共查询到20条相似文献,搜索用时 31 毫秒
1.
Health risks of heavy metals in vegetables irrigated with sewage water were investigated in the present study. The findings indicated a massive accumulation of heavy metals in soil and vegetables collected from Dera Ismail khan, Pakistan. The concentration levels of heavy metal in vegetables grown on soil irrigated with untreated sewage water were significantly higher at ( P ≤ 0.001) than in vegetables grown on fresh-water-irrigated soil and proceeded the recommended limits of World health organization. Moreover, the findings also indicated that the adults and children consuming such vegetables ingested a large proportion of the selected toxic metals. Health risk index was greater than one for Pb and Cd in all the selected vegetables and was greater than one for Ni in three vegetables like Spinacia oleracea, Benincasa fistulosa and Lactuca sativa. Health risk assessment would be a useful tool for information regarding any threats of heavy metals contamination in vegetables. 相似文献
2.
GeoJournal - To compete in the international market, a farmer in Pakistan needs to decrease its production cost. Agricultural researchers and policymakers are focusing on increasing the... 相似文献
3.
Natural Hazards - Frequency and intensity of extreme weather events are immensely changing throughout the world. This study aims to give insight into the changing climatic patterns leading to... 相似文献
5.
Natural Hazards - An environmental variation has caused Pakistan an alarming portrait of vulnerability in flood disasters. The government has focused on a number of realistic actions, heartening... 相似文献
6.
Toxicity of heavy metals adversely affects environment and human health. Organic materials derived from natural matters or wastes have been applied to soils to reduce the mobility of contaminants such as heavy metals. However, the application of cow bone powder (CB), biochar (BC), and eggshell powder (ES) is rarely investigated for the reduction of Pb bioavailability in soils irrigated with saline water. The objective of this study was to assess the effectiveness of CB, BC, and ES additions as immobilizing substances on Pb bioavailability in shooting range soil irrigated with deionized and saline water. Each additive of CB, BC, and ES at 5 % (w/w) was mixed with soils and then the deionized and saline water were irrigated for 21 days. With deionized water irrigation, the soils treated with CB, BC, and ES exhibited higher pH when compared with saline water irrigation. With saline water irrigation, the electrical conductivity, water-soluble anions, and cations were significantly increased in soils treated with CB, BC, and ES. The water-soluble Pb in soils treated with CB, BC, and ES was significantly decreased with saline water irrigation. On the other hand, the water-soluble Pb in soil treated with CB was increased with deionized water irrigation. Only BC with saline water irrigation decreased the Pb concentration in maize shoots. 相似文献
10.
Agricultural activities act as dominant polluter of groundwater due to increased fertilizers and pesticides usage. Bist-Doab region, Punjab, India, is one such region facing deterioration of groundwater quality due to usage of fertilizers. This study aims in delineating and evaluating the groundwater quality in the region. Water samples are collected from canals, reservoir, and shallow and deep groundwater. Water types in canal and reservoir in Kandi region are Mg 2+HCO 3 ? and Mg 2+Ca 2+Na +HCO 3 ?, respectively. While water types of shallow and deep groundwaters are found to be of two types: Na +Mg 2+Ca 2+HCO 3 ? and Ca 2+Mg 2+Na +HCO 3 ?. Presence of Mg 2+ in groundwater at locations adjoining canals indicates recharge due to canal. The major ion (Na +, Mg 2+, Ca 2+, HCO 3 ?) chemistry of the region is due to weathering of rocks that are rich in sodic minerals and kankar. Deep groundwater quality in the region meets BIS and WHO standards for drinking purpose, unlike shallow groundwater which is of poor quality at many locations. Both shallow and deep groundwater with high sodium concentration (>1.5 meq/l) affect cropping yield and permeability of soil matrix. High concentration of SO 4 2? and NO 3 2? (>1 meq/l) in shallow groundwater at few locations indicates influence of anthropogenic (fertilizer) activity. Factor analysis indicates that the major cations, bicarbonate and chloride are derived from weathering/dissolution of source rocks. Higher concentration of nitrate and presence of sulphate in shallow groundwater at few locations is due to usage of fertilizers and pesticides. 相似文献
11.
