首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Low-mass galaxies are known to have played the crucial role in the hydrogen reionization in the Universe. In this paper we investigate the contribution of soft x-ray radiation (E ~ 0.1–1 keV) from dwarf galaxies to hydrogen ionization during the initial reionization stages. The only possible sources of this radiation in the process of star formation in dwarf galaxies during the epochs preceding the hydrogen reionization epoch are hot intermediate-mass stars (M ~ 5–8 M) that entered the asymptotic giant branch (AGB) stage and massive x-ray binaries. We analyze the evolution of the intergalactic gas in the neighborhood of a dwarf galaxy with a total mass of 6 × 108M formed at the redshift of z ~ 15 and having constant star-formation rate of 0.01–0.1 M yr?1 over a starburst with a duration of up to 100 Myr. We show that the radiation from AGB stars heats intergalactic gas to above 100 K and ensures its ionization xe ? 0.03 within about 4–10 kpc from the galaxy in the case of a star-formation rate of star formation 0.03–0.1 M yr?1, and that after the end of the starburst this region remains quasi-stationary over the following 200–300 Myr, i.e., until z ~ 7.5. Formation of x-ray binaries form in dwarf galaxies at z ~ 15 results in a 2–3 and 5–6 times greater size of the ionized and heated region compared to the case where ionization is produced by AGB stars exclusively, if computed with the “x-ray luminosity–star-formation rate” dependence (LX ~ fXSFR) factor fX = 0.1 and fX ~ 1, respectively. For fX ? 0.03 the effect of x-ray binaries is smaller that that of AGB star population. Lyα emission, heating, and ionization of the intergalactic gas in the neighborhood of dwarf galaxies result in the excitation of the 21 cm HI line. We found that during the period of the starburst end at z ~11.5–12.5 the brightness temperature in the neighborhood of galaxies is 15–25 mK and the region where the brightness temperature remains close to its maximum has a size of about 12–30 kpc. Hence the epoch of the starburst end is most favorable for 21 cm HI line observations of dwarf galaxies, because at that time the size of the region of maximum brightness temperature is the greatest over the entire evolution of the dwarf galaxy. In the case of the sizes corresponding to almost 0.’1 for z ~ 12 regions with maximum emission can be detected with the Square Kilometre Array, which is currently under construction.  相似文献   

2.
We used the Revised Flat Galaxy Catalog (RFGC) to select 817 ultra-flat (UF) edge-on disk galaxies with blue and red apparent axial ratios of (a/b)B > 10.0 and (a/b)R > 8.5. The sample covering the whole sky, except the Milky Way zone, contains 490 UF galaxies with measured radial velocities. Our inspection of the neighboring galaxies around them revealed only 30 companions with radial velocity difference of | ΔV |< 500 kms?1 inside the projected separation of Rp < 250 kpc. Wherein, the wider area around the UF galaxy within Rp < 750 kpc contains no other neighbors brighter than the UF galaxy itself in the same velocity span. The resulting sample galaxies mostly belong to the morphological types Sc, Scd, Sd. They have a moderate rotation velocity curve amplitude of about 120 km s?1 and a moderate K-band luminosity of about 1010L. The median difference of radial velocities of their companions is 87 km s?1, yielding the median orbital mass estimate of about 5 × 1011M. Excluding six probable non-isolated pairs, we obtained a typical halo-mass-to-stellar-mass of UF galaxies of about 30, what is almost the same one as in the principal spiral galaxies, like M31 and M81 in the nearest groups. We also note that ultra-flat galaxies look two times less “dusty” than other spirals of the same luminosity.  相似文献   

