首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2018年8月在华东地区登陆的台风"温比亚",给河南造成的风雨影响是近40年来最大的,其日降水强度仅次于"75·8"台风暴雨的降水强度。应用实时气象观测资料和NCEP 1°×1°逐6h间隔再分析资料、中央气象台的台风定位报资料等,对1970年以来在华东地区登陆的31个台风陆上移动路径和相应环流背景进行了归纳,选取登陆点相近而给河南带来的风雨影响却不同的两个台风"温比亚"和"摩羯",从环流背景、冷空气活动、动力场和温湿场的演变等方面进行详细对比分析。结果发现:1)在华东登陆的台风陆上路径主要有西行、西北转偏北行和直接北上三种,其中西行和西北转偏北行路径的台风能够影响河南。2)500 hPa副热带高压呈带状分布、高压带断裂并减弱东退是造成"温比亚"和"摩羯"两个台风低压陆上移动路径差异的主要原因;台风低压移动速度取决于500 hPa台风低压两侧最大经向(纬向)风速之差和台风低压中心距5880 gpm线的距离等因素,台风低压的移动方向则取决于台风低压两侧最大风速差的转变;中高层引导气流作用减弱时,低层冷空气入侵形成的v分量差可指示台风低压的转向。3)来自海上的水汽始终与台风低压相连接、能量供应不间断,200 hPa靠近台风低压的高空急流和低层925 hPa、850 hPa接近台风低压中心的低空急流使台风低压所处上空维持8~12m/s的较强垂直风切变,台风低压两侧冷暖平流形成的斜压能导致垂直速度的加强等因素,是台风低压维持的重要机制。  相似文献   

2.
利用中国气象局(CMA)提供的热带气旋最佳路径资料和欧洲中心(ECMWF)提供的ERA interim再分析资料,对2018年两个北上影响山东的台风"摩羯"和"温比亚"路径差异的原因进行分析发现:"摩羯"和"温比亚"台风路径的差异主要与周围天气系统分布差异有关,两台风均先后受到副热带高压和大陆高压的影响,"温比亚"还受高空槽的影响,使其转向角度较大,而台风与高压系统相互作用形成的引导气流是影响这两个台风路径的主要因素。"摩羯"和"温比亚"的最佳引导气流均位于台风中心5个纬度半径内,不同阶段所受引导气流的高度存在差异,台风登陆前中低层引导气流对台风移向的指示作用均优于高层,登陆后转向前纬向引导气流均优于经向,但稳定性稍差,转向后除"温比亚"经向引导气流相关较差外均整层相关较好,中高层略优于低层,且高层风(300~200hPa)可以提前12h预报台风转向。此外,台风总是向着台风附近的正涡度平流方向移动,正涡度平流越强,台风移动越快。  相似文献   

3.
利用欧洲中心ERA-Interim逐6 h再分析资料(水平分辨率0.125°×0.125°)、NOAA逐日海表温度资料(水平分辨率0.25°×0.25°)、日本HMW8卫星逐时黑体亮温TBB (水平分辨率0.05°×0.05°)资料对对流非对称台风"天鸽"近海急剧增强原因进行了分析。结果表明:(1)"天鸽"是在其对流呈非对称分布的前提下发展起来的,近海急剧增强过程其对流也呈非对称分布。"天鸽"强度增强时,TBB一波非对称振幅逐渐减小,非对称程度减弱。(2)南海北部28.5~30℃异常偏暖的海表温度有利于"天鸽"快速增强,是"天鸽"近海急剧增强的原因。(3)"天鸽"近海强度变化与南亚高压、副热带高压的强度变化呈正相关系,"天鸽"近海急剧增强发生在200 hPa南亚高压加强东移,同时500 h Pa副热带高压加强西伸、低层西南季风加强的有利条件下。200 hPa南亚高压反气旋环流加强东移导致台风上空向西南方向出流加强,台风中心南侧高层辐散与低层辐合的显著加强及其导致的非对称分布的强对流的发展,是"天鸽"急剧增强的重要原因之一。200hPa南亚高压加强东移与低层西南季风加强同步导致环境风垂直切变明显增大,对"天鸽"内的对流分布和台风强度均有重要影响,环境风垂直切变低于阻碍台风发展的阈值(12.5 m·s~(-1))是台风急剧增强的一个重要条件。(4)"天鸽"强度的快速加强与副热带高压加强西伸和西南季风加强造成的台风内部的非对称环流结构密切相关,"天鸽"水平风速的非对称分布导致台风中心附近正涡度增大,水平风速非对称分布变深厚引起台风中心附近正涡度大值区向对流层中上层伸展,也是"天鸽"急剧增强的重要原因。  相似文献   

