首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
This paper presents an analytical case study to explore one‐dimensional subsurface air pressure variation in a coastal three‐layered unsaturated zone. The upper layer is thin and much less permeable than the middle layer, and water table is located in the very permeable lower layer. An analytical solution was derived to describe the air pressure variation caused by tide‐induced water table fluctuations. We revisited the case study at Hong Kong International Airport conducted by Jiao and Li (2004) who used a two‐dimensional numerical model. The analytical prediction using the parameter values equivalent to the two‐dimensional numerical model agreed very well with the observed air pressure, indicating the validity and applicability of our one‐dimensional model in approximating the actual situation in this coastal zone with adequate accuracy. The analysis revealed that the asphalt pavement played an important role in causing air pressure fluctuations below it. Abnormally high air pressure can be caused beneath the surface pavement when the air permeability decreases due to rainfall infiltration, which may lead to heaving problems during rising tides.  相似文献   

2.
This study employed a coupled water-air two-phase flow and salt water transport model to analyze the behaviors of generated airflow in unsaturated zones and the fluctuations of salinity at the salt–fresh water interface in a two-layered unconfined aquifer with a sloping beach surface subjected to tidal oscillations. The simulation results show that as the new dynamic steady state including effects of tidal fluctuations is reached through multiple tidal cycles, the dispersion zone in the lower salt water wedge is broadened because fresh water/salt water therein flows continuously landward or seaward during tidal cycles. The upper salt–fresh water interface exhibits more vulnerable to the tidal fluctuations, and the variation of salinity therein is periodic, which is irrelevant to the hydraulic head but is influenced by the direction and velocity of surrounding water-flow. With the tidal level fluctuating, airflow is mainly concentrated in the lower permeable layer due to the restraint of the upper semi-permeable layer, and the time-lag between the pore-air pressure and the tidal level increases with distance from the coastline. The effect of airflow in unsaturated zones can be transmitted downward, causing both the magnitude of salinity and its amplitude in the upper salt–fresh water interface to be smaller for the case with airflow than without airflow due to the resistance of airflow to water-flow. Sensitivity analysis reveal that distributions of airflow in unsaturated zones are affected by the permeability of the upper/lower layer and the van Genuchten parameter of the lower layer, not by the van Genuchten parameter of the upper layer, whereas the salinity fluctuations in the salt–fresh water interface are affected only by soil parameters of the lower layer.  相似文献   

3.
A study on subsurface airflow plays a vital role in quantifying the effectiveness of natural attenuation of volatile organic compounds (VOCs) or in determining the need of engineering systems (e.g., soil vapor extraction of VOCs). Here, we present a new analytical solution for describing the subsurface airflow induced by barometric pressure and groundwater head fluctuations. The solution improves a previously published semi‐analytical solution into a fully explicit expression and can save much computation efforts when it was used to estimate the soil permeability and porosity, which was demonstrated by a hypothetical example. If the groundwater head and barometric pressure fluctuations have the same frequency and the same order of magnitude for the amplitudes, each or the combination of both fluctuations will generate the air exchange volumes of the same order of magnitude through the ground surface. Particularly, the air exchange volume caused by the combined fluctuations increases with the upper layer's permeability and lower layer's porosity and decreases with the phase difference between these two fluctuations, fluctuation frequency, and the upper layer's thickness. The air exchange volume may decrease quickly to zero essentially when the upper layer's permeability decreases 10‐fold and decrease fourfold to fivefold when the phase difference decreases from π to zero.  相似文献   

