首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Large-scale atmospheric circulation patterns determine the quantity and seasonality of precipitation, the major source of water in most terrestrial ecosystems. Oxygen isotope (δ18O) dynamics of the present-day hydrologic system in the Palouse region of the northwestern U.S.A. indicate a seasonal correlation between the δ18O values of precipitation and temperature, but no seasonal trends of δ18O records in soil water and shallow groundwater. Their isotope values are close to those of winter precipitation because the Palouse receives  75% of its precipitation during winter. Palouse Loess deposits contain late Pleistocene pedogenic carbonate having ca. 2 to 3‰ higher δ18O values and up to 5‰ higher carbon isotope (δ13C) values than Holocene and modern carbonates. The late Pleistocene δ18O values are best explained by a decrease in isotopically light winter precipitation relative to the modern winter-dominated infiltration. The δ13C values are attributed to a proportional increase of atmospheric CO2 in soil CO2 due to a decrease in soil respiration rate and 13C discrimination in plants under much drier paleoclimate conditions than today. The regional climate difference was likely related to anticyclonic circulation over the Pleistocene Laurentide and Ice Sheet.  相似文献   

2.
A comparison of a 6450 14C yr δ18O and δ13C record of authigenic calcite from Lake Awassa, Ethiopia, with other proxy climate records in the area suggests that the lake records long-term regional climate changes. Co-varying and increasing δ18O and δ13C values from 4800 BP suggest an aridification of climate after the early Holocene insolation maximum. After 4000 BP, humid conditions return until after 2800 BP when δ18O increases again, reflecting more arid conditions recorded elsewhere in Ethiopia. In addition to these long-term changes, there are abrupt decreases in both δ18Ocalcite and δ13Ccalcite immediately after tephra layers. The likeliest explanation for these abrupt decreases in isotopes is the effect of tephra on the lake's catchment vegetation. δ18O, δ13C and lake-level measurements from Lake Awassa since the 1970s suggest that the lake is currently isotopically sensitive to short-term (annual–decadal) climate change. However, during this period, the catchment has undergone progressive deforestation that may have caused an increase in runoff. Caution is therefore required when reconstructing palaeoclimates as a contemporary lake may not always be a good analogue for lake hydrology in the past.  相似文献   

3.
Stable carbon isotopes have been frequently used to indicate carbon pools and processes in soils, plants, and the atmosphere. Carbon isotope compositions are particularly useful in partitioning soil carbon sources between C3 and C4 vegetation because of the distinct δ13C distributions for C3 and C4 vegetation. Remote sensing is a powerful tool used to identify ecosystem patterns and processes at larger scales. A union of these two approaches would hold promise for spatially continuous estimates of carbon isotope compositions. In the current study, a framework is presented for using high spatial resolution remote sensing to predict soil δ13C distributions across a southern Africa savanna ecosystem. The results suggest that if the vegetation–soil δ13C relationship can be established, soil δ13C distributions can be estimated by high-resolution satellite images (e.g., IKONOS, Quickbird). Despite limitations remote sensing is a promising tool to expand estimates of terrestrial δ13C spatial patterns and dynamics.  相似文献   

