首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
We analyzed the chemical composition of the chemically peculiar (CP) star HD 0221=43 Cas using spectra taken with the NES spectrograph of the 6-m telescope with a spectral resolution of 45 000. The Hβ line profile corresponds most closely to Teff = 11 900 K and log g = 3.9. The rotational velocity is ve sin i = 27 ± 2 km s?1, and the microturbulence is ξt = 1 km s?1. The results of our abundance determination by the method of synthetic spectra show that the star has chemical anomalies typical of SrCrEu stars, although its effective magnetic field is weak, Be < 100 G. For silicon, we obtained an abundance distribution in atmospheric depth with a sharp jump of 1.5 dex at an optical depth of log τ5000 = ?0.3 and with silicon concentration in deep atmospheric layers. Similar distributions were found in the atmospheres of cooler stars with strong and weak magnetic fields. A comparison of the chemical peculiarities in HD 10221 with known CP stars with magnetic fields of various strengths leads us to conclude that a low rotational velocity rather than amagnetic field is the determining factor in the formation mechanism of chemical anomalies in the atmospheres of CP stars.  相似文献   

2.
We present the results of magnetic field measurements of four chemically peculiar (CP) stars with helium abundance anomalies which are the members of the Orion stellar association OB1. The stars under study were classified as magnetic by other authors earlier. The present paper contains the results of the extensive study of the stars. Magnetic field measurements allowed us to conclude that HD36540 has a weak field and the longitudinal component B e does not exceed 500 G. The longitudinal field of HD36668 varies with the period P = 2. d 11884 and the amplitude from ?2 to +2 kG. The magnetic field of HD36916 has mainly negative polarity and varies within the range from 0 to ?1 kG with the period P = 1.d 565238. HD37058 is a magnetic star, the longitudinal field of which varies from ?1.2 to +0.8 kG with the period P = 14. d 659. The B e field variability pattern for the stars HD36916 and HD37058 is of a simple harmonic type. The longitudinal field of HD36668 is best described with two combined harmonic functions (“a doublewave”). The variability period of HD36540 is still undetermined. For all the stars from this paper, we measured radial velocities V r, axial rotation rates v e sin i, and determined basic parameters of atmospheres (effective temperatures T eff and gravity acceleration log g). We also estimated masses M, luminosities L, and radii R of the stars.  相似文献   

3.
Based on observations with the 6-m SAO RAS telescope, we have found that chemically peculiar star with a large depression of the continuum at λ5200 Å and strengthened silicon lines in the spectrum has a strong magnetic field. The longitudinal field component Be has a negative polarity and varies from ?300 G to ?2000 G with a period of 1.756 days. Photometric variations of brightness take place with the same period. We determined the variability of the radial velocity at times of about tens of years pointing to a possible binarity of the object. We have built a magnetic model of this star, determined the inclination angles of the rotation axis to the line of sight i = 20° and of the dipole axis to the rotation axis β = 116°, and the field strength at the pole is Bp = 10 kG. We carried out a chemical composition analysis and found a lack of helium for almost an order of magnitude, some overabundance of silicon and metal elements for more than an order of magnitude, particularly, cobalt for three orders of magnitude.  相似文献   

4.
The paper presents results of measurements of magnetic-field longitudinal components B e , radial velocities V r , and projections of the rotation velocity in the line of sight v e sin i for 74 objects, mainly main-sequence chemically peculiar stars and standard stars. Observations were carried out in 2011 at the 6-m BTA telescope using the Main Stellar Spectrograph (MSS) with a Zeeman analyzer. Seven new magnetic stars were discovered: HD38129, HD47152, HD50341, HD63347, HD188501, HD191287, and HD260858. Three more stars were suspected to have magnetic fields. Observations of magnetic standard stars and non-magnetic stars confirm the absence of any systematic errors capable of introducing distortions into the B e longitudinal-field measurement results. The paper gives comments on the research results for each of the 74 stars.  相似文献   

