首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
 The atmospheric CO2 concentrations have been reconstructed over the past 600 ka based on regression between the Vostok CO2 data and the SPECMAP oxygen isotope values. A lag of 4.5 ka (CO2 preceding δ18O) gives the best results. A polynomial of order 5 explains 66% of the Vostok CO2 variance over the last 220 ka. The Northern Hemisphere ice-sheet volume was simulated over the past 575 ka using the LLN 2-D model, forced by insolation and these statistically reconstructed atmospheric CO2 concentrations. The simulated ice volume fluctuations resemble the deep-sea oxygen isotope variations. CO2 of interglacial level is necessary for explaining both the interglacial at oxygen isotopic stage 11 and our present-day interglacial.  相似文献   

2.
Postglacial fire history has been reconstructed for eastern Canada from charcoal-influx anomalies from 30 sites taken from a lacustrine charcoal database. The reconstruction exhibits coherent patterns of fire occurrence in space and time. The early Holocene is characterised by high fire incidence. There is a major change to much lower occurrence slightly after 8 ka BP. A return to more fire appears after 3 ka BP. This sequence does not fit with the hydro-climatic reconstruction deduced from lake level reconstructions for northeastern North America, which indicates a dry early and mid-Holocene, and a wet late-Holocene. Fire occurrence however closely matches summer relative humidity inferred from δ18O. The differences between fire frequency and lake level history, are due to changes in the seasonality of precipitation and drought frequency. Lake levels are essentially controlled by winter precipitation while summer precipitation controls fire occurrence. The early Holocene before 8–7.5 ka BP experienced dry summers due to higher solar radiation and dry adiabatic winds from the residual Laurentide Ice Sheet. The middle Holocene was dominated by wet summers due to stability of the Atlantic air mass over eastern Canada. After 2.5 ka BP, summers became drier, albeit not as fire-conducive as during the early Holocene. Late-Holocene summers conducive to fire are explained by more frequent incursions of dry Cool Pacific or Cold Arctic air masses over eastern Canada. Received: 25 January 1999 / Accepted: 14 December 1999  相似文献   

3.
A seasonal energy balance climate model containing a detailed treatment of surface and planetary albedo, and in which seasonally varying land snow and sea ice amounts are simulated in terms of a number of explicit physical processes, is used to investigate the role of high latitude ice, snow, and vegetation feedback processes. Feedback processes are quantified by computing changes in radiative forcing and feedback factors associated with individual processes. Global sea ice albedo feedback is 5–8 times stronger than global land snowcover albedo feedback for a 2% solar constant increase or decrease, with Southern Hemisphere cryosphere feedback being 2–5 times stronger than Northern Hemisphere cryosphere feedback.In the absence of changes in ice extent, changes in ice thickness in response to an increase in solar constant are associated with an increase in summer surface melting which is exactly balanced by increased basal winter freezing, and a reduction in the upward ocean-air flux in summer which is exactly balanced by an increased flux in winter, with no change in the annual mean ocean-air flux. Changes in the mean annual ocean-air heat flux require changes in mean annual ice extent, and are constrained to equal the change in meridional oceanic heat flux convergence in equilibrium. Feedback between ice extent and the meridional oceanic heat flux obtained by scaling the oceanic heat diffusion coefficient by the ice-free fraction regulates the feedback between ice extent and mean annual air-sea heat fluxes in polar regions, and has a modest effect on model-simulated high latitude temperature change.Accounting for the partial masking effect of vegetation on snow-covered land reduces the Northern Hemisphere mean temperature response to a 2% solar constant decrease or increase by 20% and 10%, respectively, even though the radiative forcing change caused by land snowcover changes is about 3 times larger in the absence of vegetational masking. Two parameterizations of the tundra fraction are tested: one based on mean annual land air temperature, and the other based on July land air temperature. The enhancement of the mean Northern Hemisphere temperature response to solar constant changes when the forest-tundra ecotone is allowed to shift with climate is only 1/3 to 1/2 that obtained by Otterman et al. (1984) when the mean annual parameterization is used here, and only 1/4 to 1/3 as large using the July parameterization.The parameterized temperature dependence of ice and snow albedo is found to enhance the global mean temperature response to a 2% solar constant increase by only 0.04 °C, in sharp contrast to the results of Washington and Meehl (1986) obtained with a mean annual model. However, there are significant differences in the method used here and in Washington and Meehl to estimate the importance of this feedback process. When their approach is used in a mean annual version of the present model, closer agreement to their results is obtained.  相似文献   