4.
Diffusive flux is traditionally treated as the dominant mechanism of gas transport in unsaturated zones under natural conditions, and advective flux is usually neglected. However, some researchers have found that pressure-driven and density-driven advective flux may also be significant under certain conditions. This article compares the diffusive, pressure-driven and density-driven advective fluxes of gas phase volatile organic compound (VOCs) in unsaturated zones under various natural conditions. The presence of a less or more permeable layer at ground surface in a layered unsaturated zone is investigated for its impact on the net contribution of advective and diffusive fluxes. Results show although the transient advective flux can be greater than the diffusive flux, under most of the field conditions the net contribution of the advective flux is one to three orders of magnitude less than the diffusive flux, and the influence of the density-driven flux is undetectable. The advective flux contributes comparably with the diffusive flux only when the gas-filled porosity is less than 0.05. The presence of a less permeable layer at ground surface slightly increases the total flux in the underlying layer, while the presence of a more permeable layer at ground surface significantly increases the total flux in it. When the magnitude of water table fluctuation is less than 1 cm, and the period is greater than 0.5 day, the fluctuation of the water table can be simulated by fixing the water table position and setting a fluctuating moving velocity at the water table.  相似文献   

5.
Gang Liu  Fuguo Tong  Bin Tian 《水文研究》2019,33(26):3378-3390
This work introduces water–air two‐phase flow into integrated surface–subsurface flow by simulating rainfall infiltration and run‐off production on a soil slope with the finite element method. The numerical model is formulated by partial differential equations for hydrostatic shallow flow and water–air two‐phase flow in the shallow subsurface. Finite element computing formats and solution strategies are presented to obtain a numerical solution for the coupled model. An unsaturated seepage flow process is first simulated by water–air two‐phase flow under the atmospheric pressure boundary condition to obtain the rainfall infiltration rate. Then, the rainfall infiltration rate is used as an input parameter to solve the surface run‐off equations and determine the value of the surface run‐off depth. In the next iteration, the pressure boundary condition of unsaturated seepage flow is adjusted by the surface run‐off depth. The coupling process is achieved by updating the rainfall infiltration rate and surface run‐off depth sequentially until the convergence criteria are reached in a time step. A well‐conducted surface run‐off experiment and traditional surface–subsurface model are used to validate the new model. Comparisons with the traditional surface–subsurface model show that the initiation time of surface run‐off calculated by the proposed model is earlier and that the water depth is larger, thus providing values that are closer to the experimental results.  相似文献   

6.
An investigation of groundwater table fluctuations induced by rainfall should consider interactions between the liquid and gas phases in soils. In this study, a water‐air two‐phase flow model was initially verified by simulating an infiltration experiment. It was then employed to model the interactions between liquid and gas phases regarding actions of airflow on the groundwater table and the fluctuations of the phreatic level and water level in the well induced by rainfall. The effects of airflo7w caused by rainfall on phreatic level fluctuations were also studied quantitatively by comparing the results obtained using the proposed model with those obtained from a water single‐phase flow model. The simulation results show that in addition to actual recharge, compressed airflow in unsaturated zones causes the phreatic level to increase, but the rise in the phreatic level is lower than that in the pore‐air pressure head in unsaturated zones due to the mitigation of capillary fringe. The existence of airflow enhances the phreatic level rise during and after rainfall. In addition, the water level in the well, pushed by the phreatic level fluctuations, varies similarly to the phreatic level, but it experiences somewhat delayed and slightly attenuated. The Lisse effect precisely reflects the phreatic level fluctuations before actual recharge. Furthermore, the fluctuations in the phreatic level and water level in the well and the contributions of airflow to phreatic level fluctuations are affected by many factors: rain intensity, initial moisture, overlying aquitard, groundwater table depths, and screen depths of the well.  相似文献   

7.
Groundwater temperature is an important water quality parameter that affects species distributions in subsurface and surface environments. To investigate the response of subsurface temperature to atmospheric climate change, an analytical solution is derived for a one‐dimensional, transient conduction–advection equation and verified with numerical methods using the finite element code SUTRA. The solution can be directly applied to forward model the impact of future climate change on subsurface temperature profiles or inversely applied to produce a surface temperature history from measured borehole profiles. The initial conditions are represented using superimposed linear and exponential functions, and the boundary condition is expressed as an exponential function. This solution expands on a classic solution in which the initial and boundary conditions were restricted to linear functions. The exponential functions allow more flexibility in matching climate model projections (boundary conditions) and measured temperature–depth profiles (initial conditions). For example, measured borehole temperature data from the Sendai Plain and Tokyo, Japan, were used to demonstrate the improved accuracy of the exponential function for replicating temperature–depth profiles. Also, the improved accuracy of the exponential boundary condition was demonstrated using air temperature anomaly data from the Intergovernmental Panel on Climate Change. These air temperature anomalies were then used to forward model the effect of surficial thermal perturbations in subsurface environments with significant groundwater flow. The simulation results indicate that recharge can accelerate shallow subsurface warming, whereas upward groundwater discharge can enhance deeper subsurface warming. Additionally, the simulation results demonstrate that future groundwater temperatures obtained from the proposed analytical solution can deviate significantly from those produced with the classic solution. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