4.
超强台风“天鹅”(2015)路径突变过程机理研究   总被引:2,自引:0,他引:2  
本文采用中国气象局的最佳台风路径数据和美国国家环境预报中心1°×1°每6 h再分析资料作为研究工作的基本场,运用了分部位涡反演方法探讨影响2015年第15号超强台风“天鹅”路径突变的物理机制,得到以下结论:(1)就天气系统而言,“天鹅”整个移动过程中都受到周围环境场及引导气流的影响,主要的影响系统包括西北太平洋副热带高压、季风涡旋、邻近台风“艾莎尼”及台风外围反气旋;(2)定量分析了与各影响系统扰动位涡相关的引导气流矢量,发现整个过程中超强台风“天鹅”的移动始终受西北太平洋副热带高压的影响,其次是来自季风涡旋及台风外围反气旋的贡献,而当“天鹅”有向北转向趋势时,与外围反气旋相关的东北向引导气流导致了台风的路径北折;(3)进一步定量分析了总扰动位涡在不同高度层上相关引导气流的贡献,结果表明在垂直方向上对流层中层系统的引导气流矢量与“天鹅”的移动最为吻合,而形成于低层系统的偏南风气流与“天鹅”向北突然转向有着密切的联系,并在转向后逐渐向中高层发展增强。  相似文献   

5.
2012年8月下旬,超强台风"布拉万"对东北地区造成极大影响。该台风路径属于北折异常路径,本文对该台风路径异常原因试做分析,结果表明:主要影响系统依然是西太平洋副热带高压的引导气流的作用,前期大陆低压槽的东移对西太平洋副热带高压有挤压作用,导致台风布拉万的主要影响气流转为偏西方向;大陆低压槽后期与西太平洋副热带高压的对峙时间较长,有较强的偏南气流,再加上台风"天秤"的双台风互旋作用,使台风"布拉万"被北抬,因此维持较长时间的向北方向移动。950-250 h Pa的深层次引导气流,与700 h Pa的引导气流与台风的移动速度也较一致。因此,注意大型环流场与引导气流的变化对台风的预报,依然具有非常重要的指导意义。  相似文献   

6.
李超  江崟  周凯  杜雪婷 《气象科学》2023,43(4):495-504
本文利用FY-4A红外云图和ERA5再分析等资料对"云雀"和"温比亚"两个台风的强降水进行诊断分析。结果表明:"云雀"影响华东期间,西太平洋副热带高压(WPSH)不断加强西伸,台风路径右侧辐散环流维持,台风中心附近垂直风切变指向偏西方向,导致强降水始终集中在台风路径左侧。"温比亚"登陆前,台风中心附近垂直风切变指向西北方向,台风左侧垂直速度强于右侧,有利于强降水发生在台风路径左侧。"温比亚"登陆后,垂直风切变转为指向东北方向,台风右侧垂直速度强于左侧,有利于强降水发生在台风路径右侧。进一步分析指出,"云雀"登陆时期的垂直风切变和WPSH南侧偏东风气流有关;而"温比亚"登陆后WPSH减弱东退和中高纬高空脊东移,垂直风切变指向变化和高空脊后部的西南气流有关。  相似文献   