4.
A basin-scale hydrologic-energy balance model that integrates modern climatological, hydrological, and hypsographic observations was developed for the modern Lake Titicaca watershed (northern Altiplano, South America) and operated under variable conditions to understand controls on post-glacial changes in lake level. The model simulates changes in five environmental variables (air temperature, cloud fraction, precipitation, relative humidity, and land surface albedo). Relatively small changes in three meteorological variables (mean annual precipitation, temperature, and/or cloud fraction) explain the large mid-Holocene lake-level decrease (85 m) inferred from seismic reflection profiling and supported by sediment-based paleoproxies from lake sediments. Climatic controls that shape the present-day Altiplano and the sediment-based record of Holocene lake-level change are combined to interpret model-derived lake-level simulations in terms of changes in the mean state of ENSO and its impact on moisture transport to the Altiplano.  相似文献   

5.
 Annual cycles of monthly albedos simulated with a general circulation model (GCM) are compared with surface observations. The data observed at 35 stations are retrieved from the Global Energy Balance Archive (GEBA) and drawn from the soil moisture and meteorological observations in the former Soviet Union. The model data are obtained with the ECHAM4 GCM in a ten-year simulation of the present-day climate at T106 resolution. The model calculated albedo values are modified before they are compared with the surface observations: They are interpolated to the stations and adjusted to account for altitude differences and fractional forest area. During the snow-free period, the model underestimates the albedo by up to 0.05 at the stations (with values between 0.2 and 0.25 measured over short grass) because the albedo for grassland is too low in the model. During the period with seasonal snow cover, the model underestimates the albedo by up to 0.2 at stations in Russia, Scandinavia and Canada, which experience severe winters. This underestimation is due to an oversimplified parameterization of the snow covered grid fraction and an inadequate linear relation between snow albedo and temperature. The derivative of albedo with respect to the forest fraction implemented in ECHAM is in line with the observations, although a small overestimation of the model’s gradient has been detected. Received: 3 July 1998 / Accepted: 24 December 1998  相似文献   

6.
Based on 1999-2000 observations made by the first Arctic and sixteenth Antactic scientific voyages,a study is undertaken about the meridional surface UV-B (B band ultraviolet rays) variations in 75°N-70°S.It is mitigated as a function of latitudes and marked by lower radiation averaged over the Northern Hemisphere (NH) than over the Southern Hemisphere (SH),with its daily course basically similar to that of total radiation.Around polar summer noon hours (localtime) and where ice albedo is maximum,the strongest UV-B irradiance on the surface perpendicular to sun's beams as found at equatorial latitudes is measured sometimes.In the areas near Zhongshan Station the increase of surface UV-B radiation shows a close relation to the decrease of ozone in the higher atmosphere but it has a less intimate relation with its concentration at ground.  相似文献   

7.
Transient experiments for the Eemian (128–113 ky BP) were performed with a complex, coupled earth system model, including atmosphere, ocean, terrestrial biosphere and marine biogeochemistry. In order to investigate the effect of land surface parameters (background albedo, vegetation and tree fraction and roughness length) on the simulated changes during the Eemian, simulations with interactive coupling between climate and vegetation were compared with additional experiments in which these feedbacks were suppressed. The experiments show that the influence of land surface on climate is mainly caused by changes in the albedo. For the northern hemisphere high latitudes, land surface albedo is changed partially due to the direct albedo effect of the conversion of grasses into forest, but the indirect effect of forests on snow albedo appears to be the major factor influencing the total absorption of solar radiation. The Western Sahara region experiences large changes in land surface albedo due to the appearance of vegetation between 128 and 120 ky BP. These local land surface albedo changes can be as much as 20%, thereby affecting the local as well as the global energy balance. On a global scale, latent heat loss over land increases more than 10% for 126 ky BP compared to present-day.  相似文献   