5.
We present the results of multicolor (UBV JHKLM) photometry (2009–2017) and low-resolution spectroscopy (2016–2017) of the semi-regular variable V1427 Aql = HD 179821, a yellow supergiant with gas-dust envelope. The star displays low-amplitude (ΔV<0 . m 2) semi-periodic brightness variations superimposed on a long-term trend. The light curve shape and timescale change from cycle to cycle. There are temperature variations characteristic for pulsations; brightness oscillations with no significant change of color are also observed. The UBV data for the 2009–2011 interval are well reproduced by a superposition of two periodic components with P = 170d and 141d (or P = 217d—the one year alias of P = 141d). The variation became less regular after 2011, the timescale increased and exceeded 250d. Unusual photometric behavior was seen in 2015 when the star brightness increased by 0 . m 25 in the V filter in 130 days and reached the maximum value ever observed in the course of our monitoring since 1990. In 2009–2016 the annual average brightness monotonically increased in V, J, K, whereas it decreased in U and B. The annual average U ? B, B ? V, and J ? K colors grew, the star was getting redder. The cooling and expanding of the star photosphere along with the increasing of luminosity may explain the long-term trend in brightness and colors. Based on our photometric data we suppose that the photosphere temperature decreased by ~400 K in the 2008–2016 interval, the radius increased by ~24%, and the luminosity grew by ~19%. We review the change of annual average photometric data for almost 30 years of observations. Low-resolution spectra in the λ4000?9000 Å wavelength range obtained in 2016–2017 indicate significant changes in the spectrum of V1427 Aql as compared with the 1994–2008 interval, i.e., the Ba II and near-infraredCa II triplet absorptions have gotten stronger while the OI λ7771-4 triplet blend has weakened that points out the decrease of temperature in the region where the absorptions are formed. The evolutionary stage of the star is discussed. We also compare V1427 Aql with post-AGB stars and yellow hypergiants.  相似文献   

6.
Observations with the 6-m telescope revealed eight new magnetic, chemically peculiar stars: HD 29925, HD 40711, HD 115606, HD 168796, HD 178892, HD 196691, HD 209051, and BD+32°2827. Zeeman observations of all these objects have been carried out for the first time. We selected candidates by analyzing the depression profile at a wavelength of λ5200 Å. This technique for selecting candidate magnetic stars was shown to be efficient: we found magnetic fields in 14 of the 15 objects that we selected for our observations with a Zeeman analyzer. A maximum longitudinal field strength B e exceeding 8 kG was found in HD 178892; in HD 209051 and HD196691, B e reaches 3.3 and 2.2 kG, respectively. For the remaining stars, we obtained lower limits of the longitudinal field (more than several hundred G).  相似文献   

7.
In this paper of the series we analyze three stars listed among stars with discrepant v sin i: HD9531 and HD31592, which also show radial velocity variations inherent to spectroscopic binaries, and HD129174 which is an Mn-type star with a possible magnetic field. In HD9531 we confirm the radial velocity derived fromthe hydrogen lines as well as fromthe Ca II line at 3933 Å as variable. The profile of the calcium line also appears variable, and with the estimated magnetic induction Be = ?630 ± 1340 G, this suggests that the abundance of calcium possibly varies over the surface of the star. We identified the lines of the secondary component in the spectrum of HD31592 revealing thus it is an SB2 binary with B9.5V and A0V components. While the primary star rotates with v sin i = 50 km s?1, the secondary star is faster with v sin i = 170 km s?1. We find that only 60% of the Mn lines identified in the spectrum of HD129174 can be fitted with a unique abundance value, whereas the remaining lines are stronger or fainter. We also identified two Xe II lines at 5339.33 Å and 5419.15 Å and estimated their log g f.  相似文献   

8.
We present the results of measuring longitudinal magnetic fields (Be), rotation velocities (ve sin i), and radial velocities (Vr) of 44 stars observed with the Main Stellar Spectrograph (MSS) of the 6-m BTA telescope of the Special Astrophysical Observatory in 2009. For the first time, magnetic fields were detected for the stars HD5441, HD199180, HD225627, and BD+00° 4535. We show that for the same stars, the longitudinal fields Be measured from the Hβ hydrogen line core and from metal lines can differ by 10% and up to a factor of 2–3. Except in rare cases, magnetic fields measured from the metal lines are stronger. We believe that this phenomenon is of a physical nature and depends on the magnetic field topology and the physical conditions inside a specific star. Observations of standard stars without magnetic fields confirm the absence of systematic errors capable of introducing distortions into the longitudinal-field measurement results. In this work we comment on the results for each of the stars.  相似文献   