We collected a total of 50 water samples comprising tap water, ground water, and bottled water, from various areas of Jeddah City. We collected tap water samples from 25 districts, groundwater samples from 10 wells, and 15 different brands of bottled water. The levels of 28 elements were determined by inductively coupled plasma mass spectrometry (ICP-MS). Water certified reference material (CWW-TM-B) was used to ensure quality assurance. Recoveries ranged from 92 to 104.8% for all measured elements. Levels of major and trace elements in groundwater samples were higher than those in both bottled and tap drinking water. Only four elements (Al, Cs, U, and Zn) were shown to be higher in tap water samples than other samples type. However, their values were far below the guideline values. All mean concentrations of Na, K, Mg, and Ca in well water samples were significantly ( p < 0.05) higher than those in both bottled and tap drinking water. In addition, only Al and Zn in tap water samples were significantly ( p < 0.05) higher than those in both bottled and well drinking water. Most of the other elements were higher in well water samples compared to other sources. The results from this study will be used to increase public awareness about the safety of drinking water. It will also be useful for increasing awareness of health issues related to drinking water and to water used for other purposes. 相似文献
12.
Based on the survey data of 250 farmers from the Multan district of Southern region of Punjab, Pakistan this study aims to empirically examine the determinants of access to agricultural credit. This study used the probit model to analyze the data. The results revealed that formal education, farm size, level of farm mechanization, farm revenue and landholding size positively and significantly influenced access to agricultural credit while the age of the farmer’s, distance, and off- farm income negatively and insignificantly influenced farmer’s accessibility to agricultural credit. The findings of the current study offer a policy guideline to streamline national policy on agricultural finance. This study also recommends that ZaraiTaraqiati Bank (ZTBL) and other Commercial Banks should improve their agricultural credit schemes to fulfil the diversified needs of small farm holders. 相似文献
14.
Over-exploitation of groundwater resources threatens the future of irrigated agriculture, especially in the arid and semi-arid regions of the world. In order to reverse this trend, and to ensure future food security, the achievement of sustainable groundwater use is ranking high on the agenda of water policy makers. Spatio-temporally distributed information on net groundwater use—i.e. the difference between tubewell withdrawals for irrigation and net recharge—is often unknown at the river basin scale. Conventionally, groundwater use is estimated from tubewell inventories or phreatic surface fluctuations. There are shortcomings related to the application of these approaches. An alternative methodology for computing the various water balance components of the unsaturated zone by using geo-information techniques is provided in this paper. With this approach, groundwater recharge will not be quantified explicitly, but is part of net groundwater use, and the spatial variation can be quantitatively described. Records of routine climatic data, canal discharges at major offtakes, phreatic surface depth fluctuations, and simplified information on soil textural properties are required as input data into this new Geographic Information System and Remote Sensing tool. The Rechna Doab region (approximately 2.97 million ha), located in the Indus basin irrigation system of Pakistan, has been used as a case study. On an annual basis, an areal average net groundwater use of 82 mm year –1 was estimated. The current result deviates 65% from the specific yield method. The deviation from estimates using tubewell withdrawal related data is even higher.
Resumen La sobre-explotación de recursos de agua subterránea amenaza el futuro de la agricultura de riego, especialmente en las regiones áridas y semi-áridas del mundo. Para revertir esta tendencia, y para garantizar seguridad alimentaria futura, la meta del uso sostenible del agua subterránea se encuentra alto en la agenda de los políticos. Información espacial y temporal en cuanto al uso neto de agua subterránea- i.e. la diferencia entre las extracciones de agua de pozos entubados para riego y recarga neta- se desconoce frecuentemente a la escala de cuenca hidrográfica. Generalmente, el uso de agua subterránea se estima a partir de inventarios de pozos o fluctuaciones de superficies freáticas. Existen deficiencias en relación con las aplicaciones de estos enfoques. En este artículo se aporta una metodología alternativa para calcular los diferentes componentes del balance hídrico de la zona no saturada utilizando técnicas geoinformativas. Aunque con este enfoque no se cuantifica de manera explícita la recarga de agua subterránea, la cual es parte del uso neto de agua subterránea, puede describirse cuantitativamente la variación espacial. Para esta nueva herramienta de Sistemas de Información Geográfica y Sensores Remotos se requieren datos de entrada como registros rutinarios de datos climáticos, descargas de canales en salidas principales, fluctuaciones de profundidades de superficies freáticas, e información simplificada de las propiedades texturales de los suelos. Se ha utilizado como estudio de caso la región Rechna Doab (aproximadamente 2.97 millones ha), localizada en el sistema de riego de la cuenca Indus de Pakistán. Se ha estimado un uso promedio areal anual de agua subterránea de 82 mm año–1. El resultado obtenido difiere en un 65% del método de productividad específica. La diferencia en relación a estimados provenientes de extracciones en pozos entubados es aún mucho más alta.