3.
We investigate the distribution and velocity field of galaxies situated in a band of 100 by 20 degrees centered on M87 and oriented along the Local supercluster plane. Our sample amounts 2158 galaxies with radial velocities less than 2000 km s?1. Of them, 1119 galaxies (52%) have distance and peculiar velocity estimates. About 3/4 of early-type galaxies are concentrated within the Virgo cluster core, most of the late-type galaxies in the band locate outside the virial radius. Distribution of gas-rich dwarfs with MHI >M* looks to be insensitive to the Virgo cluster presence. Among 50 galaxy groups in the equatorial supercluster band 6 groups have peculiar velocities about 500–1000 km s?1 comparable with virial motions in rich clusters. The most cryptic case is a flock of nearly 30 galaxies around NGC4278 (Coma I cloud), moving to us with the mean peculiar velocity of ?840 km s?1. This cloud (or filament?) resides at a distance of 16.1 Mpc from us and approximately 5 Mpc away from the Virgo center. Galaxies around Virgo cluster exhibit Virgocentric infall with an amplitude of about 500 km s?1. Assuming the spherically symmetric radial infall, we estimate the radius of the zero-velocity surface to be R0 = (7.0±0.3) Mpc that yields the total mass of Virgo cluster to be (7.4 ± 0.9)× 1014M in tight agreement with its virial mass estimates. We conclude that the Virgo outskirts does not contain significant amounts of dark mater beyond its virial core.  相似文献   

4.
In this paper we study the relations between the main characteristics of groups and clusters of galaxies using the archival data of the SDSS and 2MASX catalogs. We have developed and implemented a new method of determining the size of galaxy systems and their effective radius which contains half of the galaxies and not half the luminosity, since the luminosity of the brightest galaxy in a group can account for over 50% of the total luminosity of the group. The derived parameters (log LK, logRe, and log σ200) for 94 systems of galaxies (0.0038 < z < 0.09) determine the Fundamental Plane (FP), which, with a scatter of 0.15, is similar in form to the FP of galaxy clusters obtained by Schaeffer et al. (1993) and D’Onofrio et al. (2013) with other methods and for different bands. We show that the FP in the near-infrared region (NIR) for 94 galaxy systems has the form of LK\(R_e^{0.70 \pm {{0.13}_\sigma }1.34 \pm 0.13}\), whereas in x-rays it has the form of—LX\(R_e^{1.15 \pm {{0.39}_\sigma }2.56 \pm 0.40}\). The form of the FP for groups and clusters is consistent with the FP for early-type galaxies determined in the same way. The form of the FP for galaxy systems deviates from the shape that one would expect from virial predictions. Adding the mass-to-light ratio as a fourth independent parameter has little effect on this deviation, but decreases the scatter of the FP for a sample of rich galaxy clusters by 12%.  相似文献   

5.
We present the results of our photometric (BV R) and spectroscopic CCD observations of NGC 304 and NGC 7625, candidate polar-ring galaxies, performed with the 6-m Special Astrophysical Observatory telescope. For NGC 304, such a study has been carried out for the first time. We have obtained basic integrated characteristics of the galaxies and determined their morphological types (S0 for NGC 304 and Sa for NGC 7625). The absolute magnitudes of the galaxies, M B = ?20m.81 for NGC 304 and M B = ?19m.34 for NGC7625, are indicative of their fairly high luminosities. The disk and bulge parameters have been determined forNGC 304 (µ0 = 20m.60, h = 3.86 kpc, µ e = 21m.59, r e = 1.26 kpc in the B band); these correspond to the parameters of S0-type objects. The rotation velocity for NGC 304 (200 km s?1) reaches its maximum at a galactocentric distance of 3.1 kpc, which yields a mass estimate for the galaxy of 2.8 × 1010 \(\mathcal{M}_ \odot \). The observed photometric features at the center of NGC 304 indicate that it may have an inner ring structure, although we have failed to confirm the existence of two kinematic systems based on our spectroscopic observations. In NGC 7625, the disk makes a dominant contribution to the total brightness. The derived integrated color indices (B-V = 0m.81 and V-R = 0m.61) agree with previous determinations of other authors. We have estimated the учештсешщт in the inner galactic regions. In the outer regions, we have detected structures with bluer colors (B-V = 0m.60), which may be indicative of a polar ring with a minor stellar component.  相似文献   