4.
Pedogenic goethites in each of two Early Permian paleosols appear to record mixing of two isotopically distinct CO2 components—atmospheric CO2 and CO2 from in situ oxidation of organic matter. The δ13C values measured for the Fe(CO3)OH component in solid solution in these Permian goethites are −13.5‰ for the Lower Leonardian (∼283 Ma BP) paleosol (MCGoeth) and −13.9‰ for the Upper Leonardian (∼270 Ma BP) paleosol (SAP). These goethites contain the most 13C-rich Fe(CO3)OH measured to date for pedogenic goethites crystallized in soils exhibiting mixing of the two aforementioned CO2 components. δ13C measured for 43 organic matter samples in the Lower Leonardian (Waggoner Ranch Fm.) has an average value of −20.3 ± 1.1‰ (1s). The average value yields a calculated Early Permian atmospheric Pco2 value of about 1 × PAL, but the scatter in the measured δ13C values of organic matter permits a calculated maximum Pco2 of 11 × PAL (PAL = present atmospheric level). Measured values of the mole fraction of Fe(CO3)OH in MCGoeth and SAP correspond to soil CO2 concentrations in the Early Permian paleosol profiles of 54,000 and 50,000 ppmV, respectively. Such high soil CO2 concentrations are similar to modern soils in warm, wet environments.The average δ13C values of pedogenic calcite from 9 paleosol profiles stratigraphically associated with MCGoeth (Waggoner Ranch Fm.) range from −6.5‰ to −4.4‰, with a mean δ13C value for all profiles of −5.4‰. Thus, the value of Δ13C between the pedogenic calcite data set and MCGoeth is 8.1 (±0.9)‰, which is in reasonable accord with the value of 7.7‰ expected if atmospheric Pco2 and organic matter δ13C values were the same for both paleosol types. Furthermore, the atmospheric Pco2 calculated for the Early Permian from the average measured carbon isotopic compositions of the paleosol calcite and organic matter is also analytically indistinguishable from 1 × PAL, with a maximum calculated atmospheric Pco2 (permitted by one standard deviation of the organic matter δ13C value) of ∼5 × PAL.If, however, measured average δ13C values of the plant organic matter are more positive than the original soil organic matter as a result of diagenetic loss of 13C-depleted, labile organic compounds, calculated Permian atmospheric Pco2 using these 13C-enriched organic values would underestimate the actual atmospheric Pco2 using either goethite or calcite. This is the first stratigraphically constrained, intrabasinal study to compare ancient atmospheric CO2 concentrations calculated from pedogenic goethite and calcite. These results demonstrate that the two different proxies record the same information about atmospheric CO2.The Fe(CO3)OH component in pedogenic goethite from a Triassic paleosol in Utah is significantly enriched in 13C relative to Fe(CO3)OH in goethites from soils in which there are mixtures of two isotopic CO2 components. Field-relationships and the δ13C value (−1.9‰) of the Triassic goethite indicate that this ancient paleosol profile experienced mixing of three isotopically distinct CO2 components at the time of goethite crystallization. The three components were probably atmospheric CO2, CO2 from in situ oxidation of organic matter and CO2 from in situ dissolution of preexisting calcite. Although mixing of three isotopically distinct CO2 components, as recorded by Fe(CO3)OH in goethite, has been described in modern soil, this is the first example from a documented paleosol. Its preservation affirms the need for careful, case-by-case assessment of ancient paleosols to establish that goethite in any particular soil is likely to be a valid proxy of atmospheric Pco2.  相似文献   

5.
Stable isotopes were measured in the carbonate and organic matter of palaeosols in the Somma–Vesuvius area, southern Italy in order to test whether they are suitable proxy records for climatic and ecological changes in this area during the past 18000 yr. The ages of the soils span from ca. 18 to ca. 3 kyr BP. Surprisingly, the Last Glacial to Holocene climate transition was not accompanied by significant change in δ18O of pedogenic carbonate. This could be explained by changes in evaporation rate and in isotope fractionation between water and precipitated carbonate with temperature, which counterbalanced the expected change in isotope composition of meteoric water. Because of the rise in temperature and humidity and the progressive increase in tree cover during the Holocene, the Holocene soil carbonates closely reflect the isotopic composition of meteoric water. A cooling of about 2°C after the Avellino eruption (3.8 ka) accounts for a sudden decrease of about 1‰ in δ18O of pedogenic carbonate recorded after this eruption. The δ13C values of organic matter and pedogenic carbonate covary, indicating an effective isotope equilibrium between the organic matter, as the source of CO2, and the pedogenic carbonate. Carbon isotopes suggest prevailing C3 vegetation and negligible mixing with volcanogenic or atmospheric CO2. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

6.
《Applied Geochemistry》2003,18(8):1241-1249
A combination of δ 13C values with C/N ratios in suspended matter has been used to examine the seasonal relationship between C4 and C3 vegetation along the Loess Plateau, NW China. The C isotopic composition of suspended organic matter in rivers, together with C/N ratios can differentiate between soil and plant material, and can be used to estimate the relative contributions of soil organic C and plant litter to the suspended matter. The relationship between C isotopic composition and C/N ratios indicates that the samples are a mixture of two end members: (1) modern soils with relatively constant δ 13C values, low C content and low C/N ratios; (2) plant litter with varying δ 13C values, high C content and high C/N ratios. The results reflect the seasonal distribution of C4/C3 vegetation within the area studied, as part of the Loess Plateau. The abundance of C4 grasses is about 20% for the current summer vegetation ecosystem in the eastern part of the Loess Plateau. Hence, the use of δ 13C values and C/N ratios of suspended matter in rivers and modern soil may be useful for reflecting seasonal distribution of C4/C3 vegetation in catchments. This could be a useful tool for distinguishing between catchments for GIS studies, and long term planning for ecological management of catchment areas.  相似文献   

