首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
The southern coastal plain of Laizhou Bay, which is the area most seriously affected by salt water intrusion in north China, is a large alluvial depression, which represents one of the most important hydrogeological units in the coastal region of northern China. Chlorofluorocarbons (CFCs, including CFC‐11, CFC‐12 and CFC‐113) and tritium were used together for dating groundwater up to 50 years old in the study area. There are two cones of depression, caused by intensive over‐exploitation of fresh groundwater in the south and brine water in the north. The assigned CFC apparent ages for shallow groundwater range from 8 a to >50 a. A binary mixing model based on CFC‐113 and CFC‐12 concentrations in groundwater was used to estimate fractions of young and pre‐modern water in shallow aquifers and to identify groundwater mixing processes during saltwater intrusion. Discordance between concentrations of different CFC compounds indicate that shallow groundwater around the Changyi cone of depression is vulnerable to contamination. Pumping activities, CFC contamination, mixing and/or a large unsaturated zone thickness (e.g. >20 m) may be reasons for some groundwater containing CFCs without tritium. Saline intrusion mainly occurs because of large head gradients between fresh groundwater in the south and saline water bodies in the north, forming a wedge of saline water below/within fresh aquifer layers. Both CFC and tritium dates indicate that the majority of the saline water is from >50 a, with little or no modern seawater component. Based on the distribution of CFC apparent ages, tritium contents plus chemical and physical data, a conceptual model of groundwater flow along the investigated Changyi‐Xiaying transect has been developed to describe the hydrogeological processes. Three regimes are identified from south to north: (i) fresh groundwater zone, with a mixing fraction of 0.80–0.65 ‘young’ water calculated with the CFC binary mixing model (groundwater ages <34 a) and 1.9–7.8TU of tritium; (ii) mixing zone characterized by a mixing fraction of 0.05–0.65 young groundwater (ages of 23–44 a), accompanied by local vertical recharge and upward leakage of older groundwater; and (iii) salt water zone, mostly comprising waters with ages beyond the dating range of both CFCs and tritium. Some shallow groundwater in the north of the Changyi groundwater depression belongs to the >50a water group (iii), indicating slow velocity of groundwater circulation and possible drawing in of saline or deep groundwater that is tracer‐free. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

2.
Chui TF  Terry JP 《Ground water》2012,50(3):412-420
The principal natural source of fresh water on scattered coral atolls throughout the tropical Pacific Ocean is thin unconfined groundwater lenses within islet substrates. Although there are many threats to the viability of atoll fresh water lenses, salinization caused by large storm waves washing over individual atoll islets is poorly understood. In this study, a mathematical modeling approach is used to examine the immediate responses, longer-term behavior, and subsequent (partial) recovery of a Pacific atoll fresh water lens after saline damage caused by cyclone-generated wave washover under different scenarios. Important findings include: (1) the saline plume formed by a washover event mostly migrates downward first through the top coral sand and gravel substrate, but then exits the aquifer to the ocean laterally through the more permeable basement limestone; (2) a lower water table position before the washover event, rather than a longer duration of storm washover, causes more severe damage to the fresh water lens; (3) relatively fresher water can possibly be found as a preserved horizon in the deeper part of an aquifer after disturbance, especially if the fresh water lens extends into the limestone under normal conditions; (4) post-cyclone accumulation of sea water in the central depression (swamp) of an atoll islet prolongs the later stage of fresh water lens recovery.  相似文献   

3.
Two hypotheses are explored to explain the thinness of the fresh water lens on Andros Island, Bahamas. The lens is an order of magnitude thinner than predicted by the Ghyben-Herzberg theory. One hypothesis previously posed in the literature is that the base of the lens is governed by the contact between the Lucayan Formation and the pre-Lucayan limestones. An alternate hypothesis, posed here, is that thinning is caused by the hydraulic influence of low-permeability paleosols in the Lucayan Formation. These hypotheses were explored, along with the influence of recharge and other factors, using a numerical model for variable-density flow and salt transport. In the layered system of grainstones/packstones and paleosols within the Lucayan Formation itself, the velocity vectors are nearly horizontal in the grainstones/packstones, and they are nearly vertical in the paleosols. These strata above the pre-Lucayan, all lower than it in permeability, draw the base of the lens upward to a position well above the contact by significantly reducing pressure within and below the strata relative to hydrostatic pressure. It is the loss of pressure across the paleosols that dramatically thins the fresh water lens, and thus the predominant hydraulic control on lens thickness arises from the existence of paleosols.  相似文献   

