共查询到20条相似文献,搜索用时 15 毫秒
1.
This study Investigates a tracing method using dissolved noble gases to survey the groundwater flow in a large groundwater basin. The tracing method is based on measuring the concentrations of noble gases and the ratio of helium isotopes in groundwater samples. Since it is very difficult to detect trace amounts of noble gases and helium with high accuracy in a 15-ml groundwater sample, dissolved gases were extracted and purified, then a high-resolution mass spectrometer was used for measurement and comparison with standard samples. We used this method with samples from a confined aquifer formed by the deposition of pyroclastic flow in the Kumamoto Plain on the west side of Mt. Aso in central Kyushu, Japan. The groundwater basin under the plain is divided into four small basins, based on the helium concentrations and isotope ratios, with two major groundwater flows. One flow is buried by the Aso pyroclastic flow along the old Kase River; the other is along the Tsuboi River Valley. These two groundwater flows were identified from the different helium isotope-ratios. The helium component from the deep mantle is mixed into the groundwater under the Kumamoto Plain. Finally, data on the concentrations and ratios of 3He to 4He in groundwater samples were used to determine the location of faults in the volcanic aquifer. 相似文献
2.
Dissolved major ions and important heavy metals including total arsenic and iron were measured in groundwater from shallow
(25–33 m) and deep (191–318 m) tube-wells in southeastern Bangladesh. These analyses are intended to help describe geochemical
processes active in the aquifers and the source and release mechanism of arsenic in sediments for the Meghna Floodplain aquifer.
The elevated Cl − and higher proportions of Na + relative to Ca 2+, Mg 2+, and K + in groundwater suggest the influence by a source of Na + and Cl −. Use of chemical fertilizers may cause higher concentrations of NH 4+ and PO 43− in shallow well samples. In general, most ions are positively correlated with Cl −, with Na + showing an especially strong correlation with Cl −, indicating that these ions are derived from the same source of saline waters. The relationship between Cl −/HCO 3− ratios and Cl − also shows mixing of fresh groundwater and seawater. Concentrations of dissolved HCO 3− reflect the degree of water–rock interaction in groundwater systems and integrated microbial degradation of organic matter.
Mn and Fe-oxyhydroxides are prominent in the clayey subsurface sediment and well known to be strong adsorbents of heavy metals
including arsenic. All five shallow well samples had high arsenic concentration that exceeded WHO recommended limit for drinking
water. Very low concentrations of SO 42− and NO 3− and high concentrations of dissolved Fe and PO 43− and NH 4+ ions support the reducing condition of subsurface aquifer. Arsenic concentrations demonstrate negative co-relation with the
concentrations of SO 42− and NO 3− but correlate weakly with Mo, Fe concentrations and positively with those of P, PO 43− and NH 4+ ions. 相似文献
3.
Hydrochemical, multivariate statistical and inverse hydrogeochemical modeling techniques were used to investigate groundwater
recharge, flow and the hydrochemical evolution within the Akaki volcanic aquifer system, central Ethiopia. The hydrochemical
and multivariate statistical techniques are mutually supportive and the extracted information was analyzed together with environmental
isotope data. Results reveal five spatial groundwater zones with defined hydrochemical facies, residence times, stable isotopic
signals and hydrochemical evolution. These zones are designated as the (1) Intoto, (2) central, (3) Filwuha fault, (4) south
zones and (5) a highly polluted sub-sector identified within the central zone. Both the hydrochemical and multivariate statistical
analyses have shown the central sub-sector as being spite of differentially polluted by , Cl − and and its tritium content shows recent recharge. Due to the fact that the main recharge source is precipitation, the hydrochemical
and environmental isotope data clearly indicated that the central and southern sectors are also recharged from domestic waste
water and leakage from water mains and reservoirs. Inverse hydrogeochemical modeling demonstrated reactions of silicate minerals
in a CO 2 open system and precipitation of kaolinite, chalcedony, and rare calcite satisfy the observed change in water chemistry from
north to south following the regional flow direction.
Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.
Résumé Des techniques relevant de l’hydrochimie, des statistiques multivariées et de la modélisation inverse hydrogéochimique, ont
été utilisées dans le cadre de l’étude de la recharge des eaux souterraines, de l’écoulement et de l’évolution hydrochimique
dans le système volcanique aquifère d’Akaki au centre de l’Ethiopie. Les techniques hydrochimiques et multivariées se supportent
mutuellement et l’information extraite a été analysée avec les données isotopiques environnementales, des temps de résidence,
des signaux isotopiques stables et une évolution hydrochimique. Ces zones ont été désignées comme le (1) Intoto, (2) le centre,
(3) la faille de Filwuha, (4) les zones sud et (5) un sous-secteur fortement pollué identifié dans la zone centrale. Les analyses
statistiques hydrochimiques et multivariées ont montré que le sous-secteur central a été différemment pollué par , Cl− et , tandis que la teneur en tritium montre une recharge récente. Malgré le fait que la principale source de recharge soit les
précipitations, les données hydrochimiques et isotopiques indiquent clairement que les secteurs centres et sud sont également
rechargés par les eaux usées domestiques et les fuites de réservoirs et canalisations d’eau. La modélisation hydrogéochimique
inverse a démontré les réactions des minéraux silicatés dans un système ouvert au CO2, et la précipitation de kaolinite, de calcédoine, et la rareté de la calcite satisfont les changements observés dans la chimie
de l’eau du nord vers le sud en suivant la direction régionale de l’écoulement.
Resumen Se utilizaron la hidroquímica y técnicas de modelación hidrogeoquímica inversa y estadística multivariada, para investigar
la recarga del agua subterránea, el flujo y la evolución hidroquímica, dentro del sistema acuífero volcánico Akaki, Etiopía
Central. La hidroquímica y las técnicas estadísticas multivariadas se complementan entre si y la información así extraída
se analizó junto con los datos de isótopos ambientales. Los resultados revelan cinco zonas diferentes de agua subterránea,
con facies hidroquímicas, tiempos de residencia, improntas isotópicas estables y una evolución hidroquímica definidas. Estas
zonas se designan como (1) Intoto, (2) Central, (3) Falla de Filwuha, (4) las Zonas del sur y (5) un sub-sector altamente
contaminado identificado dentro de la zona central. Tanto los análisis estadísticos multivariados como la hidroquímica, han
mostrado al sub-sector central como contaminado diferencialmente por , Cl− y y su contenido de tritio muestra una recarga reciente. A pesar del hecho que la fuente principal de recarga es la precipitación,
los datos de hidroquímica y de isótopos ambientales indican que los sectores central y del sur, también se recargan a partir
de agua doméstica usada y del goteo de las conducciones del acueducto y de sus reservorios. El modelamiento hidrogeoquímico
inverso demostró reacciones de minerales silicatados en un sistema de CO2 abierto, y la precipitación de caolinita, calcedonia, y rara vez de calcita, satisfacen el cambio observado en la química
de agua del norte a sur, siguiendo la dirección del flujo regional.
相似文献
4.