7.
The time at which deserts established their current arid or hyper-arid conditions remains a fundamental question regarding the history of Earth. Cosmogenic isotope exposure ages of desert pavement and welded, calcic–gypsic–salic Reg soils that developed on relatively flat alluvial surfaces ~2 Ma ago in the Negev Desert indicate long geomorphic stability under extremely dry conditions. Over a short interval during their initial stage of development between 1–2 Ma, these cumulative soils are characterized by calcic soils reaching maximum stage III of carbonate morphology. This interval is the only period when calcic soil horizons formed on stable abandoned alluvial surfaces in the southern Negev Desert. Since ~1 Ma pedogenesis changed toward more arid soil environment and the formation of gypsic–salic soil horizons that were later followed by dust accumulation. The dichotomy of only moderately-developed calcic soil (stages II–III) during a relatively long time interval (105–106 years) indicates an arid environment that does not support continuous development but only occasional calcic soil formation. The very low δ18O and relatively high δ13C values of these early pedogenic carbonates support soil formation under arid climatic conditions. Such an environment was probably characterized by rare and relatively longer duration rainstorms which occasionally allowed deeper infiltration of rainwater and longer retention of soil moisture. This, in turn enabled the growth of sparse vegetation that enhanced deposition of pedogenic carbonate. At ~1 Ma these rare events of slightly wetter conditions ceased and less atmospheric moisture reached the southern Negev Desert leading to deposition of soluble salts and dust deposited in the soils. The combination of long-term hyperaridity, scarcity of vegetation and lack of bioturbation, salts cementation, dust accumulation and tight desert pavement cover, has protected the surfaces from erosion forming one of the most remarkably stable landscapes on Earth, a landscape that essentially has not eroded, but accumulated salt and dust for more than 106 yr.  相似文献   

8.
We investigated C and N cycling in long-term agroecological experiments initiated over 50 years ago at a cool, semi-arid site on the North American Great Plains. We used isotopes at natural abundance to trace C and N exchange between soils and plants in contrasting cropping systems. Both 13C and 14C indicated that the soil organic matter was isotopically distinct from current plant inputs, suggesting that recently added plant C was cycling independently of much of the soil C pool. For tracing recent C flows, bomb-14C was more sensitive than 13C, and increased more in high – than in low – yielding systems. Analysis of 15N in plant tissues, as an index of 15N in actively cycling soil N, suggested that biological and industrial N fixation both tended to decrease plant 15N, whereas livestock manure addition increased 15N abundance. Collectively, the data suggest that soil organic matter is kinetically heterogeneous, so that a majority of soil C and N inputs and outputs exchange with only the small pool of soil organic matter that is actively cycling. Consequently, recently photosynthesized C and deposited N may not readily enter the old, stable fractions of soil organic matter. Practices to retain CO2 from the atmosphere and prevent leakage of reactive N to non-agricultural systems should therefore focus on management of this active pool.  相似文献   

9.
Late Pleistocene terrestrial climate records in India may be preserved in oxygen and carbon stable isotopes in pedogenic calcrete. Petrography shows that calcrete nodules in Quaternary sediments of the Thar Desert in Rajasthan are pedogenic, with little evidence for postpedogenic alteration. The calcrete occurs in four laterally persistent and one nonpersistent eolian units, separated by colluvial gravel. Thermoluminescence and infrared- and green-light-stimulated luminescence of host quartz and feldspar grains gave age brackets for persistent eolian units I–IV of ca. 70,000–60,000, ca. 60,000–55,000, ca. 55,000–43,000, and ca. 43,000–25,000 yr, respectively. The youngest eolian unit (V) is <10,000 yr old and contains no calcrete. Stable oxygen isotope compositions of calcretes in most of eolian unit I, in the upper part of eolian unit IV, and in the nonpersistent eolian unit, range between −4.6 and −2.1‰ PDB. These values, up to 4.4‰ greater than values from eolian units II and III, are interpreted as representing nonmonsoonal18O-enriched “normal continental” waters during climatic phases when the monsoon weakened or failed. Conversely, 25,000–60,000-yr-old calcretes (eolian units II and III) probably formed under monsoonal conditions. The two periods of weakened monsoon are consistent with other paleoclimatic data from India and may represent widespread aridity on the Indian subcontinent during isotope stages 2 and 4. The total variation in δ13C is 1.7‰ (0.0–1.7‰), and δ13C covaries positively and linearly with δ18O. δ13C values are highest when δ18O values indicate the most arid climatic conditions. This is best explained by expansion of C4grasses at the expense of C3plants at low latitudes during glacial periods when atmosphericpCO2was lowered. C4dominance was overridingly influenced by global change in atmosphericpCO2despite the lowered summer rainfall.  相似文献   