4.
Regular aquifer storage recovery, ASR, is often not feasible for small‐scale storage in brackish or saline aquifers because fresh water floats to the top of the aquifer where it is unrecoverable. Flow barriers that partially penetrate a brackish or saline aquifer prevent a stored volume of fresh water from expanding sideways, thus increasing the recovery efficiency. In this paper, the groundwater flow and mixing is studied during injection, storage, and recovery of fresh water in a brackish or saline aquifer in a flow‐tank experiment and by numerical modeling to investigate the effect of density difference, hydraulic conductivity, pumping rate, cyclic operation, and flow barrier settings. Two injection and recovery methods are investigated: constant flux and constant head. Fresh water recovery rates on the order of 65% in the first cycle climbing to as much as 90% in the following cycles were achievable for the studied configurations with constant flux whereas the recovery efficiency was somewhat lower for constant head. The spatial variation in flow velocity over the width of the storage zone influences the recovery efficiency, because it induces leakage of fresh water underneath the barriers during injection and upconing of salt water during recovery.  相似文献   

5.
The occurrence of submarine groundwater discharge (SGD) as well as its supply of many nutrients and metals to coastal seawaters is now generally known. However, previous studies have focused on the chemical and radiological analysis of groundwater, surface seawater, shallow marine sediments and their pore waters, as well as the measurement of upward flow through the marine sediments, as end members of the discharge process. In this study, chemical and isotopic analysis results of marine subsurface waters are reported. These were obtained from deep boreholes of an undersea liquefied petroleum gas (LPG) storage cavern, located about 8 km off the western coast of Korea. The cavern is about 130–150 m below the sea bottom, which is covered by a 4.8–19.5 m silty clay stratum. An isotopic composition (δ2H and δ18O) of the marine subsurface waters falls on a mixing line between terrestrial groundwater and seawater. Vertical EC profiling at the cavern boreholes revealed the existence of a fresh water zone. An increase in the contents of ferrous iron and manganese and a decrease in levels of nitrate, bicarbonate and cavern seepage were recorded in August 2006, indicating a decreased submarine groundwater flux originating from land, mainly caused by an elevated cavern gas pressure. It is suggested in this study that the main source of fresh waters in the man-made undersea cavern is the submarine groundwater discharge mainly originating from the land.  相似文献   

6.
An integrated approach of geoelectrical and hydrochemical investigation surveys was proposed for indicating contact regions between saline and fresh groundwater in the Khanasser valley region, northern Syria. The qualitative and quantitative interpretations of 34 vertical electrical soundings (VES) enable to characterize the salt water intrusion laterally and vertically. The established iso-apparent resistivity maps for different AB/2 spacings obviously indicate the presence of a lowresistivity (less than 4 Ohm·m) zone related to the salt water intrusion in the Quaternary and Paleogene deposits. The different hydrochemical and geophysical parameters, such as electrical resistivity, total dissolved solids (TDS) and major ions concentrations used to characterize the salt water intrusion gave almost similar results in locating and mapping the different boundaries of the groundwater salinity. The proposed approach is useful for mapping the interface between different groundwater qualities, and can be therefore used to successfully characterize the salt water intrusion phenomenon in other semi-arid regions. The application of such an approach is a powerful tool and can be used for water resource management in the water scarce areas.  相似文献   

