional age as the Nakanogawa Group (66–48 Ma). The depositional ages of the lower sequence of the Hidaka Metamorphic Zone and the Nakanogawa Group are probably the same.  相似文献   

13.
Abstract The upper Mesozoic Tetori Group contains numerous fossils of plants and marine and non‐marine animals. The group has the potential to provide key information to improve our understanding of the Middle Jurassic to Early Cretaceous biota of East Asia. However, the depositional age of the Tetori Group remains uncertain, and without good age constraints, accurate correlation with other areas is very difficult. As a first step in obtaining reliable ages for the formations within the Tetori Group, we used laser ablation‐inductively coupled plasma–mass spectrometry to measure the U–Pb ages of zircons collected from tuff beds in the Shokawa district, Takayama City, Gifu Prefecture, central Japan. The youngest reliable U–Pb ages from the tuff beds of the Ushimaru, Mitarai and Okurodani Formations are 130.2 ± 1.7, 129.8 ± 1.0 and 117.5 ± 0.7 Ma, respectively (errors represent 2 SE). These results indicate that the entire Tetori Group in the Shokawa district, which was previously believed to be correlated to the Upper Jurassic to Lower Cretaceous, is in fact correlated to the Lower Cretaceous. The maximum ages of the Ushimaru, Mitarai and Okurodani Formations are late Hauterivian to Barremian, late Hauterivian to Barremian and Barremian to Aptian, respectively.  相似文献   

14.
The South Kitakami Belt in the northeast Japan is unique in presence of a thick Paleozoic–Mesozoic sedimentary rocks. The Permian sedimentary succession in the Maiya area of this belt is divided into the Nishikori, Tenjinnoki, and Toyoma formations, in ascending stratigraphic order. The Tenjinnoki Formation includes the Yamazaki Conglomerate Member containing granitic clasts. We performed U–Pb dating for detrital zircon of one sample of tuffaceous sandstone from the Nishikori Formation, six samples of sandstone from the Tenjinnoki and Toyoma formations, and five granitic clasts from the Yamazaki Conglomerate using laser ablation-inductively coupled plasma-mass spectrometry. Our dating results show that the tuffaceous sandstone sample has two age peaks at 287 and 301 Ma for the Nishikori Formation, three age peaks at 320–300, 290, and 270 Ma for the Tenjinnoki and Toyoma Formation, and ages of 311, 300, and 270 Ma from granitic clasts of the Yamazaki Conglomerate. In addition, older ages of 452–435 and 380 Ma were obtained from some zircon grains of the sandstone and granitic clasts. Our results suggest igneous activity in these periods. The South Kitakami Belt's origin with respect to continental blocks has been discussed in regard of the margin of North China Block or South China Block. Based on the stratigraphic ages and timing of igneous activity, we conclude that during the Permian the South Kitakami Belt was located at the margin of the South Central Asian Orogenic Belt, near the Solonker-Xra Moron-Changchun suture and the North China Block in East Asia.  相似文献   

15.
U–Pb geochronology and trace element chemistry of zircons in a microscale analysis were applied to the Ishizuchi caldera in the Outer Zone of Southwest Japan in order to estimate the timescale of the magma process, in particular, the magma differentiation. This caldera is composed mainly of ring fault complexes, major pyroclastic flow deposits, and felsic intrusion including central plutons. Using SHRIMP‐IIe, our new U–Pb zircon ages obtained from the major pyroclastic flow deposits (Tengudake pyroclastic flow deposits), granitic rocks from central plutons (Soushikei granodiorite and Teppoishigawa quartz monzonite), and rhyolite from the outer ring dike (Tenchuseki rhyolite) and the inner ring dike (Bansyodani rhyolite) are 14.80 ±0.11 Ma, 14.56 ±0.10 Ma, 14.53 ±0.12 Ma, 14.55 ±0.11 Ma and 14.21 ±0.19 Ma, respectively. Based on the U–Pb ages, the Hf contents and the REE patterns of the zircons, three stages are recognized in the evolutionary history of the magma chamber beneath the Ishizuchi caldera: (i) climactic Tengudake pyroclastic flow eruption; (ii) Tenchuseki rhyolite intrusion into the outer ring dike and central pluton intrusion; and (iii) Bansyodani rhyolite intrusion in the inner ring dike. These results indicate a magma evolution history of the Ishizuchi caldera system which took at least ca 600 kyr from the climatic caldera‐forming eruption to the post‐caldera intrusions. Our new geochronological data suggest that the Ishizuchi caldera formed as part of the voluminous and episodic magmatism that occurred in the wide zone along the Miocene forearc basin of Southwest Japan during the inception of the young Philippine Sea Plate subduction.  相似文献   