8.
Transient recharge to the water table is often not well understood or quantified. Two approaches for simulating transient recharge in a ground water flow model were investigated using the Trout Lake watershed in north-central Wisconsin: (1) a traditional approach of adding recharge directly to the water table and (2) routing the same volume of water through an unsaturated zone column to the water table. Areas with thin (less than 1 m) unsaturated zones showed little difference in timing of recharge between the two approaches; when water was routed through the unsaturated zone, however, less recharge was delivered to the water table and more discharge occurred to the surface because recharge direction and magnitude changed when the water table rose to the land surface. Areas with a thick (15 to 26 m) unsaturated zone were characterized by multimonth lags between infiltration and recharge, and, in some cases, wetting fronts from precipitation events during the fall overtook and mixed with infiltration from the previous spring snowmelt. Thus, in thicker unsaturated zones, the volume of water infiltrated was properly simulated using the traditional approach, but the timing was different from simulations that included unsaturated zone flow. Routing of rejected recharge and ground water discharge at land surface to surface water features also provided a better simulation of the observed flow regime in a stream at the basin outlet. These results demonstrate that consideration of flow through the unsaturated zone may be important when simulating transient ground water flow in humid climates with shallow water tables.  相似文献   

9.
This paper presents a complete analytical solution to describe tidal groundwater level fluctuations in a coastal subsurface system. The system consists of two aquifers and a leaky layer between them. Previous solutions of Jacob [Flow of groundwater, in: H. Rouse (Ed.), Engineering Hydraulics, Wiley, New York, 1950, pp. 321–386], Jiao and Tang [Water Resour. Res. 35 (3) (1999) 747], Li and Jiao [Adv. Water Resour. 24 (5) (2001a) 565], Li et al. [Water Resour. Res. 37 (2001) 1095] and Jeng et al. [Adv. Water Resour. (in press)] are special cases of the new solution. The present solution differs from previous work in that both the effects of the leaky layer's elastic storage and the tidal wave interference between the two aquifers are considered. If the upper and lower aquifers have the same storativities and transimissivities, the system can be simplified into an equivalent double-layered, aquifer–aquitard system bounded by impermeable layers from up and down. It is found that the leaky layer's elastic storage behaves as a buffer to the tidal wave interference between the two aquifers. The buffer capacity increases with the leaky layer's thickness, specific storage, and decreases with the leaky layer's vertical permeability. Great buffer capacity can result in negligible tidal wave interference between the upper and lower aquifers so that the Li and Jiao (loc. cit.) solution applies.  相似文献   

10.
Land subsidence due to subsurface fluid (water, gas, oil) withdrawal is often predicted by either finite element or finite difference numerical models based on coupled poroelastic theory, where the soil is represented as a semi-infinite medium bounded by the traction-free (ground) surface. One of the variables playing a most important role on the final outcome is the flow condition used on the traction-free boundary, which may be assumed as either permeable or impermeable. Although occasionally justified, the assumption of no-flow surface seems to be in general rather unrealistic. A permeable boundary where the fluid pressure is fixed to the external atmospheric pressure appears to be more appropriate. This paper addresses the response, in terms of land subsidence, obtained with a coupled poroelastic finite element model that simulates a distributed pumping from a horizontal aquifer confined between two relatively impervious layers, and takes either a permeable boundary surface, i.e., constant hydraulic potential, or an impermeable boundary, i.e., a zero Neumann flow condition. The analysis reveals that land subsidence is rather sensitive to the flow condition implemented on the traction-free boundary. In general, the no-flow condition leads to an overestimate of the predicted ground surface settlement, which could even be 1 order of magnitude larger than that obtained with the permeable boundary.  相似文献   

