首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
We report the results of position, photometric, and polarimetric observations of two near-Earth asteroids made with the 6-m telescope of the Special Astrophysical Observatory of the Russian Academy of Sciences. 1.2-hour measurements of the photometric variations of the asteroid 2009 DL46 made onMarch 8, 2016 (approximately 20m at a distance of about 0.23 AU from the Earth) showed a 0.m2-amplitude flash with a duration of about 20 minutes. During this time the polarization degree increased from the average level of 2–3% to 14%. The angle of the polarization plane and the phase angle were equal to 113° ± 1° and 43°, respectively. Our result indicates that the surface of the rotating asteroid (the rotation period of about 2.5 hours) must be non-uniformly rough. Observations of another asteroid—1994 UG—whose brightness was of about 17m and which was located at a geocentric distance of 0.077 AU, were carried out during the night of March 6/7, 2016 in two modes: photometric and spectropolarimetric. According to the results of photometric observations in Johnson’s B-, V-, and R-band filters, over one hour the brightness of the asteroid remained unchanged within the measurement errors (about 0.m02). Spectropolarimetric observations in the 420–800 nm wavelength interval showed the polarization degree to decrease from 8% in the blue part of the spectrum to 2% in the red part with the phase angle equal to 44?, which is typical for S-type near-Earth asteroids.  相似文献   

2.
中国地球自转和地壳运动监测的研究工作   总被引:4,自引:0,他引:4  
主要介绍了1995年至1998年期间有关中国地球自转和地壳运动监测的研究工作及取 得的进展。  相似文献   

3.
The light curves of the periodic comet 9P/Tempel 1 obtained during its apparitions in 1972, 1983, 1994, and 2005 have been constructed and studied. The values of the photometric parameters H 0, n, and H 10 have been determined for these apparitions; and secular variations of the comet’s brightness have been studied. The light curve of the comet obtained close to the moment of the artificial impact agrees well with the change in the production rate of water molecules. The presented results are important from the point of the possible change in the photometric parameters induced by the artificial impact and the long-term evolution of the cometary core activity.  相似文献   

4.
To identify temporal variations of the characteristics of Jupiter’s cloud layer, we take into account the geometric modulation caused by the rotation of the planet and planetary orbital motion. Inclination of the rotation axis to the orbital plane of Jupiter is 3.13°, and the angle between the magnetic axis and the rotation axis is β ≈ 10°. Therefore, over a Jovian year, the jovicentric magnetic declination of the Earth φ m varies from–13.13° to +13.13°, and the subsolar point on Jupiter’s magnetosphere is shifted by 26.26° per orbital period. In this connection, variations of the Earth’s jovimagnetic latitude on Jupiter will have a prevailing influence in the solar-driven changes of reflective properties of the cloud cover and overcloud haze on Jupiter. Because of the orbit eccentricity (e = 0.048450), the northern hemisphere receives 21% greater solar energy inflow to the atmosphere, because Jupiter is at perihelion near the time of the summer solstice. The results of our studies have shown that the brightness ratio A j of northern to southern tropical and temperate regions is an evident factor of photometric activity of Jupiter’s atmospheric processes. The analysis of observational data for the period from 1962 to 2015 reveals the existence of cyclic variations of the activity factor A j of the planetary hemispheres with a period of 11.86 years, which allows us to talk about the seasonal rearrangement of Jupiter’s atmosphere.  相似文献   

5.
The first scientific results of the analysis of the X-ray spectra of flares and active regions in the solar corona obtained by Polish-led spectrometers RESIK and DIOGENESS onboard the CORONAS-F satellite are presented. The instruments were designed and made in the Solar Physics Division of the Space Research Center of the Polish Academy of Sciences (SRC PAS, Wroclaw, Poland). The Institute of Terrestrial Magnetism, Ionosphere, and Radio Wave Propagation (IZMIRAN, Russia) and the Astronomical Institute of the Czech Academy of Sciences also participated in designing the DIOGENESS spectrometer, while IZMIRAN (Russia), Mullard Space Science Laboratory (MSSL, Great Britain), Rutherford Appleton Laboratory (RAL, Great Britain), and Naval Research Laboratory (NRL, United States) contributed to the development of the RESIK spectrometer. In the paper, we give spectra obtained in a number of previously unstudied spectral ranges and a preliminary identification of new spectral lines. The results for the shifts of the X-ray spectral lines observed with the use of a so-called dopplerometer configuration are also presented. Methods for determining the abundances of the rare elements in the solar corona, including chlorine, potassium, and argon, are described.  相似文献   