7.
Pore water radon (222Rn) distributions from Indian River Lagoon, Florida, are characterized by three zones: a lower zone where pore water 222Rn and sediment-bound radium (226Ra) are in equilibrium and concentration gradients are vertical; a middle zone where 222Rn is in excess of sediment-bound 226Ra and concentration gradients are concave-downward; and an upper zone where 222Rn concentration gradients are nearly vertical. These 222Rn data are simulated in a one-dimensional numerical model including advection, diffusion, and non-local exchange to estimate magnitudes of submarine groundwater discharge components (fresh or marine). The numerical model estimates three parameters, fresh groundwater seepage velocity, irrigation intensity, and irrigation attenuation, using two Monte Carlo (MC) simulations that (1) ensure the minimization algorithm converges on a global minimum of the merit function and the parameter estimates are consistent within this global minimum, and (2) provide 90% confidence intervals on the parameter estimates using the measured 222Rn activity variance. Model estimates of seepage velocities and discharge agree with previous estimates obtained from numerical groundwater flow models and seepage meter measurements and show the fresh water component decreases offshore and varies seasonally by a factor of nine or less. Comparison between the discharge estimates and precipitation patterns suggests a mean residence time in unsaturated and saturated zones on the order of 5 to 7 months. Irrigation rates generally decrease offshore for all sampling periods. The mean irrigation rate is approximately three times greater than the mean seepage velocity although the ranges of irrigation rates and seepage velocities are the same. Possible mechanisms for irrigation include density-driven convection, wave pumping, and bio-irrigation. Simulation of both advection and irrigation allows the separation of submarine groundwater discharge into fresh groundwater and (re)circulated lagoon water.  相似文献   

8.
Biased monitoring of fresh water-salt water mixing zone in coastal aquifers   总被引:2,自引:0,他引:2  
In coastal aquifers, significant vertical hydraulic gradients are formed where fresh water and underlying salt water discharge together upward to the seafloor. Monitoring boreholes may act as "short circuits" along these vertical gradients, connecting between the higher and the lower hydraulic head zones. When a sea tide is introduced, the fluctuations of both the water table and the depth of the mixing zone are also biased due to this effect. This problem is intensified in places of long-screen monitoring boreholes, which are common in many places in the world. For example, all approximately 500 boreholes of the fresh water-salt water mixing zone in the coastal aquifer of Israel are installed with 10 to 50 m long screens. We present field measurements of these fluctuations, along with a three-dimensional numerical model. We find that the in-well fluctuation magnitude of the mixing zone is an order of magnitude larger than that in the porous media of the actual aquifer. The primary parameters that affect the magnitude of this bias are the anisotropy of the aquifer conductivity and the borehole hydraulic parameters. With no sea tide, borehole interference is higher for the anisotropic case because the vertical hydraulic gradients are high. When tides are introduced, the amplitude of the mixing zone fluctuation is higher for the isotropic case because the overall effective hydraulic conductivity is greater than the conductivity in the anisotropic case. In the aquifer, the fresh water-salt water mixing zone fluctuations are dampened, and tens of meters inland from the shoreline, the fluctuations are on the order of few centimeters.  相似文献   

9.
Effects of sea-level rise on ground water flow in a coastal aquifer system   总被引:5,自引:0,他引:5  
The effects of sea-level rise on the depth to the fresh water/salt water interface were simulated by using a density-dependent, three-dimensional numerical ground water flow model for a simplified hypothetical fresh water lens that is similar to shallow, coastal aquifers found along the Atlantic coast of the United States. Simulations of sea-level rise of 2.65 mm/year from 1929 to 2050 resulted in an increase in water levels relative to a fixed datum, yet a net decrease in water levels relative to the increased sea-level position. The net decrease in water levels was much greater near a gaining stream than farther from the stream. The difference in the change in water levels is attributed to the dampening effect of the stream on water level changes in response to sea-level rise. In response to the decreased water level altitudes relative to local sea level, the depth to the fresh water/salt water interface decreased. This reduction in the thickness of the fresh water lens varied throughout the aquifer and was greatly affected by proximity to a ground water fed stream and whether the stream was tidally influenced. Away from the stream, the thickness of the fresh water lens decreased by about 2% from 1929 to 2050, whereas the fresh water lens thickness decreased by about 22% to 31% for the same period near the stream, depending on whether the stream was tidally influenced. The difference in the change in the fresh water/salt water interface position is controlled by the difference in the net decline in water levels relative to local sea level.  相似文献   