11.
Maier HS  Howard KW 《Ground water》2011,49(6):830-844
The hyporheic zone is an ecologically important ecotone that describes the extent to which nutrient-rich surface waters penetrate the shallow subsurface adjacent to a flowing surface water body. Although steady-state models satisfactorily explain the incursion of surface water into the subsurface as a function of head gradients developed across streambed riffles, they fail to account for the depth that surface water is observed to penetrate the subsurface or for the extent to which the hyporheic zone develops adjacent to the stream channel. To investigate these issues, transient flow modeling has been conducted at the riffle scale and supported by data for an instrumented site in northern Ontario where stream-stage fluctuations are strictly regulated. Model results show that daily stream-stage fluctuations between 0.6 and 4 m produce oscillating solute flow paths that typically reduce residence times of water and solutes in the hyporheic zone from 60 days or more under steady-state conditions to less than 1 day. Furthermore, similar stream-stage fluctuations increase the depth that solutes pervade the subsurface and banks lateral to the stream from around 1 m under steady-state conditions to as much as 2 and 10 m, respectively. The results demonstrate that the transient flow conditions triggered in the subsurface by variable stream stage can exert a strong influence on hyporheic zone development and have important implications for the hyporheos. The results are especially important for hyporheic communities that may survive gradual changes to their living conditions by migrating to more hospitable aquatic habitats, but are unable to respond to rapid changes provoked by more extreme hydrological events.  相似文献   

12.
In this study, a water‐air two‐phase flow model was employed to investigate the formation, extension, and dissipation of groundwater ridging induced by recharge events in a hypothetical hillslope‐riparian zone, considering interactions between the liquid and gas phases in soil voids. The simulation results show that, after a rain begins, the groundwater table near the stream is elevated instantaneously and significantly, thereby generating a pressure gradient driving water toward both the stream (the discharge of groundwater to the stream) and upslope (the extension of groundwater ridging into upslope). Meanwhile, the airflow upslope triggered by the advancing wetting front moves downward gradually. Therefore, the extension of groundwater ridging into upslope and the downward airflow interact within a certain region. After the rain stops, groundwater ridging near the stream declines quickly while the airflow in the lower part of upslope is still moving into the hillslope. Thus, the airflow upslope mitigates the dissipation of groundwater ridging. Additionally, the development of groundwater ridging under different conditions, including rain intensity, intrinsic permeability, capillary fringe height, and initial groundwater table, was analyzed. Changes in intrinsic permeability affect the magnitude of groundwater ridging near the stream, as well as the downward speed of airflow, thereby generating highly complex responses. The capillary fringe is not a controlling factor but an influence factor on the formation of groundwater ridging, which is mainly related to the antecedent moisture. It was demonstrated that groundwater ridging also occurs where an unsaturated zone occurs above the capillary fringe with a subsurface lateral flow.  相似文献   

13.
The present study proposes a methodology for predicting the vertical light nonaqueous-phase liquids (LNAPLs) distribution within an aquifer by considering the influence of water table fluctuations. The LNAPL distribution is predicted by combining (1) information on air/LNAPL and LNAPL/water interface elevations with (2) the initial elevation of the water table without LNAPL effect. Data used in the present study were collected during groundwater monitoring undertaken over a period of 4 months at a LNAPL-impacted observation well. In this study, the water table fluctuations raised the free LNAPL in the subsurface to an elevation of 206.63 m, while the lowest elevation was 205.70 m, forming a thickness of 0.93 m of LNAPL-impacted soil. Results show that the apparent LNAPL thickness in the observation well is found to be three times greater than the actual free LNAPL thickness in soil; a finding that agrees with previous studies reporting that apparent LNAPL thickness in observation wells typically exceeds the free LNAPL thickness within soil by a factor estimated to range between 2 and 10. The present study provides insights concerning the transient variation of LNAPL distribution within the subsurface and highlights the capability of the proposed methodology to mathematically predict the actual LNAPL thickness in the subsurface, without the need to conduct laborious field tests. Practitioners can use the proposed methodology to determine by how much the water table should be lowered, through pumping, to isolate the LNAPL-impacted soil within the unsaturated zone, which can then be subjected to in situ vadose zone remedial treatment.  相似文献   