A combination of vertical electrical soundings (VES), 2D electrical resistivity imaging (ERI) surveys and borehole logs were conducted at Magodo, Government Reserve Area (GRA) Phase 1, Isheri, Southwestern Nigeria, with the aim of delineating the different aquifers present and assessing the groundwater safety in the area. The Schlumberger electrode array was adopted for the VES and dipole-dipole array was used for the 2D imaging. The maximum current electrode spread (AB) was 800 m and the 2D traverse range between 280 and 350 m in the east-west direction. The thickness of impermeable layer overlying the confined aquifer was used for the vulnerability ratings of the study area. Five lithological units were delineated: the topsoil, clayey sand, unconsolidated sand which is the first aquifer, a clay stratum and the sand layer that constitutes the confined aquifer horizon. The topsoil thickness varies from 0.6 to 2.6 m, while its resistivity values vary between 55.4 and 510.6 Ω/m. The clayey sand layers have resistivity values ranging from 104.2 to 143.9 Ω/m with thickness varying between 0.6 and 14.7 m. The resistivity values of the upper sandy layer range from 120.7 to 2195.2 Ω/m and thickness varies from 3.3 to 94.0 m. The resistivity of the clay layer varies from 11.3 to 96.1 Ω/m and the thickness ranges from 29.6 to 76.1 m. The resistivity value of the confined aquifer ranges between 223 and 1197.4 Ω/m. The longitudinal conductance (0.0017–0.02 mhos) assessment of the topsoil shows that the topsoil within the study area has poor overburden protective capacity, and the compacted impermeable clay layer shows that the underlying confined aquifer is well protected from contamination and can be utilized as a source of portable groundwater in the study area. This study therefore enabled the delineation of shallow aquifers, the variation of their thicknesses and presented a basis for safety assessment of groundwater potential zones in the study area. 相似文献
6.
High groundwater As concentrations in oxidizing systems are generally associated with As adsorption onto hydrous metal (Al, Fe or Mn) oxides and mobilization with increased pH. The objective of this study was to evaluate the distribution, sources and mobilization mechanisms of As in the Southern High Plains (SHP) aquifer, Texas, relative to those in other semiarid, oxidizing systems. Elevated groundwater As levels are widespread in the southern part of the SHP (SHP-S) aquifer, with 47% of wells exceeding the current EPA maximum contaminant level (MCL) of 10 μg/L (range 0.3–164 μg/L), whereas As levels are much lower in the north (SHP-N: 9% As MCL of 10 μg/L; range 0.2–43 μg/L). The sharp contrast in As levels between the north and south coincides with a change in total dissolved solids (TDS) from 395 mg/L (median north) to 885 mg/L (median south). Arsenic is present as arsenate (As V) in this oxidizing system and is correlated with groundwater TDS (Spearman’s ρ = 0.57). The most likely current source of As is sorbed As onto hydrous metal oxides based on correlations between As and other oxyanion-forming elements (V, ρ = 0.88; Se, ρ = 0.54; B, ρ = 0.51 and Mo, ρ = 0.46). This source is similar to that in other oxidizing systems and constitutes a secondary source; the most likely primary source being volcanic ashes in the SHP aquifer or original source rocks in the Rockies, based on co-occurrence of As and F ( ρ = 0.56), oxyanion-forming elements and SiO 2 ( ρ = 0.41), which are found in volcanic ashes. High groundwater As concentrations in some semiarid oxidizing systems are related to high evaporation. Although correlation of As with TDS in the SHP aquifer may suggest evaporative concentration, unenriched stable isotopes (δ 2H: −65 to −27; δ 18O: −9.1 to −4.2) in the SHP aquifer do not support evaporation. High TDS in the SHP aquifer is most likely related to upward movement of saline water from the underlying Triassic Dockum aquifer. Mobilization of As in other semiarid oxidizing systems is caused by increased pH; however, pH in the SHP aquifer is near neutral (10–90 percentiles, 7.0–7.6). Although many processes, such as competitive desorption with SiO 2, VO 4, or PO 4, could be responsible for local mobilization of As in the SHP aquifer, the most plausible explanation for the regional As distribution and correlation with TDS is the counterion effect caused by a change from Ca- to Na-rich, water as shown by the high correlation between As and Na/(Ca) 0.5 ratios ( ρ = 0.57). This change in chemistry is related to mixing with saline water that moves upward from the underlying Dockum aquifer. This counterion effect may mobilize other anions and oxyanion-forming elements that are correlated with As (F, V, Se, B, Mo and SiO 2). Competition among the oxyanions for sorption sites may enhance As mobilization. The SHP case study has similar As sources to those of other semiarid, oxidizing systems (original volcanic ash source followed by sorption onto hydrous metal oxides) but contrasts with these systems by showing lack of evaporative concentration and pH mobilization of As but counterion mobilization of As instead in the SHP-S aquifer. 相似文献
8.