7.
利用NCEP 1°×1°再分析资料和常规观测资料,综合分析了环流背景、冷空气活动和地形对台风"海燕"(2013)后期路径和降水变化的影响。结果表明:1)"海燕"后期路径北翘东折的环流背景为500 h Pa高度层西太平洋副热带高压减弱东退,引导气流随着西太平洋副热带高压的变动而发生改变。2)"海燕"东西两侧经向风和南北两侧纬向风的不对称分布是导致台风路径突折的主要原因,此外冷空气和地形的阻挡作用也是使得"海燕"路径突折的重要原因。3)冷空气对降水的影响体现在,前期冷空气侵入到"海燕"西侧,使其获取了斜压能量,有利于台风低压和暴雨的维持,后期冷空气主体侵入到台风低压,使得台风低压斜压性明显减弱,低压环流迅速填塞,降水趋于减弱。4)对于秋、冬季的台风而言,除了要关注西太平洋副热带高压、西风槽等天气系统和地形的影响外,还需注意冷空气南下对台风路径和降水强度的影响,尤其是对于北上的台风而言,冷空气南下可能会导致台风路径突折,降水幅度增加。  相似文献   

8.
杨丽英 《广东气象》2021,43(6):24-27,32
利用常规气象观测资料、NCEP全球再分析资料(1°×1°)、中国气象局台风经纬度数据和卫星云图、雷达图等资料,分析了 2020年第7号台风"海高斯"活动期间西风槽、西太平洋副热带高压、环境场和垂直风切变等系统和要素变化特征,初步研究了"海高斯"近海增强以及路径北翘的成因.结果表明:西风槽东移导致副热带高压东退,是"海高斯"路径发生北翘的主要成因;异常偏高的海温和弱垂直风切变是"海高斯"近海增强的关键;低层有利的水汽辐合和高空辐散有利于TC发展.  相似文献   

9.
从高空环流和基本气流的演变对2010年第13号台风"鲶鱼"进入南海以后路径发生向北"急翘"的大环流形势进行分析,并应用wrf模式输出的高分辨率资料,对台风中心附近的风场、温度场和θse场的分布进行探讨,得出:"鲇鱼"进入南海后,路径发生向北"急翘"是由于青藏高压增强并向东移,致使其前部高空槽加深发展,切断了华南高压和副热带高压的联系,并使华南高压南落至中南半岛一带,使台风西行受阻,逐渐转为北移。同时越赤道气流的北涌,使基本气流从东北气流转为西南气流,北偏东移动趋势加大。500~700hPa两层引导气流与"鲶鱼"路径有很好的对应关系。最大风速区的水平和垂直结构将影响台风移动的路径,台风中心的有向风速低值区移动的趋势,最大风速区的垂直尺度的变化对台风移动有指导意义。温度场的水平和垂直分布也将影响台风的移动路径,西侧冷空气的入侵使台风偏西移动的趋势减弱,台风中心有向等厚度低值区移动的趋势。θse的高能舌的分布,有利台风向北或北偏东方向移动。  相似文献   

10.
利用NCEP/NCAR 1°×1°再分析资料、卫星云图等资料,研究了"彩虹"的特点及其原因。结果表明,受西太平洋副热带高压南侧稳定且强劲的东南气流引导,"彩虹"快速向西北方向移动,路径十分稳定;南海西北部较高的海温、南亚高压西退、高层辐散低层辐合增强、强的西南水汽和东南(偏东)水汽输送以及低层弱冷空气卷入导致"彩虹"出现近海加强现象;东南(偏东)风急流不断增强,"彩虹"北侧的水汽条件好、位势不稳定度大、高层辐散低层辐合配置较好,加上其云系分布的不对称以及地形影响,导致"彩虹"中心移动路径北侧的降水远比南侧多。  相似文献   