14.
Analytical studies are carried out to investigate groundwater-head changes in a coastal aquifer system in response to tidal fluctuations. The system consists of an unconfined aquifer, a semi-confined aquifer and a semi-permeable confining unit between them. An exact analytical solution is derived to investigate the influences of both leakage and storage of the semi-permeable layer on the tide-induced groundwater-head fluctuation in the semi-confined aquifer. This solution is a generalization of the solution obtained by Jiao and Tang (Water Resource Research 35 (1999) 747–751) which ignored the storage of the semi-confining unit. The analytical solution indicates that both storage and leakage of the semi-permeable layer play an important role in the groundwater-head fluctuation in the confined aquifer. While leakage is generally more important than storage, the impact of storage on groundwater-head fluctuations changes with leakage. With the increase of leakage the fluctuation of groundwater-head in the confined aquifer will be controlled mainly by leakage. The study also demonstrates that the influence of storativity of the semi-permeable layer on groundwater-head fluctuation is negligible only when the storativity of the semi-permeable layer is comparable to or smaller than that of the confined aquifer. However, for aquifer systems with semi-permeable layer composed of thick, soft sedimentary materials, the storativity of the semi-permeable layer is usually much greater than that of the aquifer and its influence should be considered.  相似文献   

15.
雷达干涉PS网络的基线识别与解算方法   总被引:3,自引:3,他引:0       下载免费PDF全文
时序雷达干涉图中的永久散射体(PS)可看作“天然GPS点”, 以构成网络用于监测长期的地表形变. 本文提出采用邻接矩阵拓扑模型对基于Delaunay剖分算法生成的PS网络进行基线识别, 并采用时序相干最大化算法求解PS基线的线性形变速度增量和高程误差增量. 该数据模型和计算方法被应用于探测香港地区2006~2007年间的区域地表沉降. 实验研究采用由Envisat卫星ASAR传感器对该地区成像所获取的时序SAR影像作为数据源, 并联合该地区12个GPS连续运行参考站的观测数据予以大气修正和地面控制. 实验结果表明, 该模型和方法应用于地表形变测量是有效的和可靠的, PS网络方法探测地面沉降的精度约为±2.0 mm/a.  相似文献   

16.
Subsurface drainage systems have been widely used to deal with soil salinization and waterlogging problems around the world. In this paper, a mathematical model was introduced to quantify the transient behavior of the groundwater table and the seepage from a subsurface drainage system. Based on the assumption of a hydrostatic pressure distribution, the model considered the pore-water flow in both the phreatic and vadose soil zones. An approximate analytical solution for the model was derived to quantify the drainage of soils which were initially water-saturated. The analytical solution was validated against laboratory experiments and a 2-D Richards equation-based model, and found to predict well the transient water seepage from the subsurface drainage system. A saturated flow-based model was also tested and found to over-predict the time required for drainage and the total water seepage by nearly one order of magnitude, in comparison with the experimental results and the present analytical solution. During drainage, a vadose zone with a significant water storage capacity developed above the phreatic surface. A considerable amount of water still remained in the vadose zone at the steady state with the water table situated at the drain bottom. Sensitivity analyses demonstrated that effects of the vadose zone were intensified with an increased thickness of capillary fringe, capillary rise and/or burying depth of drains, in terms of the required drainage time and total water seepage. The analytical solution provides guidance for assessing the capillary effects on the effectiveness and efficiency of subsurface drainage systems for combating soil salinization and waterlogging problems.  相似文献   