Contamination of groundwater in different parts of the world is a result of natural and/or anthropogenic sources, leading to adverse effects on human health and the ecosystem. In Península Valdés, where groundwater is the only source of supply, high concentrations of As and F- were registered. Since it is a region without industrial activity, an analysis of possible natural sources of contamination is necessary. The aim of this study is to analyse the hydrological processes that determines the presence and mobilization of those elements through the analysis of the mineralogy of the aquifer sediments and the ionic water relationships. The productive aquifer, dominated by psamites, coquinas and siltstone is located between 29 and 42 m below ground surface. The hydrochemistry studied from 105 sampling points, shows that groundwater is dominated by Na-Cl ions and, in the fresh water sectors, the ionic type is Na-HCO3 to Na-Cl. In 17 of these samples, Zn, Cr, Mn, As, V, Sr, Fe, F ions were measured and As and F contents above the potability limit were recorded. These contents vary between 0.01 and 0.40 mg/L in As and between 0.31 and 4 in F- which are both associated with elevated V values. The optical petrographic microscope observations and the X-ray diffraction measurements show that the sediments are dominated by volcanic lithic fragments, volcanic glass shards and quartz, plagioclase, pyroxenes and magnetite clasts. The scanning electron microscopy, combined with the energy dispersive X-ray analysis, shows that the highest concentrations of As are associated with volcanic shards and iron oxides. The combined analysis of all these elements leads to conclude that the processes which explain the presence of those ions are a result of the interaction of groundwater with the components of the aquifer sediments. At alkaline pH, the high solubility of the amorphous silica of vitreous shards allows the release of As, V and F- ions towards the solution. Thus, adsorption-desorption processes can also control the presence of these ions in groundwater. Both As and V (in solution in the form of oxyanions) can be adsorbed by iron oxides, while F- anions have more affinity to be adsorbed by the carbonate facies, some of them re-precipitated as a result of the increase in pH. The identified hydrogeological processes provide information for the planning of water purification measures that tend to improve the water resources management in a large arid region of Patagonia. 相似文献
9.
The 18O/ 16O ratios were analyzed for 35 volcanic rocks from the Izu-Hakone region, Oki-Dogo Island, Asama Volcano and Kiso-Ontake Volcano in the Japanese Islands. The 18O-enrichment in magma during crystallization differentiation is recognized in every rock series. The magnitude of solid-liquid isotope fractionation in the magma of tholeiite series is similar to that of alkali rock series, while the apparent isotope fractionation of calc-alkali rock series is larger than that of the above two series. The
18O value of the tholeiite magma in the Izu- Hakone region is +5.7 relative to SMOW, which suggests its origin from the fresh upper mantle material. The primary magma of the calc-alkali rock series in Asama Volcano is assumed to have the
18O value similar to or slightly higher than that of the Izu-Hakone primary magma. The alkali rock series of Oki-Dogo Island in the continental side of the island arc is by 1 heavier than the Izu-Hakone rock suite. This may imply that Oki-Dogo rock series might have exchanged their oxygen with 18O-rich crustal materials, or they might have originated from somewhat 18O-rich upper mantle material. 相似文献
10.
The relationships between stratigraphic and tectonic setting, recharge processes and underground drainage of the glacierised karst aquifer system ‘Tsanfleuron-Sanetsch’ in the Swiss Alps have been studied by means of various methods, particularly tracer tests (19 injections). The area belongs to the Helvetic nappes and consists of Jurassic to Palaeogene sedimentary rocks. Strata are folded and form a regional anticlinorium. Cretaceous Urgonian limestone constitutes the main karst aquifer, overlain by a retreating glacier in its upper part. Polished limestone surfaces are exposed between the glacier front and the end moraine of 1855/1860 (Little Ice Age); typical alpine karrenfields can be observed further below. Results show that (1) large parts of the area are drained by the Glarey spring, which is used as a drinking water source, while marginal parts belong to the catchments of other springs; (2) groundwater flow towards the Glarey spring occurs in the main aquifer, parallel to stratification, while flow towards another spring crosses the entire stratigraphic sequence, consisting of about 800 m of marl and limestone, along deep faults that were probably enlarged by mass movements; (3) the variability of glacial meltwater production influences the shape of the tracer breakthrough curves and, consequently, flow and transport in the aquifer. 相似文献
11.