6.
Based on archival Hubble Space Telescope images, we have performed stellar photometry for the galaxy M 101 and other neighboring galaxies located at a small angular distance from M 101 and having radial velocities similar to that of M 101: M 51, M 63, NGC 5474, NGC 5477, UGC 9405, Ho IV, KUG1413+573, and others. Based on the TRGB method, we have determined the distances to these galaxies. We have found that the M 101 group lies at a distance of 6.8 Mpc and is a small compact galaxy group consisting of four galaxies: NGC 5474, NGC 5477, UGC 9405, and Ho IV. The bright massive galaxies M 51 and M 63 are considerably farther (D = 9.0 and 9.3 Mpc, respectively) than the M 101 group and do not belong to it. Applying the virial theorem to 27 objects (H II regions and galaxies),M 101 satellites located at different distances from the galaxy, has revealed an increase in the dynamical mass of M 101 with increasing sizes of the system of satellites used in calculating the mass. The maximum calculated mass of M 101 is 7.5 × 1011 M . The dynamical mass of M 101 calculated on the basis of the four galaxies constituting the group is 6.2 × 1011 M . The mass-to-light ratio for this mass is M/L = 18 (at the adopted luminosity of M 101, M B = ?20.8).  相似文献   

7.
The effect of the extragalactic magnetic field on the propagation of ultra-high-energy cosmic rays (UHECRs) is investigated. We use the infrared galaxy catalog IRAS PSCz to reconstruct the magnetic field distribution in the Local Universe. The magnetic field induction is considered as a power function of the galactic infrared luminosity density: B = Kρβ. In contrast to some earlier studies in which the exponent β = 2/3 corresponded to the freezing-in condition, the parameters K and β are estimated from the field inductions normalized by the expected maximum inductions (strong field) and minimum inductions (weak field) in galaxy clusters and voids, respectively. Maps of angular deflections of UHECRs are presented for these magnetic field models. We found that the protons with energies E > 4 × 1019 eV are not significantly deflected from their sources in a sphere with a radius of 100 Mpc only in the case of the weak magnetic field model (the deflections are comparable to the errors of modern detectors). The effect of the extragalactic magnetic field on the UHECR spectrum is investigated, with Virgo A and Arp 299 taken as potential sources.  相似文献   

8.
We calculate the parameters of the two-point correlation function of quasars w(r) = (r c /r) γ on the basis of the SDSS DR3 data. The correlation functions are first determined from projected distances with the use of a special technique for compiling randomized catalogs. Next the parameters of the spatial correlation function are obtained with the assumption of local isotropy. For the quasars with redshifts z = 0.8–2.1, we obtained the estimates γ = 1.76 ± 0.14, r c = 6.60 ± 0.85 h ?1 Mpc in the comoving distance range 2–30 Mpc and γ = 1.90 ± 0.11, r c = 6.95±0.57 h ?1 Mpc in the range 2–50 Mpc. These estimates agree, within the limits of errors, with the estimates obtained for the redshifts 0.4 < z < 2.1. The original catalog shows some deficit of pairs with separations less than 1 Mpc.  相似文献   