9.
We present the results of our UBV and JHKLM photometry for the semiregular pulsating variable V1027 Cyg, a supergiant with an infrared excess, over the period from 1997 to 2015 (UBV) and in 2009–2015 (JHKLM). Together with the new data, we analyze the photometric observations of V1027 Cyg that we have obtained and published previously. Our search for a periodicity in the UBV brightness variations has led to several periods from P = 212d to 320d in different time intervals. We have found the period P = 237d based on our infrared photometry. The variability amplitude, the lightcurve shape, and themagnitude of V1027 Cyg atmaximum light change noticeably from cycle to cycle. The deepest minimum was observed in 2011, when the amplitudes of brightness variations in the star reached the following values: ΔU = 1 . m 28, ΔB = 1 . m 10, ΔV = 1 . m 05, ΔJ = 0 . m 30, ΔH = 0 . m 35, ΔK = 0 . m 32, ΔL = 0 . m 26, and ΔM = 0 . m 10. An ambiguous correlation of the B ? V and U ? B colors with the brightness has been revealed. For example, a noticeable bluing of the star was observed during the deep 1992, 2008, and 2011 minima, while the variations with smaller amplitudes show an increase in B ? V at the photometric minima. The spectral energy distribution for V1027 Cyg from our photometry in the range 0.36 (U)–5.0 (M) μm corresponds to spectral types from G8I to K3I at different phases of the pulsation cycle. Low-resolution spectra of V1027 Cyg in the range λ4400–9200 ?A were taken during 16 nights over the period 1995–2015. At the 1995 and 2011 photometric minima the star’s spectrum exhibited molecular TiO bands whose intensity corresponded to spectral types M0–M1, while the photometric data point to a considerably earlier spectral type. We hypothesize that the TiO bands are formed in the upper layers of the extended stellar atmosphere. We have measured the equivalent widths of the strongest absorption lines, in particular, the infrared Ca II triplet in the spectrum of V1027 Cyg. The calcium triplet (Ca T) with W λ(Ca T) = 20.3 ± 1.8 ?A as a luminosity indicator for supergiants places V1027 Cyg in the region of the brightest G–K supergiants. V1027 Cyg has been identified with the infrared source IRAS 20004+2955 and is currently believed to be a candidate for post-AGB stars. The evolutionary status of the star and its difference from other post-AGB objects are discussed.  相似文献   

10.
The possibility of investigating the vertical structure of the magnetic field in chemically peculiar main-sequence stars is discussed. The nonuniform distribution of chemical elements over the surface complicates the problem substantially. The most efficient measurements are shown to be those of the longitudinal field components based on spectral lines with wavelengths longer and shorter than 3646 Å (shortward and longward of the Balmer jump), which form at different optical depths in the atmosphere. Various methodological problems are addressed that must be overcome in order to accomplish the task. The brightest magnetic star α 2 CVn is observed with the echelle spectrometer equipped with an Uppsala CCD chip. New observations corroborate our previous result: the longitudinal component of the magnetic field B e of the α 2 CVn star increases with depth by about 30% over the atmosphere thickness scale.  相似文献   

11.
We present an analysis of new photometric and spectropolarimetric observations of a chromospherically active star FKCom. Based on this observational data and the data from the literature sources, applying a common technique, we performed an analysis of a complete set of the available photometric data, which were divided into 218 individual light curves. For each of them a reverse problem of restoring largescale temperature irregularities on the surface of the star from its light curve was solved. We analyzed the time series for the brightness of the star in the U-, B-, and V-bands, the brightness variability amplitudes, the total area of the spots on the surface of the star, and the average brightness of each set considered. The analysis of determination results of the positions of active longitudes leads to the conclusion about the existence of two systems of active regions on the FKCom surface. It was determined that the positions of each of these systems undergo cyclic changes. This confirms the conclusion on the likely absence of a strongly pronounced regularity of the flip-flops in FKCom, earlier suggested by other researchers. The results of the new polarimetric observations FKCom in 2014–2015 are presented. These measurements evidence the legitimacy of the proposed interpretation the behavior of the longitudinal magnetic field strength 〈Bz〉, indicating the settling-in of a more symmetric distribution of magnetic region on the FKCom surface. An increasing activity of the star over the recent years, registered from the photometric observations is also consistent with the probable onset of growth in the 〈Bz〉 parameter starting from 2014.  相似文献   

