共查询到19条相似文献,搜索用时 62 毫秒
1.
传统吸力基础是一个单桶结构,被广泛作为海洋平台、漂浮结构的基础,近年来也被推广到海上风电塔架。作为风电塔架基础,要充分提高其水平承载能力。为此,提出一种改进的基础形式—裙式吸力基础。采用Z_SOIL有限元软件,针对砂土地基,从水平单调加载和循环加载两个方面,对传统单桶吸力基础和裙式吸力基础进行了承载性能对比研究,得到了相应的荷载-位移曲线。研究结果表明,裙式吸力基础由于设置了"裙"结构,显著提高了其抵抗水平静载和循环水平动力荷载的能力,并能有效控制基础的水平位移,是值得推广应用的一种新型海洋工程基础形式。 相似文献
2.
为改善海上风电大直径钢管桩的水平承载性能,基于ABAQUS有限元软件对单桩改进形式的加翼桩结构进行了系统研究,计算分析了软黏土地基中加翼桩在水平荷载作用下桩身弯矩、应力、位移、桩身泥面处倾斜率和极限承载力,研究了加翼桩面积、形状、埋深和刚度等翼板参数对加翼桩水平承载性能的影响规律,根据加翼桩的桩-土作用机理,参考现行规范模式提出适用于软黏土地基大直径钢管桩的P-Y曲线。研究结果表明,加翼桩通过在泥面处设置翼板可降低桩基泥面处倾斜率50%、提高桩基极限承载力60%以上,加翼桩水平承载性能明显优于单桩。 相似文献
3.
随着海上风电向深远海发展,四筒基础发展潜力巨大。中国大多数海域存在较厚的上覆软土层,对基础抗倾覆承载能力有着重大影响。采用有限元软件ABAQUS建立上软下硬分层黏土模型,对四筒基础在单向水平荷载和弯矩荷载作用下的承载力特性进行研究。研究结果表明:四筒基础在水平、弯矩荷载作用下主要运动模式为转动,对边加载时,转动轴靠近受压筒且随着软土层厚度增加不断靠近四筒基础平面中心,但变化幅度较小;水平和弯矩极限承载力对于不同的筒间距和长径比具有相同的变化趋势,当软土层厚度h/筒高L≤3/4时,水平和弯矩承载力随着软土层厚度的增加近似线性降低,当h/L>3/4后,承载力降低速率明显减小。 相似文献
4.
5.
6.
通过开展小比尺三筒基础承载力模型试验,研究冲刷条件下三筒基础水平承载特性,建立数值模型对模型试验结果进行验证与扩展,分析水平和弯矩荷载下,冲刷率e和相对筒间距S/D对极限承载力的影响,提出三筒基础极限承载力的冲刷修正系数dhe、dme的计算方法;采用固定荷载比方法,通过数值模型计算M-H加载条件下三筒基础的破坏包络线,分析冲刷率e和相对筒间距S/D对复合加载特性的影响,提出冲刷条件下三筒基础M-H破坏包络线公式。研究结果表明:冲刷条件下的三筒基础受水平和弯矩作用直至破坏的过程,经历弹性变形—塑性变形—失稳破坏3个阶段;三筒基础的水平极限承载力随冲刷率e的增大而下降,且下降速率逐渐增大,相同长径比的三筒基础的水平极限承载力随相对筒间距的减小而降低;随着冲刷率e的提高,三筒基础的M-H破坏包络线向内移动,随着相对筒间距S/D增大,归一化破坏包络线呈上凸的趋势。 相似文献
7.
8.
离岸深水全直桩码头承载性能有限元分析 总被引:1,自引:0,他引:1
全直桩码头是适于软土地基上离岸深水海域的新型高桩码头结构型式,其承载机理与传统高桩码头存在较大差异,且软土地基循环软化效应显著。建立全直桩码头结构与地基相互作用三维弹塑性有限元模型,基于二次开发采用拟静力法对土体循环软化效应进行模拟。通过有限元模型研究全直桩码头的承载特性与破坏模式,并探讨水平极限承载力的影响因素。研究表明水平荷载作用下,基桩的塑性破坏是结构失稳的控制因素,地基土体的承载力对结构水平极限承载力不起决定性作用;竖向荷载作用下,结构竖向极限承载力由地基土体强度决定。研究范围内入土深度对结构水平极限承载力影响不大,但桩壁厚度减小或考虑土体软化后,结构水平极限承载力明显降低。设计中,增加入土深度可有效减小土体软化引起的水平极限承载力降低程度,且应考虑结构腐蚀和土体软化对水平极限承载力的双重降低效应,为钢管桩预留足够的腐蚀富裕量。 相似文献
9.