8.
利用WRF(Weather Research and Forecasting)模式,采用1981年、1990年、2000年、2010年卫星遥感地表分类数据,模拟分析了黄河源区若尔盖高原典型年份真实地表植被覆盖变化对2010年区域气候的影响。得到以下主要结论:1)对于地表能量,植被覆盖变化对潜热影响较显著,较为显著的气候响应是地表温度的变化,且局地地表温度变化较区域平均温度变化明显。2)蒸腾效率和反照率会改变地表温度,但它们的相对重要性随季节和地点而变化,在夏季,若尔盖高原蒸腾效率改变对温度的影响大于反照率的作用。3)植被覆盖度变化在低层对温湿度均有影响,在中高层仅对温度有较小扰动。  相似文献   

9.
Taking winter and summer in eastern China as an example application, a grid-cell method of aerosol direct radiative forcing(ADRF) calculation is examined using the Santa Barbara DISORT Atmospheric Radiative Transfer(SBDART) model with inputs from MODIS and AERONET observations and reanalysis data. Results show that there are significant seasonal and regional differences in climatological mean aerosol optical parameters and ADRF. Higher aerosol optical depth(AOD)occurs in summer and two prominent high aerosol loading centers are observed. Higher single scattering albedo(SSA) in summer is likely associated with the weak absorbing secondary aerosols. SSA is higher in North China during summer but higher in South China during winter. Aerosols induce negative forcing at the top of the atmosphere(TOA) and surface during both winter and summer, which may be responsible for the decrease in temperature and the increase in relative humidity.Values of ADRF at the surface are four times stronger than those at the TOA. Both AOD and ADRF present strong interannual variations; however, their amplitudes are larger in summer. Moreover, patterns and trends of ADRF do not always correspond well to those of AOD. Differences in the spatial distributions of ADRF between strong and weak monsoon years are captured effectively. Generally, the present results justify that to calculate grid-cell ADRF at a large scale using the SBDART model with observational aerosol optical properties and reanalysis data is an effective approach.  相似文献   

10.
Long-term trends of temperature variations across the southern Andes (37–55° S) are examined using a combination of instrumental and tree-ring records. A critical appraisal of surface air temperature from station records is presented for southern South America during the 20th century. For the interval 1930–1990, three major patterns in temperature trends are identified. Stations along the Pacific coast between 37 and 43° S are characterized by negative trends in mean annual temperature with a marked cooling period from 1950 to the mid-1970s. A clear warming trend is observed in the southern stations (south of 46°S), which intensifies at higher latitudes. No temperature trends are detected for the stations on the Atlantic coast north of 45° S. In contrast to higher latitudes in the Northern Hemisphere where annual changes in temperature are dominated by winter trends, both positive and negative trends in southern South America are due to mostly changes in summer (December to February) temperatures. Changes in the Pacific Decadal Oscillation (PDO) around 1976 are felt in summer temperatures at most stations in the Pacific domain, starting a period with increased temperature across the southern Andes and at higher latitudes.Tree-ring records from upper-treeline were used to reconstruct past temperature fluctuations for the two dominant patterns over the southern Andes. These reconstructions extend back to 1640 and are based on composite tree-ring chronologies that were processed to retain as much low-frequency variance as possible. The resulting reconstructions for the northern and southern sectors of the southern Andes explain 55% and 45% ofthe temperature variance over the interval 1930–1989, respectively. Cross-spectral analysis of actual and reconstructed temperatures over the common interval 1930–1989, indicates that most of the explained varianceis at periods >10 years in length. At periods >15 years, the squaredcoherency between actual and reconstructed temperatures ranges between 0.6 and 0.95 for both reconstructions. Consequently, these reconstructions are especially useful for studying multi-decennial temperature variations in the South American sector of the Southern Hemisphere over the past 360 years. As a result, it is possible to show that the temperatures during the 20thcentury have been anomalously warm across the southern Andes. The mean annual temperatures for the northern and southern sectors during the interval 1900–1990 are 0.53 °C and 0.86 °C above the1640–1899 means, respectively. These findings placed the current warming in a longer historical perspective, and add new support for the existence of unprecedented 20th century warming over much of the globe. The rate of temperature increase from 1850 to 1920 was the highest over the past 360 years, a common feature observed in several proxy records from higher latitudes in the Northern Hemisphere.Local temperature regimes are affected by changes in planetary circulation, with in turn are linked to global sea surface temperature (SST) anomalies. Therefore, we explored how temperature variations in the southern Andes since 1856 are related to large-scale SSTs on the South Pacific and South Atlantic Oceans. Spatial correlation patterns between the reconstructions and SSTs show that temperature variations in the northern sector of the southern Andes are strongly connected with SST anomalies in the tropical and subtropical Pacific. This spatial correlation pattern resembles the spatial signature of the PDO mode of SST variability over the South Pacific and is connected with the Pacific-South American (PSA) atmospheric pattern in the Southern Hemisphere. In contrast, temperature variations in the southern sector of the southern Andes are significantly correlated with SST anomalies over most of the South Atlantic, and in less degree, over the subtropical Pacific. This spatial correlation field regressed against SST resembles the `Global Warming' mode of SST variability, which in turn, is linked to the leading mode of circulation in the Southern Hemisphere. Certainly, part of the temperature signal present in the reconstructions can be expressed as a linear combination of four orthogonal modes of SST variability. Rotated empirical orthogonal function analysis, performed on SST across the South Pacific and South Atlantic Oceans, indicate that four discrete modes of SST variability explain a third, approximately, of total variance in temperature fluctuations across the southern Andes.  相似文献   