10.
Carbon isotope composition (δ13C) in tree-rings has become routinely used in palaeoclimatic research for the assessment of changes in plant water availability in seasonally dry climates. However, the distribution of long tree-ring records around the world is very limited. Alternatively, the original climate signal of wood δ13C is well preserved in fossil charcoal and, accordingly, charcoal δ13C can be used to quantify past changes in water availability (e.g. precipitation). We report a case study on spatial palaeoclimate reconstruction which aims to characterize the transition between Bronze and Iron Ages, the so-called Iron Age Cold Epoch (ca. 900–300 BCE), using charcoals of Quercus ilex/coccifera from a set of 11 contemporary archaeological sites of eastern Spain. Climatic inferences were obtained after calibrating a linear model predicting seasonal precipitation from δ13C of Q. ilex wood samples obtained across a rainfall gradient. The best regression model corresponded to September–December (autumn) precipitation (Paut), in agreement with the fact that Q. ilex is able to exploit previous-year water reserves thanks to very effective water uptake. Subsequently, we estimated Paut from the δ13C of fossil charcoal to infer spatial patterns in water availability. Overall, estimated past Paut was about 19% higher (296 mm) than present-time values averaged across archaeological sites (249 mm). However, a clear geographic pattern of differences in precipitation could be observed in which the inner continental regions of eastern Spain were characterized by more humid conditions in the past, whereas the coastal strip of the Mediterranean Sea barely differed in past and present Paut values. The quite uniform distribution of archaeological sites over eastern Spain allowed development of contour maps of absolute and relative (to present) past Paut using gridded interpolation methods implemented in a GIS, highlighting the potential of this approach for reconstructing high-resolution spatial patterns of past climate.  相似文献   

11.
Analyses of carbon and hydrogen isotope ratios of terrestrial leaf waxes and the carbon and nitrogen abundance, ratio, and isotopic composition of bulk sediments from Lake Wandakara, a crater lake in western Uganda, East Africa, document human and climatic controls on the aquatic system and on the surrounding terrestrial vegetation during the past two millennia. Our data indicate that Wandakara was a relatively stable, productive lake surrounded by C3 vegetation from AD 70 to 1000. Abrupt changes in the δ13C of terrestrial leaf waxes indicate a series of abrupt shifts in the relative abundance of C3 and C4 vegetation caused by a combination of climate change and human activities around Wandakara beginning at AD 1000. Abrupt shifts in bulk sediment organic geochemistry, particularly C/N ratios and δ15N, indicate that human activities at this time caused permanent changes in the limnology of Lake Wandakara, including eutrophication. Our results suggest that the biogeochemistry of Lake Wandakara was more sensitive to shifting human impacts than to climate variations during the past millennium, highlighting the importance of understanding the intensity of pre-colonial human impacts on Africa's aquatic ecosystems.  相似文献   