12.
We present our long-term photometric and spectroscopic observations of a high-latitude B supergiant with an infrared excess—the protoplanetary nebula IRAS 18062+2410. OurU BV observations in 2000–2006 have confirmed the rapid irregular photometric variability of the star with a maximum amplitude as high as 0 . m 4 in V that we found previously. The BV and UB color indices vary with amplitudes as high as 0 . m 10 and 0 . m 25, respectively, and show no clear correlation with the brightness. Our V-band CCD observations on 11 nights in 2006 have revealed brightness trends during the night. The variability of IRAS18062+2410 is similar in pattern to the light variations in other hot post-AGB objects and some of the nuclei of young planetary nebulae. We assume that pulsations and a variable stellar wind can be responsible for the variability of these stars. In addition to the rapid variability, our 12-year-long observations have revealed a systematic decline in the mean brightness of IRAS 18062+2410. This may be related to a rise in the temperature of the star at constant luminosity as a result of its evolution. Low-resolution spectroscopic observations have shown a systematic increase in the equivalent widths of the Hα, Hβ, [NII]λ6584 Å, OI λ8446 Å, and [OII] λ7320–7330 Å emission lines. The changes in the star’s emission line spectrum are probably caused by an increase in the degree of ionization of the gas shell due to a rise in the temperature of the ionizing star. Our photometric and spectroscopic observations of IRAS 18062+2410 confirm the previously made assumptions that the star evolves very rapidly to the region of planetary nebulae.  相似文献   

13.
We analyze the structure of the cluster of galaxies Abell 1775 (α = 13 h 42 m , δ = +26°22′, cz ≈ 21000 km/s), which exhibits a bimodal distribution of radial velocities of the containing galaxies. The difference of the subcluster radial velocities is ΔV ≈ 2900 km/s. We use the results of our photometric observations made with the 1-m telescope of the Special Astrophysical Observatory of the Russian Academy of Sciences and the spectroscopic and photometric data from the SDSS DR6 catalog to determine independent distances to the subclusters via three different methods: the Kormendy relation, photometric plane, and fundamental plane. We find that the A1775 cluster consists of two independent clusters, A1775A (cz = 19664 km/s) and A1775B (cz = 22576 km/s), each located at its own Hubble distance and having small peculiar velocities. Given the velocity dispersions of 324 km/s and 581 km/s and the dynamic masses within the R 200 radius equal to 0.6 × 1014 and 3.3 × 1014 M , the A1775A and A1775B clusters have the K-band luminosity-to-mass ratios of 29 and 61, respectively. A radio galaxy with an extended tail belongs to the A1775B cluster.  相似文献   

14.
EC?11481–2303 is a peculiar, hot, high-gravity pre-white dwarf. Previous optical spectroscopy revealed that it is a sdOB star with T eff=41?790 K, log?g=5.84, and He/H = 0.014 by number. We present an on-going spectral analysis by means of non-LTE model-atmosphere techniques based on high-resolution, high-S/N optical (VLT-UVES) and ultraviolet (FUSE, IUE) observations.We are able to reproduce the optical and UV observations simultaneously with a chemically homogeneous NLTE model atmosphere with a significantly higher effective temperature and lower He abundance (T eff=55?000 K, log?g=5.8, and He/H=0.0025 by number). While C, N, and O appear less than 0.15 times solar, the iron-group abundance is strongly enhanced by at least a factor of ten.  相似文献   

15.
We present our synchronous spectroscopy and photometry of DI Cep, a classical T Tauri star. The equivalent widths and radial velocities of the individual components and Hα, Hβ, D1 and D2 Na I, and HeI λ5876 Å emission line profiles exhibit variability. We have found a clear positive correlation between the brightness and equivalent width for the Hα and Hβ emission lines. The photometric and spectroscopic data are satisfactorily described in phases of a 9-day period. The expected magnetic field of the star has been estimated using existing magnetospheric models to be 655–1000 G. The star is suspected to be a binary.  相似文献   

16.
New photometric observations of the variable star FG Sge, a rapidly evolving planetary nebula nucleus, were performed in 2003–2008. On 230 nights, we obtained 86 UBV and 155 BV RI (or R c , I c ) magnitude estimates. The maximum amplitude of the V-band light variations was >8 m . Six deep minima and four high maxima were observed. Analysis of the light curve has shown that the pulsation period of the star remained constant since 1991 and was P = 115 days. We have studied the wavelength dependence of the extinction at various phases of the light curve. The blueing of the B-V color at deep minima is interpreted as the result of light scattering in the circumstellar dust shell of the star formed by preceding dust ejections since 1992. Our spectroscopic observations performed on nine nights in 2003–2007 with the 125-cm telescope at the Crimean Station of the Sternberg Institute have confirmed the previously detected intensity variations of the Swan bands and the sodium doublet with brightness. It is noted that the Swan bands originate in the upper atmosphere, the star’s extended envelope, while the sodium doublet originates mainly in the circumstellar shell of FG Sge. We suggest that the star is currently located in the temperature-luminosity diagram at the turning point of the horizontal track of cooling in the direction of hot stars—evolution caused by the last helium shell flash at the planetary nebula stage.  相似文献   