10.
This paper presents the analytic element modeling approach implemented in the software AnAqSim for simulating steady groundwater flow with a sharp fresh‐salt interface in multilayer (three‐dimensional) aquifer systems. Compared with numerical methods for variable‐density interface modeling, this approach allows quick model construction and can yield useful guidance about the three‐dimensional configuration of an interface even at a large scale. The approach employs subdomains and multiple layers as outlined by Fitts (2010) with the addition of discharge potentials for shallow interface flow (Strack 1989). The following simplifying assumptions are made: steady flow, a sharp interface between fresh‐ and salt water, static salt water, and no resistance to vertical flow and hydrostatic heads within each fresh water layer. A key component of this approach is a transition to a thin fixed minimum fresh water thickness mode when the fresh water thickness approaches zero. This allows the solution to converge and determine the steady interface position without a long transient simulation. The approach is checked against the widely used numerical codes SEAWAT and SWI/MODFLOW and a hypothetical application of the method to a coastal wellfield is presented.  相似文献   

11.
There are many factors affecting submarine groundwater discharge (SGD). However, systematic study of the influences of these factors is still limited. In this study, numerical modeling is performed to quantitatively explore the influences of various factors on SGD in a coastal aquifer. In such locations, tidal and terrestrial hydraulic gradients are the primary forces driving fresh and salt water movement. Unlike steady-state flow, dynamic fresh and salt water mixing at the near-shore seafloor may form an intertidal mixing zone (IMZ) near the surface. By constructing a general SGD model, the effects of various model components such as boundary conditions, model geometry and hydraulic parameters are systematically studied. Several important findings are obtained from the study results: (1) Previous studies have indicated there will be a freshwater discharge tube between the classic transition zone and the IMZ. However, this phenomenon may become unclear with the increase of heterogeneity and anisotropy of the medium’s conductivity field. (2) SGD and IMZ are both more sensitive to the vertical anisotropy ratio of hydraulic conductivity (Kx/Kz) than to the horizontal ratio (Kx/Ky). (3) Heterogeneity of effective porosity significantly affects SGD and IMZ. (4) Increase of the storage coefficient decreases fresh water discharge but increases mixing salt water discharge and total SGD. The increase will also change the shape of the IMZ. (5) Variation of dispersivities does not affect SGD, but significantly changes the distributions of the IMZ and the whole mixing zone. These findings will be helpful to the sampling design of field studies of SGD and to the application of dynamic SGD models to field sites for model development and calibration.  相似文献   

12.
This study presents the groundwater flow and salinity dynamics along a river estuary, the Werribee River in Victoria, Australia, at local and regional scales. Along a single reach, salinity across a transverse section of the channel (~80 m long) with a point bar was monitored using time-lapse electrical resistivity (ER) through a tidal cycle. Groundwater fluxes were concurrently estimated by monitoring groundwater levels and temperature profiles. Regional porewater salinity distribution was mapped using 6-km long longitudinal ER surveys during summer and winter. The time-lapse ER across the channel revealed a static electrically resistive zone on the side of the channel with a pronounced cut bank. Upward groundwater flux and steep vertical temperature gradients with colder temperatures deeper within the sediment suggested a stable zone of fresh groundwater discharge along this cut bank area. Generally, less resistive zones were observed at the shallow portion of the inner meander bank and at the channel center. Subsurface temperatures close to surface water values, vertical head gradients indicating both upward and downward groundwater flux, and higher porewater salinity closer to that of estuary water suggest strong hyporheic circulation in these zones. The longitudinal surveys revealed higher ER values along deep and sinuous segments and low ER values in shallow and straighter reaches in both summer and winter; these patterns are consistent with the local channel-scale observations. This study highlights the interacting effects of channel morphology, broad groundwater–surface water interaction, and hyporheic exchange on porewater salinity dynamics underneath and adjacent to a river estuary.  相似文献   

13.
Water exchange between surface water and groundwater can modulate or generate ecologically important fluxes of solutes across the sediment‐water interface. Seepage meters can directly measure fluid flux, but mechanical resistance and surface water dynamics may lead to inaccurate measurements. Tank experiments were conducted to determine effects of mechanical resistance on measurement efficiency and occurrence of directional asymmetry that could lead to erroneous net flux measurements. Seepage meter efficiency was high (average of 93%) and consistent for inflow and outflow under steady flow conditions. Wave effects on seepage meter measurements were investigated in a wave flume. Seepage meter net flux measurements averaged 0.08 cm/h—greater than the expected net‐zero flux, but significantly less than theoretical wave‐driven unidirectional discharge or recharge. Calculations of unidirectional flux from pressure measurements (Darcy flux) and theory matched well for a ratio of wave length to water depth less than 5, but not when this ratio was greater. Both were higher than seepage meter measurements of unidirectional flux made with one‐way valves. Discharge averaged 23% greater than recharge in both seepage meter measurements and Darcy calculations of unidirectional flux. Removal of the collection bag reduced this net discharge. The presence of a seepage meter reduced the amplitude of pressure signals at the bed and resulted in a nearly uniform pressure distribution beneath the seepage meter. These results show that seepage meters may provide accurate measurements of both discharge and recharge under steady flow conditions and illustrate the potential measurement errors associated with dynamic wave environments.  相似文献   