17.
The Lisse effect revisited   总被引:5,自引:0,他引:5  
Weeks EP 《Ground water》2002,40(6):652-656
The Lisse effect is a rarely noted phenomenon occurring when infiltration caused by intense rain seals the surface soil layer to airflow, trapping air in the unsaturated zone. Compression of air by the advancing front results in a pressure increase that produces a water-level rise in an observation well screened below the water table that is several times as large as the distance penetrated by the wetting front. The effect is triggered by intense rains and results in a very rapid water-level rise, followed by a recession lasting a few days. The Lisse effect was first noted and explained by Thal Larsen in 1932 from water-level observations obtained in a shallow well in the village of Lisse, Holland. The original explanation does not account for the increased air pressure pushing up on the bottom of the wetting front. Analysis of the effect of this upward pressure indicates that a negative pressure head at the base of the wetting front, psi(f), analogous to that postulated by Green and Ampt (1911) to explain initially rapid infiltration rates into unsaturated soils, is involved in producing the Lisse effect. Analysis of recorded observations of the Lisse effect by Larsen and others indicates that the water-level rise, which typically ranges from 0.10 to 0.55 m, should be only slightly larger than psi(f) and that the depth of penetration of the wetting front is no more than several millimeters.  相似文献   

18.
A semi-analytical mesh-free series solution method is presented for modeling regional steady-state subsurface saturated–unsaturated flow in 2-D geometrically complex homogenous and stratified hill-slope cross sections. Continuous solutions for pressure in the saturated and unsaturated zone are determined iteratively, as is the location of the water table surface. Mass balance is satisfied exactly over the entire domain except along boundaries and interfaces between layers, where errors are in an acceptable range. The solutions are derived and demonstrated on multiple test cases. The errors for specific cases are assessed and discussed.  相似文献   

19.
This study combines a variably-saturated groundwater flow model and a mesoscale atmospheric model to examine the effects of soil moisture heterogeneity on atmospheric boundary layer processes. This parallel, integrated model can simulate spatial variations in land-surface forcing driven by three-dimensional (3D) atmospheric and subsurface components. The development of atmospheric flow is studied in a series of idealized test cases with different initial soil moisture distributions generated by an offline spin-up procedure or interpolated from a coarse-resolution dataset. These test cases are performed with both the fully-coupled model (which includes 3D groundwater flow and surface water routing) and the uncoupled atmospheric model. The effects of the different soil moisture initializations and lateral subsurface and surface water flow are seen in the differences in atmospheric evolution over a 36-h period. The fully-coupled model maintains a realistic topographically-driven soil moisture distribution, while the uncoupled atmospheric model does not. Furthermore, the coupled model shows spatial and temporal correlations between surface and lower atmospheric variables and water table depth. These correlations are particularly strong during times when the land-surface temperatures trigger shifts in wind behavior, such as during early morning surface heating.  相似文献   

20.
Vapor extraction (soil venting) has been demonstrated to be a successful and cost-effective remediation technology for removing VOCs from the vadose (unsaturated) zone. However, in many cases, seasonal water table fluctuations, drawdown associated with pump-and-treat remediation techniques, and spills involving dense, non-aqueous phase liquids (DNAPLS) create contaminated soil below the water table. Vapor extraction alone is not considered to be an optimal remediation technology to address this type of contamination.
An innovative approach to saturated zone remediation is the use of sparging (injection) wells to inject a hydrocarbon-free gaseous medium (typically air) into the saturated zone below the areas of contamination. The contaminants dissolved in the ground water and sorbed onto soil particles partition into the advective air phase, effectively simulating an in situ air-stripping system. The stripped contaminants are transported in the gas phase to the vadose zone, within the radius of influence of a vapor extraction and vapor treatment system.
In situ air sparging is a complex multifluid phase process, which has been applied successfully in Europe since the mid-1980s. To date, site-specific pilot tests have been used to design air-sparging systems. Research is currently underway to develop better engineering design methodologies for the process. Major design parameters to be considered include contaminant type, gas injection pressures and flow rates, site geology, bubble size, injection interval (areal and vertical) and the equipment specifications. Correct design and operation of this technology has been demonstrated to achieve ground water cleanup of VOC contamination to low part-per-billion levels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号