11.
In the paper the 5°×10°latitude-longitude grid point data of daily 500 hPa geopotential height over the NorthernHemisphere(NH)in summer(June—August)during 1980s are used.The base point(20°N,120°E)is selected to calcu-late point correlation between the base point and other grid points.We find that the summer heat source anomaly of thetropical western Pacific causes anomaly of summer general circulation over NH and teleconnection of general circula-tion similar to PNA pattern forms from East Asia to North America.The teleconnections show great interannualchanges.  相似文献   

12.
Modeling Study of Aerosol Indirect Effects on Global Climate with an AGCM   总被引:3,自引:0,他引:3  
Aerosol indirect effects (AIEs) on global climate were quantitatively investigated by introducing aerosol-cloud interaction parameterizations for water stratus clouds into an AGCM (BCC AGCM2.0.1), which was developed by the National Climate Center of the China Meteorological Administration. The study yielded a global annual mean of -1.14 W m-2 for the first indirect radiative forcing (IRF), with an obvious seasonal change. In summer, large forcing mainly occurred in mid to high latitudes of the Northern Hem...  相似文献   

13.
A simulation of the 1991 summer has been performed over south Greenland with a coupled atmosphere–snow regional climate model (RCM) forced by the ECMWF re-analysis. The simulation is evaluated with in-situ coastal and ice-sheet atmospheric and glaciological observations. Modelled air temperature, specific humidity, wind speed and radiative fluxes are in good agreement with the available observations, although uncertainties in the radiative transfer scheme need further investigation to improve the model’s performance. In the sub-surface snow-ice model, surface albedo is calculated from the simulated snow grain shape and size, snow depth, meltwater accumulation, cloudiness and ice albedo. The use of snow metamorphism processes allows a realistic modelling of the temporal variations in the surface albedo during both melting periods and accumulation events. Concerning the surface albedo, the main finding is that an accurate albedo simulation during the melting season strongly depends on a proper initialization of the surface conditions which mainly result from winter accumulation processes. Furthermore, in a sensitivity experiment with a constant 0.8 albedo over the whole ice sheet, the average amount of melt decreased by more than 60%, which highlights the importance of a correctly simulated surface albedo. The use of this coupled atmosphere–snow RCM offers new perspectives in the study of the Greenland surface mass balance due to the represented feedback between the surface climate and the surface albedo, which is the most sensitive parameter in energy-balance-based ablation calculations.  相似文献   