16.
The Sakuma–Tenryu district consists mainly of pelitic and basic schists. Its metamorphic sequence has been divided into two units, the Shirakura and the Sejiri units. We carried out K–Ar analyses of phengite separates and X‐ray diffraction analyses of carbonaceous materials from the pelitic schists of both units. The age–d002 relationships show that the ages become older (66–73 Ma) in the Shirakura unit and younger (57–48 Ma) in the latter with increasing metamorphic temperature. The former has a positive relationship observed in the Sanbagawa meta‐Accretionary Complex (meta‐AC) (Sanbagawa metamorphic belt sensu stricto) in central Shikoku and the latter, a negative one in the Shimanto meta‐AC (a subunit of traditional Sanbagawa belt) of the Kanto Mountains. These contrasting age–temperature relationships are due to different tectonic styles relating to the exhumation of the metamorphic sequences. The duration from the peak metamorphism to the closure of the phengite K–Ar system was significantly different between the two metamorphic sequences: longer than 31 my in the Sanbagawa meta‐AC and shorter than 13 my in the Shimanto meta‐AC. The different natures of subducted plate boundaries may cause the different exhumation processes of metamorphic belts.  相似文献   

17.
To constrain the timing of the tectonothermal events and formation process of a plutonic suite, U–Pb dating was carried out by laser ablation inductively coupled plasma mass spectrometry combined with cathodoluminescence imaging on zircon grains extracted from the Bato pluton, northern Yamizo Mountains, Japan. The Bato pluton consists of gabbro and diorite. Zircon grains separated from a gabbro sample had a unimodal 238U–206Pb age (105.7 ±1.0 Ma). It was interpreted as the solidification age of the gabbro. Cathodoluminescence observation showed that the zircon grains from a diorite sample were characterized by anhedral cores, oscillatory zoned mantles, and dark rims. The 238U–206Pb age of the anhedral cores ranged from 2 165 Ma to 161 Ma, indicating the assimilation of surrounding sedimentary rocks. The 238U–206Pb ages of the oscillatory zoned mantles and dark rims are 109.0 ±1.3 Ma and 107.7 ±1.3 Ma, respectively. Observation under polarizing microscopy suggests that the anhedral cores occurred before plagioclase and hornblende, and the oscillatory zones around the anhedral cores had crystallized at the same time as the crystallization of biotite. Moreover, the dark rims formed at the same time as the crystallization of quartz and K‐feldspar. The formation process of the gabbro‐diorite complex in the Bato pluton was inferred as follows. (i) A mafic initial magma intruded into Mesozoic sedimentary rocks, and the assimilation of these sedimentary rocks led to geochemical variation yielding a dioritic composition. Subsequently, plagioclase and hornblende of the diorite were crystallized before 109.0 ±1.3 Ma. (ii) Biotite crystallized in the middle stage around 109.0 ±1.3 Ma. (iii) Quartz and K‐feldspar of the diorite were crystallized at 107.7 ±1.3 Ma. The gabbroic magma solidified (105.7 ±1.0 Ma) after solidification of the diorite.  相似文献   