17.
We present the results of our long-term photometric and spectroscopic observations at the Russian–Turkish RTT-150 telescope for the optical counterpart to one of the best-known sources, representatives of the class of fast X-ray transients, IGR J17544-2619. Based on our optical data, we have determined for the first time the orbital and physical parameters of the binary system by the methods of Doppler spectroscopy.We have calculated theoretical spectra of the optical counterpart by applying non- LTE corrections for selected lines and obtained the parameters of the stellar atmosphere (T eff = 33 000 K, log g = 3.85, R = 9.5 R , and M = 23 M ). The latter suggest that the optical star is not a supergiant as has been thought previously.  相似文献   

18.
We have identified 22 galaxies with photometric redshifts zph=5–7 in the northern and southern Hubble Space Telescope deep fields. An analysis of the images of these objects shows that they are asymmetric and very compact (~1 kpc) structures with high surface brightness and absolute magnitudes of MB≈?20m. The average spectral energy distribution for these galaxies agrees with the distributions for galaxies with active star formation. The star formation rate in galaxies with zph=5–7 was estimated from their luminosity at λ=1500 Å to be ~30 Myr?1. The spatial density of these objects is close to the current spatial density of bright galaxies. All the above properties of the distant galaxies considered are very similar to those of the so-called Lyman break galaxies (LBGs) with z ~ 3–4. The similarity between the objects considered and LBGs suggests that at z ~6, we observe the progenitors of present-day galaxies that form duringmergers of protogalactic objects and that undergo intense starbursts.  相似文献   

19.
We investigate the variation of the fraction of galaxies with suppressed star formation (MK < ?21 . m 5) and early-type galaxies (fracE) of the “red sequence” along the projected radius in six galaxy clusters:Coma (A1656), A1139, and A1314 in the Leo supercluster region (z ≈ 0.037) and A2040, A2052, A2107 in the Hercules supercluster region (z ≈ 0.036). According to SDSS (DR10) data, fracE is the highest in the central regions of galaxy clusters and it is, on the average, equal to 0.62 ± 0.03, whereas in the 2–3R/R200c interval and beyond the Rsp ≈ 0.95 ± 0.04 R200m radius that we inferred from the observed profile fracE is minimal and equal to 0.25 ± 0.02. This value coincides with the estimate fracE = 0.24 ± 0.01 that we inferred for field galaxies located between the Hercules and Leo superclusters at the same redshifts. We show that the fraction of galaxies with suppressed star formation decreases continuously with cluster radius from 0.87 ± 0.02 in central regions down to 0.43 ± 0.03 in the 2–3 R/R200c interval and beyond Rsp, but remains, on the average, higher than 26% than the corresponding fraction for field objects. This decrease is especially conspicuous in the galaxy mass interval log M* [M] = 9.5–10. We found that galaxies with ongoing star formation have average clustercentric distances 1.5–2.5 R/R200c and that their radial-velocity dispersions are higher than those of galaxies with suppressed star formation.  相似文献   

20.
We present photoelectric and spectral observations of a hot candidate proto-planetary nebula—early B-type supergiant with emission lines in spectrum—IRAS 19336-0400. The light and color curves display fast irregular brightness variations with maximum amplitudes \(\Delta V = 0_ \cdot ^m 30\), \(\Delta B = 0_ \cdot ^m 35\), \(\Delta U = 0_ \cdot ^m 40\) and color-brightness correlations. By the variability characteristics IRAS 19336-0400 appears similar to other hot proto-planetary nebulae. Based on low-resolution spectra in the range λ4000–7500 Å we have derived absolute intensities of the emission lines Hα, Hβ, Hγ, [S II], [N II], physical conditions in gaseous nebula: n e = 104 cm?3, T e = 7000 ± 1000 K. The emission line Hα, Hβ equivalent widths are found to be considerably variable and related to light changes. By UBV-photometry and spectroscopy the color excess has been estimated: E B-V = 0.50–0.54. Joint photometric and spectral data analysis allows us to assume that the star variability is caused by stellar wind variations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号