12.
The stable isotope compositions of organic carbon and nitrogen, the contents of organic carbon and nitrogen and C/N ratios for two cores recovered from the Empakai Crater at water depths of 11 and 20 m are used to document climatic changes in northern Tanzania. Eight 14C AMS dates determined on total organic matter (OM) indicate that the sedimentation rate in this lake is about 30 cm/ka for the late Pleistocene to early Holocene period. There are differences in the δ13C values of organic carbon between the two cores, which may be a result of differences in location from the present shoreline and of different water depths. In the deeper-water core the δ13C values show a general downcore decrease to the base of the core with a sharp change to lower values of about 4‰ at a depth of 100 cm (8.7 ka). The general trend of downcore decrease in 13C values can be attributed either to a systematic decrease in the relative proportion of C4 type of OM, owing to an increase in precipitation and change in vegetation cover from grassland to forest, or to utilization of isotopically enriched carbon during photosynthesis. The δ15N values show a general downcore increase with again a sharp change of about 5‰ to lower values at about 8.7 ka. A sharp change of about 5‰ and 4‰ to more depleted values at a depth of 100 cm of both 15N and 13C, respectively, suggests either hiatus or abrupt change in climatic condition from wetter conditions to drier conditions. There is enhanced preservation of OM in the lake as depicted by high mean values of organic carbon and nitrogen at both sites.  相似文献   

13.
Lime mortar and plaster were sampled from Roman, medieval and early modern buildings in Styria. The historical lime mortar and plaster consist of calcite formed in the matrix during setting and various aggregates. The stable C and O isotopic composition of the calcite matrix was analyzed to get knowledge about the environmental conditions during calcite formation. The δ13Cmatrix and δ18Omatrix values range from −31 to 0‰ and −26 to −3‰(VPDB), respectively. Obviously, such a range of isotope values does not represent the local natural limestone assumed to be used for producing the mortar and plaster. In an ideal case, the calcite matrix in lime mortar and plaster is isotopically lighter in the exterior vs. the interior mortar layer according to the relationship δ18Omatrix = 0.61 · δ13Cmatrix − 3.3 (VPDB). Calcite precipitation by uptake of gaseous CO2 into alkaline Ca(OH)2 solutions shows a similar relationship, δ18Ocalcite = 0.67 · δ13Ccalcite − 6.4 (VPDB). Both relationships indicate that the 13C/12C and 18O/16O values of the calcite reflect the setting behaviour of the lime mortar and plaster. Initially, CO2 from the atmosphere is fixed as calcite, which is accompanied by kinetic isotope fractionation mostly due to the hydroxylation of CO2 (δ13Cmatrix ≈  −25‰ and δ18Omatrix ≈ −20‰). As calcite formation continued the remaining gaseous CO2 is subsequently enriched in 13C and 18O causing later formed calcite to be isotopically heavier along the setting path in the matrix. Deviations from such an ideal isotopic behaviour may be due to the evolution of H2O, e.g. evaporation, the source of CO2, e.g. from biogenic origin, relicts of the natural limestone, and secondary effects, such as recrystallization of calcite. The results of the field and experimental study suggest that isotope values can be used as overall proxies to decipher the origin of carbonate and the formation conditions of calcite in the matrix of ancient and recent lime mortar and plaster. Moreover, these proxies can be used to select calcite matrix from historical lime mortar and plaster for 14C dating.  相似文献   

14.
Radiocarbon and 230Th-234U dates of calcic horizons from calciorthid soil profiles in the Mojave Desert were used to calculate the rate of deposition of pedogenic CaCO3. A major period of CaCO3 deposition appears to have occurred about 20000 yBP forming calcic horizons below 100-cm depth during a climatic regime with greater effective rainfall than in the present. The overall rate of deposition has been 1.0 to 3.5 g CaCO3/m2/yr during soil formation. This rate is consistent with present-day rates, assuming that the atmospheric deposition of Ca limits the process. Stable isotope ratios in calcic horizons indicate that CaCO3 precipitated from a soil environment with CO2 of ? 15.5%. 13C12C (vs. PDB) and H2O of + 2.0%. 18O16O (vs. SMOW). These values suggest that CaCO3 precipitates when seasonal drought simultaneously lowers soil pore pCO2 and enriches soil water 18O by evaporation. The role of soil calcic horizons in the global geochemical cycle of carbon is discussed.  相似文献   