6.
On March 6 and 9, 1986, for the first time in the history of science, the Russian spacecraft Vega-1 and -2 approached the nucleus of comet 1P/Halley and flew by at a small distance. A while later, on March 14, 1986, the Giotto spacecraft (European Space Agency (ESA)) followed them. Together with the Japanese spacecraft Suisei (Japan Aerospace Exploration Agency (JAXA)), they obtained spaceborne investigations of cometary nuclei. Direct studies of cometary bodies that bear traces of the Solar System formation were continued in the next missions to comets. Starting from 2014 and up to 2016 September, the Rosetta spacecraft (ESA), being in a low orbit around the nucleus of comet 67P/Churyumov–Gerasimenko, has performed extremely sophisticated investigations of this comet. Here, we compare some results of these missions. The paper is based on the reports presented at the memorial conference dedicated to the 30th anniversary of the Vega mission, which took place at the Space Research Institute of the Russian Academy of Sciences in March, 2016, and does not pretend to comprehensively cover the problems of cometary physics.  相似文献   

7.
We present the results of the reduction of our photometric and spectroscopic observations for the eclipsing binary SZ Cam performed with the telescopes at the Astronomical Observatory of the Ural Federal University and the Special Astrophysical Observatory of the Russian Academy of Sciences in 1996–2014. Based on an 11-year-long photometric monitoring of SZ Cam, we have obtained new elements of its photometric orbit and parameters of its components. We have detected low-amplitude periodic light variations in SZ Cam that are possibly related to the ellipsoidal shape of the components of the spectroscopic binary third body. Based on published data and our new spectroscopy, we have found new values for the mass ratio, q = 0.72 ± 0.01, and parameters of the radial velocity curves of the components, V 0 = ?3.6 ± 1.7 km s?1, K 1 = 190.2 ± 1.9 km s?1, and K 2 = 263.0 ± 2.4 km s?1. The component masses have been estimated to be M 1 = 16.1 M and M 2 = 11.6 M . We have obtained new light elements and parameters of the radial velocity curves for the third body, V 0 3b = 4.2 ± 0.6 km s?1 and K 1 3b = 26.6 ± 0.8 km s?1. We have improved the period of the relative orbit of SZ Cam and the third body, P orb = 55.6 ± 1.5 yr.  相似文献   

8.
The observation light curves of the main belt asteroid (469) Argentina, obtained on March 9–11 2002 and August 10–11 2004, are presented in this paper. The complex light curve of the (469) suggests that it may be in NPA rotation. Using the Fourier analysis method, some prominent spectrum values are derived individually for two subset data. Among these period values, periods of 13.00 and 8.74 h are regarded as basic components. Other derived period values can be combined linearly with these two basic period values. If the (469) is in a free-force precession mode, the motion mode will be LAM (largest-axis mode) according the ratio of precession and rotation periods. And the minimum of I 1/I 3 (ratio of the largest and smallest principal momentum of inertial) is 3.05. Assuming an external torque releasing by a satellite forces the (469) to precess, the mass of satellite roughly is the same order as the primary’s on condition that the precession and rotation periods are two basic values. At present, we cannot draw an unambiguous conclusion on (469)’s motion for sparse data, So the further observations are necessary for understanding the (469)’s tumbling motion farther.  相似文献   