为了验证美国石油学会(American Petroleum Institute, API)规范的理论计算分析结果同现场实证试验数据的一致性以及调平新技术的有效性,以大唐大连市庄河海上风电场址Ⅰ(100 MW)海上风电项目吸力式三筒导管架基础为研究对象,运用API规范的静力平衡法、屈曲分析、土塞理论,以及SACS与ANSYS有限元分析软件进行吸力筒导管架沉贯的土塞、沉贯可行性、贯入屈曲、竖向承载力及吊装适应能力的一系列力学分析,通过将吸力式三筒导管架沉贯过程实际监测的土塞高度、负压、承载力、屈曲变形数据同理论计算结果进行比对分析,验证了API规范的理论计算分析结果与现场实证试验数据之间具有良好的拟合度。而“水上星站差分定位+姿态监测及定向的测量+无线网桥通讯组合”和“吸力筒吸力贯入装备一体化系统智能控制系统”两种新技术的应用,成功达成了吸力筒导管架基础功能性的实现。本研究证明了API规范理论分析的准确性和新调平技术的有效性,同时本研究的创新吸力筒式基础可以大幅节约钢材,能显著降低海上风电项目投资成本,经济价值高,有望成为未来海上风电项目的主要基础型式之一。 相似文献
10.
11.
AbstractComposite bucket foundation (CBF) is a wide-shallow foundation for offshore wind turbines, which can be transported and installed with the turbine as one unit at a one-step operation. Compared with deep pile foundations, its structural stability is more sensitive to the scouring by waves and currents. In this paper, a three-dimensional finite element model with CBF and surrounding soil is established to estimate the failure mode at different given soil scour conditions. The loading on CBF for offshore wind turbines is characterized by relatively small vertical loading V, larger horizontal loading H, and bending moment M, and the effect of erosion on bearing capacity of CBF is determined by using the fixed displacement ratio method. In addition, the failure envelopes of the CBF applied in H–M and V–H–M loading modes are obtained. Results indicate that the bearing capacity of CBF under horizontal loading and bending moment will be significantly reduced by the decrease in the embedded depth of CBF due to the scouring depth and extent, as well as the H–M, and V–H–M failure envelopes. The structural stability safety factor of CBF under different scouring conditions can be obtained through the three-dimensional envelope surface with respect to scouring depth and extent. 相似文献
12.
13.
基于验证的三维有限元方法,考察了斜壁桶形基础的承载特性,得到了变形网格、位移增量分布、位移等值面分布等结果,探讨了斜壁倾角与各极限承载力之间的定量关系。计算表明,桶形基础发生竖向位移时,主要是桶体内部和桶基正下方的土体发生沉降,而桶侧的土体基本不发生沉降。桶形基础受到水平荷载发生转动时,转动中心轴大致位于桶基底面内,桶基水平承载力主要由桶内土体和桶基外侧中上部受压侧土体产生的抵抗反力构成。桶基因受到较大竖直向上荷载而失效时,桶内土体和桶基外侧靠近海床面附近土体产生了较大的向上位移。桶壁倾角β每增加1°,竖向抗压极限承载力、竖向抗拔极限承载力、水平极限承载力分别提高12%、17.4%及3.8%。 相似文献
14.
近海海床表层多为软黏土或淤泥质土,为探究海床表层软土对海上风电宽浅式筒型基础承载特性的影响,以中国广东某海域风电场为背景,通过有限元分析的方法,研究竖向、水平、弯矩荷载作用下软土层厚度和土体强度对基础极限承载力、破坏模式以及筒基土压力分布的影响。研究结果表明:当软土层厚度小于H/2(H为筒裙高度)时,单向荷载作用下宽浅式筒型基础极限承载力随软土层厚度的增加呈线性减小的趋势;当软土层厚度大于H/2后,承载力降低速率逐渐增大。表层软土的存在,使得塑性区范围缩小,软土层内土体塑性破坏更加明显。竖向荷载作用下,随软土层厚度的增大,筒顶承载先减小后增大,筒内侧摩阻力先增大后减小;水平荷载和弯矩作用下,筒侧被动土压力的降低是引起软土覆盖地基中基础承载能力降低的主要因素。 相似文献
15.