14.
Over the last 100?years, Arctic warming has resulted in a longer growing season in boreal and tundra ecosystems. This has contributed to a slow northward expansion of the boreal forest and a decrease in the surface albedo. Corresponding changes to the surface and atmospheric energy budgets have contributed to a broad region of warming over areas of boreal forest expansion. In addition, mesoscale and synoptic scale patterns have changed as a result of the excess energy at and near the surface. Previous studies have identified a relationship between the positioning of the boreal forest-tundra ecotone and the Arctic frontal zone in summer. This study examines the climate response to hypothetical boreal forest expansion and its influence on the summer Arctic frontal zone. Using the Weather Research and Forecasting model over the Northern Hemisphere, an experiment was performed to evaluate the atmospheric response to expansion of evergreen and deciduous boreal needleleaf forests into open shrubland along the northern boundary of the existing forest. Results show that the lower surface albedo with forest expansion leads to a local increase in net radiation and an average hemispheric warming of 0.6°C at and near the surface during June with some locations warming by 1–2°C. This warming contributes to changes in the meridional temperature gradient that enhances the Arctic frontal zone and strengthens the summertime jet. This experiment suggests that continued Northern Hemisphere high-latitude warming and boreal forest expansion might contribute to additional climate changes during the summer.  相似文献   

15.
 The contribution of glacier melt, including the Greenland ice-sheet, to sea-level change since AD 1865 is estimated on the basis of modelled sensitivity of glacier mass balance to climate change and historical temperature data. Calculations are done in a regionally differentiated manner to overcome the inhomogeneity of the global distribution of glaciers. A distinction is made between changes in summer temperature and in temperature over the rest of the year. Our best estimate of the ice melt in the period 1865–1990 in terms of sea-level change equivalent is 5.7 cm (2.7 cm for glaciers and 3.0 cm for the Greenland ice-sheet). Additional calculations show that simpler methods, like using annual or even global mean temperature anomaly give estimates that differ by up to 55%. Consequently, a regionally differentiating approach is advised for making projections of glacier melt with GCM output. Received: 6 December 1996/Accepted: 30 May 1997  相似文献   

16.
 Snow cover fraction (SCF) has a significant influence on the surface albedo and thus on the radiation balance and surface climate. Long-term three dimensional simulations with general circulation models (GCMs) show that the SCF greatly affects the climate in the Northern Hemisphere. By means of both ground observations and remotely sensed data, several deficiencies in the SCF simulated by the current ECHAM4 GCM were identified: over mountainous areas a substantial overestimation in the SCF was found whereas flat areas showed a distinctly underestimated SCF. This work proposes a new parametrization of the SCF for use in GCMs. Evaluations illustrate that it is beneficial to distinguish between the following three terrains: (1) flat, non-forested areas, (2) mountainous regions and (3) forests. The modified SCF parametrization for flat, non-forested areas was derived by using global datasets of ground-based snow depth and remote sensing observations of snow cover data. A 3-dimensional ECHAM4 simulation showed that this modification raises the SCF by up to approximately 20%, mainly in areas with a relatively thin snow cover. The comparison between remotely sensed and simulated mean monthly surface albedo revealed a significant overestimation of the surface albedo in snow-covered mountainous areas. An extension of the current SCF parametrization in ECHAM4 to take into account mountain effects, based on the French climate model Arpège, yielded a close agreement with satellite-derived surface albedo. The adoption of the submodel for snow albedo, as used in the Canadian Land Surface Scheme (CLASS), combined with a newly developed simple snow interception model, demonstrated the ability to capture the main physical processes of snow-covered canopies, including the albedo. The validation of the new parametrization with Boreal Ecosystem-Atmosphere Study (BOREAS) field data showed that the modification is appropriate to capture the main features of the albedo over snow-covered forests during and after heavy snowfall events. Furthermore, the proposed modification has a beneficial impact on the delayed snow melt in spring, a well-known problem in many current GCMs: The simulated surface albedo over the boreal forests decreases by approximately 0.1 during winter and spring, which is in better agreement with ground-based observations. This induces a significant rise in the surface temperature over extended parts of Eurasia and North America in late spring, which subsequently yields a faster snowmelt and an accelerated retreat of the snow line. Received: 28 April 2000 / Accepted: 18 December 2000  相似文献   