The new non-marine bivalve species Nippononaia ( Martinsonella) tamurai sp. nov. is described from the Upper Formation of the Mifune Group in Kumamoto Prefecture, Southwest Japan. The specimens originally were identified as Plicatounio ( Plicatounio) B sp. by Tamura (1990). The subgenus Nippononaia ( Martinsonella) previously was only reported from China, and this is the first record from Japan. The Upper Formation of the Mifune Group is of Late Cenomanian to Early Turonian age, as indicated by ammonites. “ Nippononaia” (?) obsoleta Hase, 1960 from the Shiohama Formation of Yamaguchi, Japan, and Plicatounio (s.l.) A sp. of Tamura (1990) from strata northeast of Geoncheonri, South Korea, are re-assigned to Nippononaia ( Martinsonella). These occurrences may be of significance for the inter-regional correlation of non-marine Cretaceous strata. 相似文献
12.
Identifying the origin of nitrate is important for the control and management of groundwater quality in aquifer systems. In the southern Apennines (Italy), the Mount Vulture volcanic aquifer is a large and valuable resource of potable and mineral water supply. Unfortunately, signs of anthropogenic impact, especially nitrogen contamination, have recently become evident. In this study, and for the first time, stable isotope ratios (δ 15N and δ 18O) of NO 3 ? were determined in groundwater to identify their origins and evaluate the presence of transformation processes. The Mount Vulture groundwaters are meteoric in origin, as demonstrated by measurements of δD and δ 18O, and can be divided into two distinct areas based on their NO 3 ? content. In the southeastern area, characterized by active agricultural land use, the high NO 3 ? content and the δ 15N–NO 3 isotopic values are due to anthropogenic contamination (inorganic fertilizer). In groundwaters from the western area, the NO 3 ? contents below 4 mg/L and the δ 15N–NO 3 values can be associated at organic soil N. Evidence for local denitrification may be assumed in a few groundwater samples of the western area showing relatively heavy δ 15N values and low concentrations of nitrate. Finally, the low measured δ 18O values indicate that nitrification occurred in both investigated areas. 相似文献
13.
Large scale redox processes were investigated in a river recharged aquifer in the Oderbruch polder alongside the river Oder in north-eastern Germany. Major hydraulic and hydrochemical processes were identified qualitatively. As a result of intensive drainage activities in the past 250 a, the groundwater level within the polder is situated below the river water level and a levee prevents flooding of the lowland. As a consequence, river water permanently infiltrates into the shallow confined aquifer. A sequence of redox reactions, driven by organic matter degradation, can be observed during infiltration of oxic river water into the groundwater. Up to 3 km from the river, reduction processes from O 2 respiration to SO 2−4 reduction dominate the groundwater chemistry. While reduction of Fe- and Mn(hydr)oxides is the source of the high amounts of dissolved Fe 2+ and Mn 2+, carbonate dissolution/precipitation reactions control the actual groundwater concentration of Mn 2+. The first order rate constant for SO 2−4 reduction was found to be −0.0169 a −1. Fe 2+ is released into the groundwater at a rate of 0.0033 mmol l −1 a −1. The groundwater chemistry is strongly linked to the hydraulic conditions. Near the river, the groundwater is confined and recharged by bank-filtration only. In contrast, in the central polder the groundwater is unconfined and percolation of rainwater through the dried loam is possible because of texture changes such as shrinkage fissures. Geogenic pyrite present within the alluvial loam is oxidised and large amounts of SO 2−4 are released into the groundwater. 相似文献
14.