9.
We present the results of multicolor (UBV JHKLM) photometry (2009–2017) and low-resolution spectroscopy (2016–2017) of the semi-regular variable V1427 Aql = HD 179821, a yellow supergiant with gas-dust envelope. The star displays low-amplitude (ΔV<0 . m 2) semi-periodic brightness variations superimposed on a long-term trend. The light curve shape and timescale change from cycle to cycle. There are temperature variations characteristic for pulsations; brightness oscillations with no significant change of color are also observed. The UBV data for the 2009–2011 interval are well reproduced by a superposition of two periodic components with P = 170d and 141d (or P = 217d—the one year alias of P = 141d). The variation became less regular after 2011, the timescale increased and exceeded 250d. Unusual photometric behavior was seen in 2015 when the star brightness increased by 0 . m 25 in the V filter in 130 days and reached the maximum value ever observed in the course of our monitoring since 1990. In 2009–2016 the annual average brightness monotonically increased in V, J, K, whereas it decreased in U and B. The annual average U ? B, B ? V, and J ? K colors grew, the star was getting redder. The cooling and expanding of the star photosphere along with the increasing of luminosity may explain the long-term trend in brightness and colors. Based on our photometric data we suppose that the photosphere temperature decreased by ~400 K in the 2008–2016 interval, the radius increased by ~24%, and the luminosity grew by ~19%. We review the change of annual average photometric data for almost 30 years of observations. Low-resolution spectra in the λ4000?9000 Å wavelength range obtained in 2016–2017 indicate significant changes in the spectrum of V1427 Aql as compared with the 1994–2008 interval, i.e., the Ba II and near-infraredCa II triplet absorptions have gotten stronger while the OI λ7771-4 triplet blend has weakened that points out the decrease of temperature in the region where the absorptions are formed. The evolutionary stage of the star is discussed. We also compare V1427 Aql with post-AGB stars and yellow hypergiants.  相似文献   

10.
We present an analysis of new photometric and spectropolarimetric observations of a chromospherically active star FKCom. Based on this observational data and the data from the literature sources, applying a common technique, we performed an analysis of a complete set of the available photometric data, which were divided into 218 individual light curves. For each of them a reverse problem of restoring largescale temperature irregularities on the surface of the star from its light curve was solved. We analyzed the time series for the brightness of the star in the U-, B-, and V-bands, the brightness variability amplitudes, the total area of the spots on the surface of the star, and the average brightness of each set considered. The analysis of determination results of the positions of active longitudes leads to the conclusion about the existence of two systems of active regions on the FKCom surface. It was determined that the positions of each of these systems undergo cyclic changes. This confirms the conclusion on the likely absence of a strongly pronounced regularity of the flip-flops in FKCom, earlier suggested by other researchers. The results of the new polarimetric observations FKCom in 2014–2015 are presented. These measurements evidence the legitimacy of the proposed interpretation the behavior of the longitudinal magnetic field strength 〈Bz〉, indicating the settling-in of a more symmetric distribution of magnetic region on the FKCom surface. An increasing activity of the star over the recent years, registered from the photometric observations is also consistent with the probable onset of growth in the 〈Bz〉 parameter starting from 2014.  相似文献   

11.
Light curves of six comets, C/1999 S4 (LINEAR), C/2001 Q4 (NEAT), C/2002 T7 (LINEAR), C/2002 V1 (NEAT), C/2004 Q2 (Machholz), and 153P/2002 C1 (Ikeya-Zhang), were built and investigated. The photometric parameters H 0, H 10, and n were calculated for these comets, and they were found to change both before and after perihelion. The shift of light curve peak with respect to perihelion passage moment was determined for each comet. Our white-light curves are compared to the results of polarimetric and electrophotometric observations of the comets C/2002 T7 (LINEAR) and C/2004 Q2 (Machholz).  相似文献   

12.
We used the mirror-cone model to derive formulas and construct an algorithm for determining the pole position and the siderial period of the rotation of an artificial Earth satellite about its center of inertia. The apex angle of cone and the precession angle are determined as well. An algorithm is also constructed for calculating a model mirror flash series at fixed satellite rotation parameters.  相似文献   