17.
Using a regional climate model with detailed land surface processes (RegCM2), East Asian monsoon climates at 6 ka BP and 21 ka BP are simulated by prescribing vegetation and employing paleovegetation respectively in order to examine land surface effects on East Asian climate system and the potential mechanisms for climate change. The RegCM2 with a 120 × 120 km2 resolution has simulated the enlargement of the seasonal cycle of insolation, the temperature rising the whole year, and the reduction of perpetual snow in high latitudes at 6 ka BP. The simulation shows the East Asian summer monsoon strengthening, precipitation and PE increasing, and the monsoon rain belt shifting westwards and northwards. Effect of paleovegetation included in the modeling reduced surface albedo and caused an increase in the winter temperature, which led to weakening of the winter continental cold anticyclone over China. The results make the seasonal characteristics of simulated temperature changes in better agreement with the geological records, and are an improvement over previous simulations of Paleoclimate Modeling Intercomparison Project (PMIP). The RegCM2 simulated the 21 ka BP climate with lowered temperature throughout the year, and with precipitation reduced in most areas of East Asia (but increased in both the Tibetan Plateau and Central Asia). Low temperature over East Asia led to the strengthening of the East Asian winter monsoon and the shrinking of the summer monsoon. The effect of paleovegetation included in the experiment has enlarged the glacial climate influence in East Asia, which is closer to geological data than the PMIP simulations directly driven by insolation, glaciation and low CO2 concentration.  相似文献   

18.
Summary ?The dependence of global and diffuse radiation on surface albedo due to multiple reflection of radiation between the surface and the atmosphere (base of clouds) is found on the basis of data obtained at the Tartu–T?ravere Actinometric Station over the period 1955–2000. It is found that the monthly totals of global radiation increase by up to 1.38–1.88 times, particularly in the winter half-year between November and March, when snow cover albedo may be high. A semi-empirical formula is derived for calculating with sufficient accuracy the monthly totals of global radiation, considering the amount of cloudiness and the surface albedo. In the time series of the monthly total by global radiation a downward trend occurs in winter months. A decrease in global radiation by up to 20% in the past 46 years can be explained primarily by a relatively high negative trend in the snow cover duration and surface albedo (up to − 0.24). As a result, days are growing darker, a new phenomenon associated with climate change, which undoubtedly affects human mood to some extent. Received November 8, 2001; revised January 24, 2002; accepted February 2, 2002  相似文献   

19.
A deforestation experiment is performed using the Laboratoire de Meteorologie Dynamique Atmospheric General Circulation Model (LMD GCM) to determine the climatic role of the largest vegetation formation in the Northern Hemisphere, localized mostly north of latitude 45°N, which is called the temperate and boreal forest. For this purpose, an iterative albedo scheme based on vegetation type, snow age, snowfall rate and area of snow cover, is developed for snow-covered surfaces. The results show a cooling of Northern Hemisphere soil and an increase in the snow cover when the forest is removed, as found by previous similar experiments.In our study this cooling is related to different causes, depending on the season. It is linked to modifications in the soil radiative properties, like surface albedo, due to the disappearance of forest, and consequently, to a greater exposure of the snow-covered soil underneath. It is also related to alterations in the hydrological cycle, observed mainly in summer and autumn at middle latitudes. The model shows a strong sensitivity to the coupled surface albedo — soil temperature — fractional snow cover response in the spring. A later and longer snowmelt season is also detected.This study adds to our understanding of climatic variation on longer time scales, since it is widely accepted that the formation and disappearance of different vegetation formations is closely related to climatic evolution patterns, in particular on the time scale of the glacial oscillations.  相似文献   

20.
To build land surface dataset for climate model,with application of remote sensing technique as well as the Geographic Information System(GIS),the data of surface type,roughness and albedo over China in 1997 were retrieved,resolutions being 10 km×10 km.Based on these data,an analysis is conducted on the geographic distributions and seasonal variations of surface vegetation cover and roughness as well as albedo over China.Results show that surface vegetation cover is mainly located to the south of Yangtze River,in Southwest and Northeast China andsparse vegetation cover is in the Northwest.The variation of land surface cover affects the variations of land surface roughness and albedo.High albedo occurred in the north of Xinjiang Autonomous Region,the north of Northeast China and the Qinghai-Xizang Plateau in winter,in correspondence with the location of snow cover.For most part of China,surface roughness decreases and albedo increases in winter,while the roughness increases and the albedo decreases in summer,which could mainly result from land surface cover(snow cover and vegetation cover)and soil moisture changes.This shows that the geographic distribution and seasonal variation of the albedo are almost opposite to those of the roughness,in agreement with theoretical results.Temporally,the amplitude of surface roughness change is quite small in comparison with the roughness itself.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号