9.
The present paper is devoted to the construction of a catalog of isolated galaxy pairs extracted from the HyperLEDA extragalactic database. The radial velocities of the galaxies in the pairs are in the range [3000, 16000] km s?1. In order to get an unbiased pair catalog as complete as possible, we have limited the absolute magnitude of the galaxies to M ≤ ?18.5. The criteria used to define the isolated galaxy pairs are the following: 1) velocity criterion: radial velocity difference between the pair members ΔV < 500 kms?1; 2) interdistance criterion: projected distance between the members rp < 1 Mpc; 3) reciprocity criterion: each member is the closest galaxy to the other one, which excludes multiplets; 4) isolation criterion: we define a pair as isolated if the ratio ρ = r3/rp of the projected distance of the pair to its closest galaxy (this one having a velocity difference lower than 500 km s?1 with respect to the pair) and the members projected interdistance rp is larger than 2.5.We have searched for these closest galaxies first in HyperLEDA M-limited source catalog, then in the full one.We have managed not to suppress the small number of pairs having close-by but faint dwarf galaxy companions. The galaxy pair catalog lists the value of ρ for each isolated pair. This method allows the user of the catalog to select any isolation level (beyond the chosen limit ρ > 2.5). Our final catalog contains 13 114 galaxy pairs, of which 57% are fairly isolated withρ > 5, and 30% are highly isolated with ρ ≥ 10.  相似文献   

10.
We have estimated the dark matter content in galaxy pairs and triplets selected from SDSS DR5 by a higher-order Voronoi tesseleration method. Specifically, the median mass-to-light ratios M vir/L are 12 M /L for isolated pairs, 44 M /L for isolated triplets, and 7 (8) M /L for compact pairs (triplets) with a characteristic distance between the galaxies of R < 50 (100) kpc. We show that the less isolated a system, the larger its mass-to-light ratio. This suggests that galaxy groups in a denser environment have a higher velocity dispersion.  相似文献   

11.
We present the results of our spectroscopic and morphological studies of the galaxy UGC 7388 with the 8.1-m Gemini North telescope. Judging by its observed characteristics, UGC 7388 is a giant late-type spiral galaxy seen nearly edge-on. The main body of the galaxy is surrounded by two faint (μ B ~ 24 m /□″ and μ B ~ 25 · m 5/□″) extended (~ 20–30 kpc) loop-like structures. A large-scale rotation of the brighter loop about the main galaxy has been detected. We discuss the assumption that the tidal disruption of a relatively massive companion is observed in the case of UGC 7388. A detailed study and modeling of the observed structure of this unique galaxy can give important information about the influence of the absorption of massive companions on the galactic disks and about the structure of the dark halo around UGC 7388.  相似文献   

12.
Based on archived images obtained with the Hubble Space Telescope, stellar photometry for 105 irregular galaxies has been conducted. We have shown the red supergiant and giant branches in the obtained Hertzsprung-Russel diagrams. Using the TRGB method, distances to galaxies and metallicity of red giants have been determined. The color index (V ? I) of the supergiant branch at the luminosity level MI = ?7 was chosen as the metallicity index of red supergiants. For the galaxies under study, the diagrams have been built, in which the correlation can be seen between the luminosity of galaxies (MB) and metallicity of red giants and supergiants. The main source of variance of the results in the obtained diagrams is, in our opinion, uncertainty inmeasurements of galaxy luminosities and star-forming outburst. The relation between metallicity of young and old stars shows that main enrichment of galaxies with metals has taken place in the remote past. Deviations of some galaxies in the obtained relation can possibly be explained with the fall of the intergalactic gas on them, although, this inconsiderably affects metallicities of the stellar content.  相似文献   