18.
The Japanese archipelago underwent two arc–arc collisions during the Neogene. Southwest Honshu arc collided with the Izu‐Bonin‐Mariana arc and the northeast Honshu arc collided with the Chishima arc. The complicated geological structure of the South Fossa Magna region has been attributed to the collision between the Izu‐Bonin‐Mariana arc and the southwest Honshu arc. Understanding the geotectonic evolution of this tectonically active region is crucial for delineating the Neogene tectonics of the Japanese archipelago. Many intrusive granitoids occur around the Kofu basin, in the South Fossa Magna region. Although the igneous ages of these granitoids have been mainly estimated through biotite and hornblende K–Ar dating, here, we perform U–Pb dating of zircon to determine the igneous ages more precisely. In most cases, the secondary post‐magmatic overprint on the zircon U–Pb system was minor. Based on our results, we identify four groups of U–Pb ages: ca 15.5 Ma, ca 13 Ma, ca 10.5 Ma, and ca 4 Ma. The Tsuburai pluton belongs to the first group, and its age suggests that the granite formation within the Izu‐Bonin‐Mariana arc dates back to at least 15.5 Ma. The granitoids of the second group intruded into the boundary between the Honshu arc and the ancient Izu‐Bonin‐Mariana arc, suggesting that the arc–arc collision started by ca 13 Ma. As in the case of the Kaikomagatake pluton, the Chino pluton likely corresponds to a granodiorite formed in a rear‐arc setting in parallel with the other granodiorites of the third group. The U–Pb age of the Kogarasu pluton, which belongs to the fourth group, is the same as those of the Tanzawa tonalitic plutons. This might support a syncollisional rapid granitic magma formation in the South Fossa Magna region.  相似文献   

19.
Ocean plate stratigraphy (OPS) within an ancient accretionary complex provides important information for understanding the history of an oceanic plate from its origin at a mid‐ocean ridge to its subduction at a trench. Here, we report a recently discovered chert–clastic sequence (CCS) that comprises a continuous succession from pelagic sediments to terrigenous clastics and which constitutes part of the OPS in the Akataki Complex within the Cretaceous Shimanto Accretionary Complex on the central Kii Peninsula, SW Japan. As well as describing this sequence, we present U–Pb ages of detrital zircons from terrigenous clastic rocks in the CCS, results for which show that the youngest single grain and youngest cluster ages belong to the Santonian–Campanian and are younger than the radiolarian age from the underlying pelagic sedimentary rock (late Albian–Cenomanian). Thus, the CCS records the movement history of the oceanic plate from pelagic sedimentation (until the late Albian–Cenomanian) to a terrigenous sediment supply (Santonian–Campanian).  相似文献   

20.
Geochronological and geochemical studies reveal the possible origin of the restricted body of mylonite rocks occurring at the eastern edge of Kyushu Island, Japan, just in contact with the Sashu Fault, a part of the Paleo‐Median Tectonic Line (Paleo‐MTL). The LA‐ICP‐MS zircon U–Pb dating of the quartz diorite mylonite in this mylonitic body indicates a crystallization age of 114.0 ±1.7 Ma. Moreover, the two tonalite samples appear as thin layers within the Permian fine‐grained mafic mylonite; a part of the same body yields the age of 113.7 ±2.3 Ma and 116.9 ±1.3 Ma, with extremely low Th/U ratio. These quartz diorite mylonite and tonalite are consistent with the late Early Cretaceous magmatism and coeval metamorphism similar to those in the Higo Plutono‐metamorphic Complex in western Kyushu, Japan. This newly characterized complex occurs just south of the Cretaceous Sambagawa metamorphic rocks. The newly characterized mylonitic rocks are lying structurally above the Sambagawa Metamorphic Complex and are distributed along the Paleo‐MTL. The extension of the Higo Plutonometamorphic Complex, as well as the structural relationship between this complex and the Sambagawa Metamorphic Complex, is still controversial but holds a key to reconstruct the tectonic evolution of Southwest Japan during the Late Mesozoic to Early Cenozoic period. Hence, this article provides new insight into the reconstruction of the evolution history of East Asia as an active convergent margin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号