The groundwater flow systems and chemistry in the deep part of the coastal area of Japan have attracted attention over recent decades due to government projects such as geological disposal of radioactive waste. However, the continuous groundwater flow system moving from the shallow to deep parts of the sedimentary soft rock has not yet been characterized. Therefore, the Cl –, δD and δ 18O values of the pore water in the Horonobe coastal area in Hokkaido, Japan, were measured to 1,000 m below the ground surface, and a vertical profile of the pore-water chemistry was constructed to assist in elucidating groundwater circulation patterns in the coastal area. The results show that the groundwater flow regime may be divided into five categories based on groundwater age and origin: (1) fresh groundwater recharged by modern rainwater, (2) fresh groundwater recharged by paleo rainwater during the last glacial age, (3) low-salinity groundwater recharged during the last interglacial period, (4) mixed water in a diffusion zone, and (5) connate water consisting of paleo seawater. These results suggest that the appearance of hydrological units is not controlled by the boundaries of geological formations and that paleo seawater is stored in younger Quaternary sediments. 相似文献
15.
Arsenic (As) concentrations and speciation were determined in groundwaters along a flow-path in the Upper Floridan aquifer (UFA) to investigate the biogeochemical “evolution“ of As in this relatively pristine aquifer. Dissolved inorganic As species were separated in the field using anion-exchange chromatography and subsequently analyzed by inductively coupled plasma mass spectrometry. Total As concentrations are higher in the recharge area groundwaters compared to down-gradient portions of UFA. Redox conditions vary from relatively oxic to anoxic along the flow-path. Mobilization of As species in UFA groundwaters is influenced by ferric iron reduction and subsequent dissolution, sulfate reduction, and probable pyrite precipitation that are inferred from the data to occur along distinct regions of the flow-path. In general, the distribution of As species are consistent with equilibrium thermodynamics, such that arsenate dominates in more oxidizing waters near the recharge area, and arsenite predominates in the progressively reducing groundwaters beyond the recharge area. 相似文献
16.
Detailed hydrochemical measurements, δ34S SO4 and 3H analyses were performed on 37 groundwater samples collected during February 1999, January and March 2000 from 6 locations in eastern and southeastern Bangladesh to examine redox processes that lead to As mobilization in groundwater. The study sites were chosen based on available nation-wide As surveys to span the entire spectrum of As concentrations in Bangladesh groundwater, and to represent 3 of 5 major geological units of the Ganges-Brahmaputra Delta: uplifted Pleistocene terrace, fluvial flood plain and delta plain. Arsenic was found to be mobilized under Fe-reducing conditions in shallow aquifers (<35 m depth), presumably of Holocene age. It remained mobile under SO 4-reducing conditions, suggesting that authigenic sulfide precipitation does not constitute a significant sink for As in these groundwaters. The redox state of the water was characterized by a variety of parameters including dissolved O 2, NO 3−, Mn 2+, Fe 2+ concentrations, and SO 42−/Cl − ratios. High dissolved [As] (> 50 μg/l; or > 0.7 μM ) were always accompanied by high dissolved [HCO 3−] (> 4 mM), and were close to saturation with respect to calcite. Groundwater enriched in As (200–800 μg/l; or 2.7–10.7 μM) and phosphate (30–100 μM) but relatively low in dissolved Fe (5–40 μM) probably resulted from re-oxidation of reducing, As and Fe enriched water. This history was deduced from isotopic signatures of δ34S SO4 and 3H 2O ( 3H) to delineate the nature of redox changes for some of the reducing groundwaters. In contrast, As is not mobilized in presumed Pleistocene aquifers, both shallow (30–60 m) and deep (150–270 m), because conditions were not reducing enough due to lack of sufficient O 2 demand. 相似文献
17.