13.
Three three-component (bulge, disk, halo) model Galactic gravitational potentials differing by the expression for the dark matter halo are considered. The central (bulge) and disk components are described by the Miyamoto–Nagai expressions. The Allen–Santillán (I), Wilkinson–Evans (II), and Navarro–Frenk–White (III) models are used to describe the halo. A set of present-day observational data in the range of Galactocentric distances R from 0 to 200 kpc is used to refine the parameters of thesemodels. For the Allen–Santillán model, a dimensionless coefficient γ has been included as a sought-for parameter for the first time. In the traditional and modified versions, γ = 2.0 and 6.3, respectively. Both versions are considered in this paper. The model rotation curves have been fitted to the observed velocities by taking into account the constraints on the local matter density ρ = 0.1 M pc?3 and the force K z =1.1/2πG = 77 M pc?2 acting perpendicularly to the Galactic plane. The Galactic mass within a sphere of radius 50 kpc, M G (R ≤ 50 kpc) ≈ (0.41 ± 0.12) × 1012 M , is shown to satisfy all three models. The differences between the models become increasingly significant with increasing radius R. In model I, the Galactic mass within a sphere of radius 200 kpc at γ = 2.0 turns out to be greatest among the models considered, M G (R ≤ 200 kpc) = (1.45 ±0.30)× 1012 M , M G (R ≤ 200 kpc) = (1.29± 0.14)× 1012 M at γ = 6.3, and the smallest value has been found in model II, M G (R ≤ 200 kpc) = (0.61 ± 0.12) × 1012 M . In our view, model III is the best one among those considered, because it ensures the smallest residual between the data and the constructed model rotation curve provided that the constraints on the local parameters hold with a high accuracy. Here, the Galactic mass is M G (R ≤ 200 kpc) = (0.75 ± 0.19) × 1012 M . A comparative analysis with the models by Irrgang et al. (2013), including those using the integration of orbits for the two globular clusters NGC 104 and NGC 1851 as an example, has been performed. The third model is shown to have subjected to a significant improvement.  相似文献   

14.
Based on observations of SN 1999em, we determined the physical parameters of this supernova using hydrodynamic calculations including nonequilibrium radiative transfer. Taking the distance to SN 1999em estimated by the expanding photosphere method (EPM) to be D = 7.5 Mpc, we found the parameters of the presupernova: radius R = 450R, mass M = 15M, and explosion energy E = 7 × 1050 erg. For the distance D = 12 Mpc determined from Cepheids, R, M, and E must be increased to the following values: R = 1000R, M = 18M, and E = 1051 erg. We show that one cannot restrict oneself to using the simple analytical formulas relating the supernova and presupernova parameters to obtain reliable parameters for type-IIP presupernovae.  相似文献   

15.
The stellar population of the blue compact dwarf galaxy SBS 1415+437 is investigated using the archive database of the Hubble space telescope. The color index-magnitude diagram for stars reaches a magnitude of 29 m in the V and I bands. It comprises young main-sequence stars, blue and red supergiants, and the old population of red giant branch and asymptotic giant branch. The tip of the red giant branch αTRGB) was used to calculate the distance modulus, which turned out to be m ? M = 30.65 ± 0.08 m . The corresponding distance to the galaxy is D = 13.5 ± 1.0 Mpc. The youngest stars are distributed irregularly near the bright H II region in the southwest part of SBS 1415+437. The old population occupies a larger area, it is distributed more evenly and forms the galactic halo. The spatial distribution of young stars shows that the star formation in the galaxy spread in the direction from northeast to southwest over the last 5 × 107 yr with an average rate of 60 km/s. The TRGB of SBS 1415+437 was found to be appreciably shifted to the blue range: (V ? I) TRGB ≈ 1.30. The galaxy age turns out to be not smaller than the age of Galactic globular clusters (about 1010 yr), provided that the galaxy originally had a very low metallicity (our photometric estimate is [Fe/H] = ?2.4). If the metallicity of SBS 1415+437 changed almost not at all in the course of evolution and was equal to [Fe/H] = ?1.3 (as estimated from the emission lines of ionized gas), the galaxy age is no more than 2 × 109 yr.  相似文献   