Résumé La surexploitation des ressources en eau souterraine menace le futur de lagriculture irrigué, spécialement dans les zones arides et semi-arides du monde. De manière à renverser la tendance, et dassurer la sécurité alimentaire, lutilisation durable des eaux souterraines est devenue une priorité dans lagenda des politiques de leau. La distribution spatio-temporelle de lusage net de leau souterraine (la différence entre l ‹eau pompée et la recharge nette) est rarement connue à léchelle dun bassin versant. Conventionnellement, lutilisation des eaux souterraines est estimée à partir des données de rabattement ou les données de fluctuation du niveau de la nappe phréatique. Il y a des défauts dans ces approches. Une méthodologie alternative pour calculer les différents composants de la balance hydrologique est présentée dans cet article. Avec cette approche, la recharge des eaux souterraines ne sera pas quantifiée de manière explicite, mais sera considérée comme une part de lutilisation nette en eau souterraine, et la variation spatiale peut être décrite quantitativement. Les chroniques des données climatiques, les débits du réseau hydrographique majeur, les fluctuations de la surface de la nappe phréatique, et des données basiques sur la texture du sol sont nécessaires et sont rentrées dans un nouveau Système dInformation Géographique et outil de télédétection. La région de Rechna Doab au Pakistan, environ 2.97 millions dhectare, localisée dans le bassin irrigué de lIndus, a été utilisé comme cas détude. Sur base annuelle, lutilisation nette de leau souterraine est estimée à 82 mm. en moyenne. Le résultat obtenu diffère de 65% du résultat de la méthode du débit spécifique. La différence avec le résultat obtenu en observant le rabattement des puits est encore plus élevée. 相似文献
15.
The microfacies analysis and diagenetic fabric of the Lockhart Limestone are studied in an outcrop section exposed in the Margalla Hill ranges. The Lockhart Limestone is predominantly composed of medium to thick bedded, nodular and occasionally brecciated, highly fossiliferous limestone with thin interbeds of marl and shale. On the basis of detailed petrographic investigations, four microfacies have been identified including bioclastic packstone, wackestone (siliciclastic bioclastic rich sub-microfacies), wackestone-packstone, and mud-wackestone. Based on the microfacies analysis, the Lockhart Limestone is interpreted to have been deposited in the fore-shoal mid-ramp, mid-ramp, and outer ramp depositional environments. The Paleocene age has been assigned to the Lockhart Limestone based on age diagnostic foraminifera, i.e., Miscellanea, Lockhartia, and Ranikothalia. The diagenetic fabric of the Lockhart Limestone is characterized by several diagenetic features such as micritization, neomorphism (aragonite to calcite transformation and development of microspar), compaction, pressure dissolution (microstylolites), and cementation (calcite-filled microfractures). Such diagenetic features are developed in marine, meteoric, and burial diagenetic settings. The Paleocene Lockhart Limestone of Pakistan shows analogous features to that of the Paleocene Zongpu Formation (Member-3) of the Gamba-Tingri Basin of southern Tibet based on the outcrop features, microscopic fabric, and depositional environment. 相似文献
16.
Natural Hazards - The paper illustrates the results of regional flood frequency analysis of eleven sites of the four major rivers of Punjab, Pakistan. The discordancy measure (D i ) shows that none... 相似文献
19.
Present irrigation practices and water management techniques in Pakistan are the result of a long process. Through a cultural-historical approach, generic relationships of some present patterns are traced to their origin. The origin of irrigation was probably in small alluvial valleys of Southwest Asia, which is also considered the hearth of seed agriculture. From a simple beginning the irrigation and water management systems have become extremely complicated to support Pakistan's largest irrigation network in the world.Part of the research for this paper was done at the Department of Geography, South Asia Institute, University of Heidelberg, Heidelberg, Germany during the summer of 1992. 相似文献
20.
Extensive groundwater withdrawals in urban areas may cause water shortages, land subsidence, and water quality problems. The Quetta Valley is the largest population center in Balochistan province in western Pakistan. This area is arid and groundwater is the main water source for domestic and agricultural use. This work presents global positioning system (GPS) data and assessment of spatial and temporal variations in water levels. GPS data from two stations from mid-2006 to the beginning of 2009 show subsidence rate of 10 cm\year. Nine satellite images from 1975 to 2009 were classified and processed to quantify land cover and land use changes, which highlight an increase in agricultural areas in the central region of the Quetta Valley, as well as reduced vegetation on mountains. These data correspond to gradual temporal changes in water volumes in streams and lakes. Average temperatures have also increased and mean precipitation has decreased during this period. However, the greatest change in this area has been in population growth, which rose from 260,000 in 1975 to 1.2 million in 2010, mainly due to migration of refugees from war-torn neighboring Afghanistan. The Quetta Valley provides a good example for studying the impact of urbanization on water resources. 相似文献
|