The relevance of groundwater hydrogeochemistry to explain the occurrence and distribution of arsenic in groundwater is of great interest. The insightful discussions on the control of shallow groundwater (< 50 m) hydrogeochemistry in arsenic mobilization are known to be a viable tool to explain the arsenic menace in shallow groundwater. The present investigation emphasizes the hydrogeochemical driver and/or control over the reductive dissolution of Fe-bearing host minerals and thereby releasing arsenic into the shallow groundwater of the study area. The study suggests that hydrogeochemical evolution is mainly governed by carbonate minerals dissolution, silicate weathering, and competitive ion-exchange processes in the shallow aquifers (< 50 m). The present study also indicates the prevalence of carbonate minerals dissolution over silicate weathering. The emergence of Cl− concentration in the shallow groundwater founds the possibilities of anthropogenic inputs into the shallow aquifers (< 50 m). The reducing environment in shallow aquifers (< 50 m) of the study area is evident in the reductive dissolution of Fe- bearing shallow aquifer minerals which absorb arsenic in the solid phase and mobilize arsenic onto shallow groundwater. The study opted for many statistical approaches to delineate the correlation among major and minor ionic constituents of the groundwater which are very helpful to understand the comprehensive mechanism of arsenic mobilization into shallow groundwater. 相似文献
18.
In this paper we provide a geochemical investigation on 34 groundwater samples in the Mt. Vulture volcanic aquifer representing one of the most important groundwater resources of the southern Italy pumped for drinking and irrigation supply. The present study includes the first data on the abundance and mobility of minor and trace elements and the thermodynamic considerations on water–rock interaction processes in order to evaluate the conditions of alkali basalt weathering by waters enriched in magma-derived CO 2. The results highlight the occurrence of two hydrofacies: bicarbonate alkaline-earth and alkaline waters deriving from low-temperature leaching of volcanic rocks of Mt. Vulture, and bicarbonate-sulfate-alkaline waters (high-salinity waters) related to prolonged water circulation in alkali and feldspathoids-rich pyroclastic layers interbedded with clay deposits. The Al-normalized relative mobility (RM) of metals in Vulture's aquifer varies over a wide range (10 − 1 < RM < 10 4), confirming that the basalt weathering is not a congruent and isochemical process. Chemical equilibrium studies show that the bicarbonate alkaline-earth and alkaline waters, having a short interaction with silicate minerals, plot very close to the kaolinite–smectite stability boundary, whereas the high-salinity waters fall in the stability field of smectite and muscovite because of prolonged interaction with alkali and feldspathoids-rich pyroclastic layers. Overall, for the bicarbonate alkaline-earth and alkaline waters, the release of toxic metals in solutions is related to the spatial variation of host-rock geochemistry, the high-salinity waters, collected near urban areas, show values higher than legal limits for Ni and As, likely as a consequence of anthropogenic contribution. 相似文献
19.
Aquifer geochemistry was characterized at a field site in the Munshiganj district of Bangladesh where the groundwater is severely contaminated by As. Vertical profiles of aqueous and solid phase parameters were measured in a sandy deep aquifer (depth >150 m) below a thick confining clay (119 to 150 m), a sandy upper aquifer (3.5 to 119 m) above this confining layer, and a surficial clay layer (<3.5 m). In the deep aquifer and near the top of the upper aquifer, aqueous As levels are low (<10 μg/L), but aqueous As approaches a maximum of 640 μg/L at a depth of 30 to 40 m and falls to 58 μg/L near the base (107 m) of the upper aquifer. In contrast, solid phase As concentrations are uniformly low, rarely exceeding 2 μg/g in the two sandy aquifers and never exceeding 10 μg/g in the clay layers. Solid phase As is also similarly distributed among a variety of reservoirs in the deep and upper aquifer, including adsorbed As, As coprecipitated in solids leachable by mild acids and reductants, and As incorporated in silicates and other more recalcitrant phases. One notable difference among depths is that sorbed As loads, considered with respect to solid phase Fe extractable with 1 N HCl, 0.2 M oxalic acid, and a 0.5 M Ti(III)-citrate-EDTA solution, appear to be at capacity at depths where aqueous As is highest; this suggests that sorption limitations may, in part, explain the aqueous As depth profile at this site. Competition for sorption sites by silicate, phosphate, and carbonate oxyanions appear to sustain elevated aqueous As levels in the upper aquifer. Furthermore, geochemical profiles are consistent with the hypothesis that past or ongoing reductive dissolution of Fe(III) oxyhydroxides acts synergistically with competitive sorption to maintain elevated dissolved As levels in the upper aquifer. Microprobe data indicate substantial spatial comapping between As and Fe in both the upper and deep aquifer sediments, and microscopic observations reveal ubiquitous Fe coatings on most solid phases, including quartz, feldspars, and aluminosilicates. Extraction results and XRD analysis of density/magnetic separates suggest that these coatings may comprise predominantly Fe(II) and mixed valence Fe solids, although the presence of Fe(III) oxyhydroxides can not be ruled out. These data suggest As release may continue to be linked to dissolution processes targeting Fe, or Fe-rich, phases in these aquifers. 相似文献
20.