13.
Results of astrometric and BVRI photometric observations of the active asteroid (596) Scheila are presented. The observations were carried out at the Zeiss-1000 telescope of the Sanglokh International Astronomical Observatory of the Institute of Astrophysics of the Academy of Sciences of the Republic of Tajikistan on June 16?17 and from July 30 to August 1, 2017. The coordinates of the object and its orbit were determined; and the apparent brightness in four filters, the absolute brightness in the V and R filters, and the color indices were obtained. The light curves suggest that no substantial changes in the asteroid’s brightness occurred during the observations. The absolute brightness of the asteroid in the V and R filters was (9.1 ± 0.05)m and (8.8 ± 0.03)m, respectively. The mean value of the asteroid diameter was (119 ± 2) km. The mean values of the color indices (B?V = (0.72 ± 0.05)m, V?R = (0.29 ± 0.03)m, and R?I = (0.31 ± 0.03)m) agree well with the values for asteroids of the P- and D-types and its averages. The rotation period of the asteroid estimated from photometric observations was 16.1 ± 0.2 h. The analysis of the data has shown that the asteroid continues to exhibit the same values of absolute brightness and other characteristics as those before the collision with a small body in December 2010, though the latter resulted in the outburst event and cometary activity of the asteroid. Most likely, the collision of asteroid (596) Scheila with a small body did not lead to catastrophic changes in the surface of the asteroid or to its compete break-up.  相似文献   

14.
Nereid is a small irregular moon of Neptune that displays large-, moderate-, and small-amplitude photometric variations on both fast and slow time scales. The central mystery of Nereid is now to explain the physical mechanism of these unique brightness changes and why they change with time. To characterize Nereid's variability, we have been using the SMARTS telescopes on Cerro Tololo for synoptic monitoring from 1999 to 2006. We present a well-sampled photometric time series of 493 magnitudes on 246 nights mostly in the V-band. In combination with our earlier data (for 774 magnitudes over 362 nights), our 20-year data set is the most comprehensive for any small icy body in our Solar System. Our yearly light curves show that Nereid displays various types of behaviors: large amplitude brightenings and fadings (1987 to 1990); moderate-amplitude variation about the average phase curve (1993-1997, 2003, 2005), moderate-amplitude variation and systematically brighter by roughly one-quarter magnitude throughout the entire season (2004); and nearly constant light curves superimposed on a surprisingly large-amplitude opposition surge (1998, 1999, 2000, 2006). Other than in 2004, Nereid's variations were closely centered around a constant phase curve that is well fit with a Hapke model for the coherent backscattering opposition surge mechanism with angular scale of 0.7°±0.1°. In our entire data set from 1987-2006, we find no significant periodicity. We propose that the year-to-year changes in the variability of Nereid are caused by forced precession (caused by tidal forces from Neptune) on the spin axis of a nonspherical Nereid, such that cross-sectional areas and average albedos change as viewed from Earth.  相似文献   

15.
We present six \(\mbox{V}R_{c}I_{c}\) light curves of UX CrB from observations carried out from 2011–2015. We also obtained three optical spectra using the 2.16-m optical telescope and LAMOST survey at the national astronomical observatories. We classified its spectral type as \(\mbox{G2}\pm\mbox{2V}\). We noticed that there are strong absorptions in the Hα, Hβ, Ca ii H&K and infrared triplet lines in the observed spectra. By subtracting away the photospheric contribution, we also noticed that there are small excess emissions in these chromospheric active lines, which indicate there are weak chromospheric activities. We tried and obtained four photometric solutions with different spot positions from our full and high time-resolution light curves in 2012, using the updated Wilson-Devinney code. The model with two spots on the primary produced the best result for explaining the observed light curves from 2012. Moreover, we explained all other light curves based on our photometric solution using our 2012 light curves. There are two active longitudes at about 68° and 255°. We noticed that the starspots have both long-time (years) and short-time (about two months) variation by analyzing the light curves and its starspot parameters. There is also an obvious oscillation of light curve maximum between 0.25 and 0.75 phases by analyzing the values of \(\mbox{Max.~I} - \mbox{Max.~II}\). We conclude UX CrB are the evolved main-sequence stars with strong photometric and chromospheric activities.  相似文献   