15.
Structures and carbon isotopic compositions of biomarkers and kerogen pyrolysis products of a dolomite, a bituminous shale and an oil shale of the Kimmeridge Clay Formation (KCF) in Dorset were studied in order to gain insight into (i) the type and extent of water column anoxia and (ii) changes in the concentration and isotopic composition of dissolved inorganic carbon (DIC) in the palaeowater column. The samples studied fit into the curve of increasing δ13C of the kerogen (δ13CTOC) with increasing TOC, reported by Huc et al. (1992). Their hypothesis, that the positive correlation between TOC and δ13CTOC is the result of differing degrees of organic matter (OM) mineralisation in the water column, was tested by measuring the δ13C values of primary production markers. These δ13C values were found to differ on average by only 1‰ among the samples, implying that differences in the extent of OM mineralisation cannot fully account for the 3‰ difference in δ13CTOC. The extractable OM in the oil shale differs from that in the other sediments due to both differences in maturity, and differences in the planktonic community. These differences, however, are not likely to have significantly influenced δ13CTOC either. All three sediments contain abundant derivatives of isorenieratene, indicating that periodically euxinia was extending into the photic zone. The sediments are rich in organic sulfur, as revealed by the abundant sulfur compounds in the pyrolysates. The prominence of C1-C3 alkylated thiophenes over n-alkanes and n-alkenes is most pronounced in the pyrolysate of the sediment richest in TOC. This suggests that sulfurisation of OM may have played an important role in determining the TOC-δ13CTOC relationship reported by Huc et al. (1992).  相似文献   

16.
Measured mole fractions (X) and δ13C values of the Fe(CO3)OH component in pedogenic goethite from a mid-latitude Oxisol of Early Eocene age (≈52 Ma B.P.) range from 0.0014 to 0.0064 and −20.1 to −15.4‰, respectively. These values of X imply that concentrations of CO2 gas in the paleosol were ≈7400 to ≈34,000 ppm. δ13C and 1/X are correlated and define a linear, soil-CO2 diffusive mixing line with a positive slope. Such positive slopes are characteristic of mixing of two isotopically distinct CO2 endmembers (atmospheric CO2 and CO2 from oxidation of soil organic matter). From the intercept of the mixing line, it is calculated that the δ 13C value of organic matter in the ancient soil was ≈−28.0‰. The magnitude of the slope implies an Early Eocene atmospheric CO2 concentration of ≈2700 ppm.A simple model for forest soils suggests that a “canopy effect” may cause atmospheric CO2 concentrations deduced from pedogenic minerals to underestimate the actual concentrations of atmospheric CO2. If a significant forest canopy were present at the time of formation of pedogenic goethite in the Ione Fm, the concentration of 2700 ppm calculated for atmospheric CO2 could be slightly low, but the underestimate is expected to be < ≈300 ppm (i.e., less than the analytical uncertainty). The relatively high concentration of 2700 ppm inferred for atmospheric CO2 at ≈52 Ma B.P. would have been coincident with the Early Eocene climatic optimum. This result seems to support the case for an important role for variations of atmospheric CO2 in the modification of global paleoclimate.  相似文献   

17.
The stable carbon isotope composition in surface soil organic matter (δ13Csoil) contains integrative information on the carbon isotope composition of the standing terrestrial plants (δ13Cleaf). In order to obtain valuable vegetation information from the δ13C of terrestrial sediment, it is necessary to understand the relationship between the δ13C value in modern surface soil and the standing vegetation. In this paper, we studied the δ13C value in modern surface soil organic matter and standing vegetation in arid areas in China, Australia and the United States. The isotopic discrepancy between δ13Csoil and δ13Cleaf of the standing dominant vegetation was examined in those different arid regions. The results show that the δ13Csoil values were consistently enriched compared to the δ13Cleaf. The δ13Cleaf values were positively correlated with δ13Csoil, which suggests that the interference of microorganisms and hydrophytes on the isotopic composition of surface soil organic matter during soil organic matter formation could be ignored in arid regions. The averaged discrepancy between δ13Csoil and δ13Cleaf is about 1.71%in Tamarix L. in the Tarim Basin in China, 1.50% in Eucalytus near Orange in Australia and 1.22% in Artemisia in Saratoga in the United States, which are different from the results of other studies. The results indicate that the discrepancies in the δ13C value between surface soil organic matter and standing vegetation were highly influenced by the differences in geophysical location and the dominant species of the studied ecosystems. We suggest that caution should be taken when organic matter δ13C in terrestrial sediment is used to extract paleovegetation information (C3/C4 vegetation composition), as the δ13C in soil organic matter is not only determined by the ratio of C3/C4 species, but also profoundly affected by climate change induced variation in the δ13C in dominant species.  相似文献   