吸力基础具有施工速度快、安装过程中受海况天气影响小且易于回收重复利用等优点,被广泛应用于海洋工程。当吸力基础作为海上风电塔架的基础时,常常承受较大的水平荷载,因此其水平承载力是设计的主控因素。介绍了海上风机基础的设计要求,分析了影响基础水平承载性状的因素,总结了吸力基础受水平单调荷载、水平循环荷载和不同荷载组合三个方面的研究现状。讨论了水平荷载的大小、水平加载的高度(偏心率)、循环荷载的频率、循环荷载的次数、循环荷载的幅值、循环荷载的方向性、竖向荷载对吸力基础水平承载性状的影响,考虑了水平荷载的非共线性,指出了目前研究的不足,明确了吸力基础水平承载性状进一步研究的方向,提出了供工程实践参考的建议。 相似文献
16.
自升式平台作业前需对桩靴基础进行预压安装,使桩靴具备抵抗竖向-水平-弯矩复合荷载的能力。安装过程中,桩靴上部将形成一定深度的孔洞。弱超固结黏土地基中,土体强度较高,桩靴最终贯入深度较浅,而形成的上部孔洞较深,因此孔洞将对桩靴就位后的承载力产生影响。通过有限元分析,研究弱超固结黏土中桩靴上部孔洞对承载力的影响,结果表明:1)与无孔洞的情况相比,孔洞的存在对桩靴的单向和复合承载力有削弱作用; 2)当桩靴与孔洞底部距离大于桩靴直径时,承载力不再受上部孔洞的影响; 3)当桩靴埋深小于等于0.75倍桩靴直径时,无论桩靴上部有无孔洞,现有预测公式都不能较为合理地预测弱超固结黏土地基的复合承载力,为此提出了考虑孔洞影响的桩靴复合承载力包络面预测公式。 相似文献
17.
复合加载下桶形基础循环承载性能数值分析 总被引:1,自引:0,他引:1
作为一种新型基础形式,吸力式桶形基础除了承受海洋平台结构及自身重量等竖向荷载的长期作用之外,往往还遭受波浪等所产生的水平荷载及其力矩等其它荷载分量的瞬时或循环作用。对复合加载模式下软土地基中桶形基础及其结构的循环承载性能尚缺乏合理的分析与计算方法。应用Andersen等对重力式平台基础及地基所建议的分析方法,基于软黏土的循环强度概念,在大型通用有限元分析软件ABAQUS平台上,通过二次开发,将软土的循环强度与Mises屈服准则结合,针对吸力式桶形基础,基于拟静力分析建立了复合加载模式下循环承载性能的计算模型,并与复合加载作用下极限承载性能进行了对比。由此表明,与极限承载力相比,桶形基础的循环承载力显著降低。 相似文献
18.
近年来大直径钢圆筒结构在离岸人工岛工程中得到应用,如港珠澳大桥人工岛即采用振动下沉的方式安装钢圆筒,该方法对施工条件、装备以及施工控制技术要求较高。提出一种新型隔舱吸力式钢圆筒结构,在钢圆筒内部设置隔舱板,将结构分为上下两个隔舱,通过对下舱抽气实现隔舱吸力式钢圆筒在负压作用下的下沉安装。设计了隔舱吸力式钢圆筒安装及水平承载力模型试验,对比了负压贯入的隔舱吸力式钢圆筒和压力贯入的传统钢圆筒结构的贯入阻力及承载特性,分析了改变隔舱吸力式钢圆筒上下舱高度比L1/L2对其沉贯过程及承载特性的影响。结果表明,采用负压吸力沉贯的隔舱吸力式钢圆筒相比于采用压力贯入的传统钢圆筒结构的贯入阻力减小,水平极限承载力提高。在极限水平荷载作用下,随着隔舱吸力式钢圆筒的L1/L2从2.28减小到1.00、0.56,转动中心位置上移,水平极限承载力及弯矩承载力得到显著提高。 相似文献
19.
This paper presents the results of three-dimensional finite element analyses of the suction bucket foundation used for offshore wind turbines. The behavior of the bucket and the response of soil supporting the bucket in dense and medium dense sandy soils subjected to static horizontal load are investigated. Field tests results and a centrifuge model test are used to validate the numerical model. Dimensionless horizontal load-displacement and overturning moment-rotation relationships are derived utilizing the Power law and Buckingham’s theorem. The results show good agreement between the numerical analysis results and the straight lines obtained from the Power law until a specific value of horizontal load and overturning moment. Regarding stress behavior of soil supporting the bucket, due to soil densification and bucket movement, maximum stresses are seen near the bucket tip at the right inside of the bucket. The major part of the applied load is transferred by the bucket skirt. Numerical analysis modeling results show that the bucket rotation and displacement are highly dependent on the bucket geometry and soil properties in addition to loading conditions. Normalized equations and figures for the ultimate horizontal load and overturning-moment capacities are presented and can be used for the preliminary design of the bucket foundations in sandy soils. 相似文献