16.
We present the results of our photometric UBV JHKL observations for the symbiotic star V1413 Aql obtained in 2012–2018. An analysis of the data has shown that inMay 2017 the system passed to a quiescent state with B ? V ≈ 0? 6 for the first time since 1993. It lasted no more than five months. The J ? K color at the primary minimum of 2012 reached 1? 5, which, given the interstellar reddening, corresponds to spectral type M5-M6 III of the cool component. A secondary minimum has been detected at φ ≈ 0.5 on the JK phase light curves constructed for the dates of observations with B ≥ 13.  相似文献   

17.
Observations of the Earth’s exosphere have unveiled an extended envelope of hydrogen reaching further than 10 Earth radii composed of atoms orbiting around the Earth. This large envelope increases significantly the opacity of the Earth to Lyman α (Lyα) photons coming from the Sun, to the point of making feasible the detection of the Earth’s transit signature from 1.35 pc if pointing with an 8 meter primary mirror space telescope through a clean line of sight (N H <?1017 cm??2), as we show. In this work, we evaluate the potential detectability of Earth analogs orbiting around nearby M-type stars by monitoring the variability of the Lyα flux variability. We show that, in spite of the interstellar, heliospheric and astrospheric absorption, the transit signature in M5 V type stars would be detectable with a dedicated Lyα flux monitor implemented in a 4–8 m class space telescope. Such monitoring programs would enable measuring the robustness of planetary atmospheres under heavy space weather conditions like those produced by M-type stars. A 2-m class telescope, such as the World Space Observatory, would suffice to detect an Earth-like planet orbiting around Proxima Centauri, if there was such a planet or nearby M5 type stars.  相似文献   

18.
Cepheids, the principal distance indicators, point to the existence of two inner Galactic spiral arms in the immediate solar neighborhood (within 5 kpc). However, the available Cepheids are clearly insufficient for a detailed study of the structure of these arms. Fortunately, southern-sky monitoring (the ASAS project) has led to the discovery of many new variable stars, more than one thousand of which have been identified as possible Cepheids. To improve the classification and to construct reliable light curves for new Cepheids, we have begun their regular photometric observations. Here, we present the first results: 1192 photoelectricBV I c observations were performed for 33 classical Cepheidswith the 76-cm telescope of the South-African Astronomical Observatory (SAAO, the South-African Republic) from December 2006 to January 2008. We provide tables of observations and V light and B-V and V-I c color curves. The new observations together with ASAS-3 data have been used to improve the elements of the light variations.  相似文献   

19.
We have studied the fine structure of the active H2O supermaser emission region in Orion KL with an angular resolution of 0.1 mas. We found central features suggestive of a bipolar outflow, bullets, and an envelope which correspond to the earliest stage of low-mass star formation. The ejector is a bright compact source ≤0.05 AU in size with a brightness temperature T b ?1017 K. The highly collimated bipolar outflow ~30 has a velocity v ej ?10 km s?1, a rotation period of ~0.5 yr, a precession period of ~10 yr, and a precession angle of ~33°. Precession gives rise to a jet in the shape of a conical helix. The envelope amplifies the radio emission from the components by about three orders of magnitude at a velocity v=7.65 km s?1.  相似文献   

20.
We perform a kinematic analysis of the Hipparcos and TRC proper motions of stars by using a linear Ogorodnikov-Milne model. All of the distant (r>0.2 kpc) stars of the Hipparcos catalog have been found to rotate around the Galactic y axis with an angular velocity of M 13 ? =?0.36±0.09 mas yr?1. One of the causes of this rotation may be an uncertainty in the lunisolar precession constant adopted when constructing the ICRS. In this case, the correction to the IAU (1976) lunisolar precession constant in longitude is shown to be Δp1=?3.26±0.10 mas yr?1. Based on the TRC catalog, we have determined the mean Oort constants: A=14.9±1.0 and B=?10.8±0.3 km s?1 kpc?1. The component of the model that describes the rotation of all TRC stars around the Galactic y axis is nonzero for all magnitudes, M 13 ? =?0.86±0.11 mas yr?1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号