18.
Holocene environmental changes in the northern Fertile Crescent remain poorly understood because of the scarcity of local proxy records in the region. In this study we investigated pedogenic (soil-formed) carbonate coatings on stones at the Pre-Pottery Neolithic site Göbekli Tepe as an indicator of local early-mid Holocene environmental changes. The 14C ages and stable isotopic composition of carbon and oxygen in thin (0.2–0.3 mm thick) pedogenic carbonate lamina indicate two main periods of coating formation: the early-Holocene (ca. 10000–6000 cal yr BP) and the mid-Holocene (ca. 6000–4000 cal yr BP). During the first period, there was an inverse relationship between δ13C and δ18O curves: a decrease in δ13C values coincide with an increase in δ18O values. For this period a trend towards higher temperatures is suggested. In the mid-Holocene, the mean rate of coating growth was 2–3 times higher than in the early Holocene. Both δ13C and δ18O reached their maximum values during this time and the direction of changes of the δ13C and δ18O curves became similar. The combination of data suggests that this period was the most humid in the Holocene and on average warmer than the early Holocene. At ca. 4000 cal yr BP secondary accumulation of carbonate ceased, presumably reflecting a shift to a more arid climate.  相似文献   

19.
The morphology and geochemistry of pedogenic carbonate found in vertic claystone palaeosols in the Devonian Catskill Formation in central Pennsylvania preserve a record of the physical and chemical environment of carbonate precipitation. The carbonate is characterized by three distinct petrographic generations. Pedogenic rhizoliths and nodules are the earliest precipitated generation, and typically consist of dull red-brown luminescent micrite. Clear, equant calcite spar cement fills voids in the centres of rhizoliths, as well as circumgranular cracks and septarian voids in nodules. Early spar cements are non-luminescent to dull luminescent, whereas later spar cements exhibit bright yellow-orange luminescence. Late stage pedogenic fractures are always occluded with very bright yellow-orange luminescent spar cements. The incorporation of progressively higher concentrations of Mn (up to 34000 ppm) into successively younger calcite spar cements, without concomitant increases in Fe, suggests carbonate precipitation from an evolving meteoric water in which Mn2+ became increasingly mobile over time. The increased mobility is possibly due to decreasing Eh, resulting from oxidation of organic matter after rapid soil burial on the floodplain. The amount of Fe2+ available for incorporation into calcite was limited because most iron was immobile, having been earlier oxidized and bound to the palaeosol clay matrix as a poorly crystallized ferric oxide or oxyhydroxide mineral. Carbon isotope compositions of pedogenic carbonate correlate with the inferred depth of carbonate precipitation. Rhizoliths preserved below the lowest stratigraphic occurrences of pedogenic slickensides are consistently depleted in 13C relative to nodules, which formed stratigraphically higher, within the zone of active soil shrink and swell processes. Nodular carbonate, precipitated in proximity to deep cracks in the soil, is enriched due to increased gas exchange with isotopically heavy atmospheric CO2. Accordingly, rhizolith compositions will most accurately estimate palaeoatmospheric levels of CO2; the use of nodule compositions may result in overestimation of PCO2 by as much as 30%.  相似文献   

20.
The δ13C values of higher plant wax C27–33 n-alkanes were determined in three, time-equivalent Pliocene (2.943 Ma) sapropels and homogeneous calcareous ooze from three different sites forming an east-west transect in the eastern Mediterranean Basin in order to study the composition of the vegetation on the continents surrounding the Mediterranean Sea. A two-end member mixing model transformed the measured δ13C values into the contribution of C4 plants to the terrestrial vegetation. These calculations indicated a high C4 plant contribution (i.e. 40–50%) in the periods just before and just after sapropel formation. During sapropel deposition the C4 plant contribution increased by up to 20% at all sites. This is interpreted to record the increased overall plant coverage of the Mediterranean borderlands resulting from the change in formerly barren desert areas into C4 grass-dominated savannahs as a response to the wetter climate during sapropel deposition. Enhanced accumulation rates (ARs) of long-chain n-alkanes (C27–33) and n-alkan-1-ols (C26–30) towards the middle of the sapropel in concert with a decrease in the Ti/Al ratio confirm an increased delivery of terrigenous organic matter at all sites. These biomarkers were probably predominantly fluvially transported to the Mediterranean Sea, not only by the Nile but by fossil wadi river systems on the northern African continent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号