14.
Fluxes of submarine groundwater discharge (SGD) were investigated into two tidal rivers on the north and south shore of Long Island, NY, during July 2015. Ground‐based handheld thermal infrared (TIR) imagery, combined with direct push‐point piezometer sampling, documented spatially heterogeneous small‐scale intertidal seepage zones. Pore waters were relatively fresh and enriched in nitrogen (N) within these small‐scale seeps. Pore waters sampled just 20 cm away, outside the boundary of the ground‐based TIR‐located seepage zone, were more saline and lower in N. These ground‐based TIR‐identified seeps geochemically represented the terrestrial fresh groundwater endmember, whereas N in pore waters sampled outside of the TIR‐identified seeps was derived from the remineralization of organic matter introduced into the sediment by tidal seawater infiltration. A 222Rn (radon‐222) time‐series was used to quantify fresh SGD‐associated N fluxes using the N endmembers sampled from the ground‐based TIR pore water profiles. N fluxes were up‐scaled to groundwater seepage zones identified from high‐resolution airborne TIR imagery using the two‐dimensional size of the airborne TIR surface water anomalies, relative to the N flux from the time‐series sampling location. Results suggest that the N load from the north‐shore tidal river to Long Island Sound is underrepresented by at least 1.6–3.6%, whereas the N load from SGD to a south‐shore tidal river may be up to 9% higher than previous estimates. These results demonstrate the importance of SGD in supplying nutrients to the lower reaches of tidal rivers and suggest that N loads in other tidal river environments may be underestimated if SGD is not accounted for.  相似文献   

15.
Electrical resistivity survey is conducted in the Khanasser Valley, considered as a semi-arid region in Northern Syria, to guide and control fresh water well drilling. Vertical Electrical Soundings (VES) are carried out near the existing wells, which were also used to measure salinity and conductivity of water samplings. Resistivity and hydrogeological data combination made it possible to establish empirical relationships between earth resistivity, water resistivity, and the amount of total dissolved solids (TDS). These relationships are used in the present research in order to follow the TDS salinity variations, both in lateral and depth directions, along the longitudinal profile LP3, located in Khanasser Valley. Apparent salinity map under this profile is established for Quaternary and Paleogene deposits, and boundaries of suitable areas for fresh water well drilling in the totality of the Khanasser Valley are drawn. It was shown that excessive fresh-water depletion may affect the groundwater quality by upward seepage of saline water. Therefore, it is important to keep the fresh-salt water interface in a stationary situation. The geoelectrical methods widely contribute in determining the position of such interface, and can be easily applied in similar arid areas.  相似文献   

16.
The change of the salinity distribution in coastal aquifers due to pumpage is often described as an upconing of the interface between saline and fresh water. Sea and fresh water are miscible fluids, however. Therefore, dispersion of salinity in the aquifer affects the upconing process. An estimate of the effect of salinity dispersion on the dynamics of the flow as well as on the salinity distribution in the aquifer is presented in this study. The phenomenon is described as a migration of a sharp interface perturbed by small disturbances due to salinity dispersion. The creation of the mixing zone between fresh and saline water is described as a formation of a boundary layer in the vicinity of the sharp interface. This method is primarily recommended for flow fields in which simple representation of the sharp interface migration is obtainable.  相似文献   

17.
Using the hydrogeochemical modeling method, the groundwater chemical environmental problems of the Hebei Plain which involve increasing of hardness and total dissolved solids in piedmont area and mixing of saline water with fresh water in middle-eastern area are studied. The water-rock interactions and mass transfer along a ground-water flow path and in mixing processes are calculated. Thus the evolution mechanisms of the groundwater chemical environment are brought to light. Project supported by the National Natural Srience Foundation of China.  相似文献   