The mobility of subsurface arsenic is controlled by sorption, precipitation, and dissolution processes that are tied directly to coupled redox reactions with more abundant, but spatially and temporally variable, iron and sulfur species. Adjacent to the site of a former pesticide manufacturing facility near San Francisco Bay (California, USA), soil and groundwater arsenic concentrations are elevated in sediments near the prior source, but decrease to background levels downgradient where shallow groundwater mixes with infiltrating tidal waters at the plume periphery, which has not migrated appreciably in over two decades of monitoring. We used synchrotron X-ray absorption spectroscopy, together with supporting characterizations and sequential chemical extractions, to directly determine the oxidation state of arsenic and iron as a function of depth in sediments from cores recovered from the unsaturated and saturated zones of a shallow aquifer (to 3.5 m below the surface). Arsenic oxidation state and local bonding in sediments, as As-sulfide, As(III)-oxide, or As(V)-oxide, were related to lithologic redox horizons and depth to groundwater. Based on arsenic and iron speciation, three subsurface zones were identified: (i) a shallow reduced zone in which sulfide phases were found in either the arsenic spectra (realgar-like or orpiment-like local structure), the iron spectra (presence of pyrite), or both, with and without As(III) or As(V) coordinated by oxygen; (ii) a middle transitional zone with mixed arsenic oxidation states (As(III)–O and As(V)–O) but no evidence for sulfide phases in either the arsenic or iron spectra; and (iii) a lower oxidized zone in the saturated freshwater aquifer in which sediments contained only oxidized As(V) and Fe(III) in labile (non-detrital) phases. The zone of transition between the presence and absence of sulfide phases corresponded to the approximate seasonal fluctuation in water level associated with shallow groundwater in the sand-dominated, lower oxic zone. Total sediment arsenic concentrations showed a minimum in the transition zone and an increase in the oxic zone, particularly in core samples nearest the former source. Equilibrium and reaction progress modeling of aqueous-sediment reactions in response to decreasing oxidation potential were used to illustrate the dynamics of arsenic uptake and release in the shallow subsurface. Arsenic attenuation was controlled by two mechanisms, precipitation as sulfide phases under sulfate-reducing conditions in the unsaturated zone, and adsorption of oxidized arsenic to iron hydroxide phases under oxidizing conditions in saturated groundwaters. This study demonstrates that both realgar-type and orpiment-type phases can form in sulfate-reducing sediments at ambient temperatures, with realgar predicted as the thermodynamically stable phase in the presence of pyrite and As(III) under more reduced conditions than orpiment. Field and modeling results indicate that the potential for release of arsenite to solution is maximized in the transition between sulfate-reduced and iron-oxidized conditions when concentrations of labile iron are low relative to arsenic, pH-controlled arsenic sorption is the primary attenuation mechanism, and mixed Fe(II,III)-oxide phases do not form and generate new sorption sites. 相似文献
|