16.
We report the results of a statistical analysis of the space distribution of galaxies of the 2MRS catalog, which contains redshifts of 43533 galaxies of the 2MASS all-sky IR survey. Because of the unique features of the 2MRS survey, such as its 90% sky coverage, galaxy selection in the IR, the complete incorporation of the old stellar population of galaxies, weakness of the dust extinction effects, and the smallness of the k- and e-corrections allowed us to determine the statistical properties of the global distribution of galaxies in the Local Universe. We took into account the main methodological factors that distort the theoretically expected relations compared to those actually observed. We construct the radial galaxy number counts N(R), SL(R, r) statistics, and the complete correlation function (conditional density) Γ(r) for volume-limited (VL) galaxy samples. The observed conditional density Γ(r) in the redshift space is independent of the luminosity of galaxies and has the form of a power-law function with exponent γ ≈ 1.0 over a large range scale-length spanning from 0.1 to 100 Mpc. We compare the statistical properties of the space distribution of galaxies of the 2MRS catalog with the corresponding properties of simulated catalogs: stochastic fractal distributions and galaxies of the Millennium catalog.  相似文献   

17.
We present our Hα observations of 11 isolated southern galaxies: SDIG, PGC 51659, E 222-010, E 272-025, E 137-018, IC 4662, Sag DIG, IC 5052, IC 5152, UGCA 438, and E 149-003, with distances from 1 to 7 Mpc. We have determined the total Hα fluxes from these galaxies. The star formation rates in these galaxies range from 10?1 (IC 4662) to 10?4 M yr?1 (SDIG) and the gas depletion time at the observed star formation rates lies within the range from 1/6 to 24 Hubble times H 0 ?1 .  相似文献   

18.
We present some results of the photometric analysis of the stellar population of the irregular dwarf galaxy KK 230 on the basis of the archive database of the Hubble space telescope. The color index-magnitude diagram for KK 230 gets to magnitude 27 m in the V and I bands, and it comprises stellar populations of various ages. The age of the youngest main-sequence stars is 3.2 × 107 yr. These stars are distributed along the north-south direction in the picture plane, and this fact can be linked to the observed kinematics of the neutral gas in the galaxy. Older blue and red supergiants are no less than 1.6 × 108 years old, and such an age implies that the star formation was episodic over the last several hundreds of millions of years. As judged from the position of the tip of the red giant branch, the distance modulus for KK 230 is m ? M = 26.5 m . The corresponding distance is D = 2 Mpc. Based on the average absolute magnitude M I,RC and color index (V ? I)I,RC of the red clump, we conclude that the majority of KK 230 stars have an age of no more than (2–3) × 109 yr, their metallicity being Z ≈ 0.0004.  相似文献   

19.
We analyze the structure of the cluster of galaxies Abell 1775 (α = 13 h 42 m , δ = +26°22′, cz ≈ 21000 km/s), which exhibits a bimodal distribution of radial velocities of the containing galaxies. The difference of the subcluster radial velocities is ΔV ≈ 2900 km/s. We use the results of our photometric observations made with the 1-m telescope of the Special Astrophysical Observatory of the Russian Academy of Sciences and the spectroscopic and photometric data from the SDSS DR6 catalog to determine independent distances to the subclusters via three different methods: the Kormendy relation, photometric plane, and fundamental plane. We find that the A1775 cluster consists of two independent clusters, A1775A (cz = 19664 km/s) and A1775B (cz = 22576 km/s), each located at its own Hubble distance and having small peculiar velocities. Given the velocity dispersions of 324 km/s and 581 km/s and the dynamic masses within the R 200 radius equal to 0.6 × 1014 and 3.3 × 1014 M , the A1775A and A1775B clusters have the K-band luminosity-to-mass ratios of 29 and 61, respectively. A radio galaxy with an extended tail belongs to the A1775B cluster.  相似文献   

20.
We present stellar photometry of two HST/WFPC2 fields situated at the far periphery of the poststarburst galaxy NGC 1569. Their F606W and F814W images have been taken from the HST data archive. Judging by the obtained color-magnitude diagrams, we suggest presence of the old disk population (old red giants) of NGC 1569, which extends as far as Field I at 6 kpc from the galaxy center. We use the tip of the red giant branch to estimate the galaxy distance. There are two possible solutions, one leading to a short distance, D = 1.95 ± 0.2 Mpc, and the other one to a longer distance, D = 2.8 ± 0.2 Mpc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号