18.
Groundwater interacts with surface water features nearly in all types of landscapes. Understanding these interactions has practical consequences on the quantity and quality of water in either system, because the depletion or contamination of one of the systems will eventually affect the other one. Many studies have shown that the use of heat as natural tracer in conjunction with water level measurements is an effective method for estimating water flow (fluxes) between groundwater and surface water. A number of studies have explored the effects of spatial and temporal variability of groundwater–surface water flux exchanges using temperature and water level measurements; however, the effect of temporal resolution of water level and temperature data on estimating flux remains unexplored. Therefore, this study investigated the effect of temporal resolution of input data on temporal variation of groundwater–surface water flux exchanges. To this end, we calibrated a variably saturated two‐dimensional groundwater flow and heat transport model (VS2DH) at hourly and daily time scales using temperatures measured at multiple depths below the riverbed of the Zenne River, located at a well‐known Belgian brownfield site. Results of the study showed that the computed water flux through the streambed ranged between ?32 mm/day and +25 mm/day using the hourly model and from ?10 mm/day to ?37 mm/day using the daily model. The hourly model resulted in detecting reversal of flow direction inducing short‐term surface water flow into the streambed. However, such events were not captured if daily temperature and water level measurements were used as input. These findings have important implications for understanding contaminant mass flux and their attenuation in the mixing zone of groundwater and surface water. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

19.
Methods of estimation of the location of a sharp fresh water–salt water interface with hydraulic heads or pressures are relatively simple and are widely used. Progress has been made in the recent decade toward the mathematical relations describing the position of the sharp interface using hydraulic heads or pressures in coastal zones. This paper reviews several methods for estimation of the location of fresh water–salt water interface in coastal aquifers, including the classical Ghyben–Herzberg relation. The location of the fresh water–salt water interface in a coastal homogeneous, isotropic unconfined aquifer can be estimated based on piezometric heads at two points in the same vertical line tapping, respectively, the salt water zone (including the interface) and the fresh water zone (from the water table to the interface) when the groundwater flow system is in a steady state and satisfies the Dupuit assumption. If pressures are measured at two points in the fresh water and salt water zones in the same vertical line in the coastal aquifer under the same assumption, then the position of the interface can still be estimated with the pressure data. If the Dupuit assumption is not met in coastal aquifers and the vertical fresh water head gradients can be approximated with a straight line, the position of the interface can roughly be estimated by using the water level data in a partially penetrating well during drilling of the well.  相似文献   

20.
The contradiction between the freshwater shortage and the large demand of freshwater by irrigation was the key point in cultivated lowland area of North China Plain. Water transfer project brings fresh water from water resource‐rich area to water shortage area, which can in turn change the hydrological cycle in this region. Major ions and stable isotopes were used to study the temporal variations of interaction between surface water and groundwater in a hydrological year after a water transfer event in November 2014. Irrigation canal received transferred Yellow River, with 2.9% loss by evaporation during water transfer process. The effect of transferred water on shallow groundwater decreased with increasing distance from the irrigation canal. Pit pond without water transfer receives groundwater discharge. During dry season after water transfer event, shallow groundwater near the irrigation canal was recharged by lateral seepage and deep percolation of irrigation, whereas shallow groundwater far from irrigation canal was recharged by deep percolation of deep groundwater irrigation. Canal water lost by evaporation was 2.7–17.4%. Influence of water transfer gradually disappeared until March as the water usage of agricultural irrigation increased. In the dry season, groundwater discharged to irrigation canal and pond; 2.2–31.6% canal water and 11.3–20.0% pond water were lost by evaporation. In the rainy season (June to September), surface water was fed mainly by precipitation and surface run‐off, whereas groundwater was recharged by infiltration of precipitation. The two‐end member mix model showed that the mixing ratio of precipitation in pond and irrigation canal were 73–83.4% (except one pond with 28.1%) and 77.3–99.9%, respectively. Transferred water and precipitation were the important recharge sources for shallow groundwater, which decreased groundwater salinity in cultivated lowland area of North China Plain. With the temporary and spatial limitation of water transfer effects, increased water transfer amounts and frequency may be an effective way of mitigating regional water shortage. In addition, reducing the evaporation of surface water is also an important way to increase the utilization of transfer water.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号