11.
利用NCEP的全球数据同化系统(GDAS)1°×1°分析资料、CIMSS微波亮温资料等,对0606号台风派比安的异常移动路径特征作了诊断分析。结果表明:"派比安"出现的两次异常北抬路径与中纬度西风槽活动、热带西南季风、副热带高压以及热带气旋结构影响密切相关,西风槽槽后经向风活动和台风最大风速中心轴向对台风未来移向有一定的指示意义。  相似文献   

12.
利用常规观测资料和NCEP1°×1°格点资料,分析0814强台风"黑格比"的移动路径和强度,发现大陆副热带高压和台风风场中强风区的变化,是"黑格比"移向西折、加速和持续快速移动的关键因素。强劲、持续的越赤道气流向台风卷入、高层强辐散以及弱的水平风垂直切变,都有利于"黑格比"强度迅猛发展和维持。  相似文献   

13.
利用常规气象观测资料、NCEP 1.0°×1.0°再分析资料、欧洲高分辨率(0.75°×0.75°)再分析资料以及区域自动站资料和多普勒天气雷达资料,采用天气学诊断分析方法,对2013年第11号超强台风"尤特"(1311号)残留低涡在广西和湖南一带的复杂移动路径及其长时间维持与复苏造成广西特大暴雨的成因进行分析。结果表明:(1)大陆高压、西太平洋副热带高压与赤道高压形成合围态势,热带辐合带北抬加强,是造成"尤特"残留低涡在华南西部缓慢移动、运动路径先北移后南落的环流背景;(2)弱的垂直风切变环境,季风急流与"尤特"残留低涡长时间联结,有利于水汽和不稳定能量补充到"尤特"残留低涡中,是造成其长时间维持的原因;(3)"尤特"残留低涡后期向南移动过程中,与季风急流(季风涌)相遇获得潜热能,是造成残留低涡复苏并促使降水增幅的原因;(4)分析雷达回波可知,在"尤特"残留低涡东南侧,风暴单体呈螺旋带状并形成列车效应。  相似文献   

14.
越赤道气流与中国天气关系的初步统计分析   总被引:14,自引:0,他引:14  
李曾中 《气象》1986,12(4):11-14
本文利用1974—1979年的资料,分析了夏季风期间(6—9月)东半球对流层低层(850hPa)及高空(200hPa)越赤道气流的主要特征。定义了东半球越赤道气流总量E以及0°—90°E、90°E—180°越赤道气流总量E_1、E_2,分别统计了它们与中国大陆降水、西北太平洋台风发生数以及北半球副热带高压活动的关系。  相似文献   

15.
利用GFS 0.5°×0.5°再分析资料、中国地面与CMORPH融合0.1°×0.1°逐小时降水产品、FY2E卫星资料和常规观测资料,对2010年7月14—15日江西东北部大暴雨天气进行分析,重点讨论了15日远距离台风与高空西北气流的相互作用。结果表明:(1)暴雨发生在副高北缘和高空为西北气流的背景下,低层存在台风"康森"的远距离水汽输送,低涡切变、副热带高压、远距离台风、西风槽、中尺度低压等多尺度系统协同作用导致了强降水的发生,其中远距离台风"康森"与西北气流起了主导作用;(2)由于副高结构不够深厚强盛,强降水发生于南亚高压东侧偏北气流、500 hPa大陆高压和海上副高之间的西北气流、700—850 hPa副高西侧的西南急流中:台风"康森"北侧强劲的东南急流和副高西侧西南急流叠加将低纬大量的水汽和热量沿着大陆高压和海上副高之间的甬道向北输送,使江南北部成为高温高湿高不稳定区,200 hPa上16~20 m·s-1西北气流带动500—700 hPa干空气向南移动,与同步加强的暖湿气流相遇形成斜压锋区,使辐合系统稳定于江南北部;(3)高空西北气流和远距离台风的共同作用使斜压锋区的水平和垂直梯度加大、垂直风切变加强,有利于气旋性涡度发展、锋生加剧,强烈的上升气流穿越锋区,引起强的水汽辐合,加大了层结不稳定,在斜压区激发出多个中尺度涡旋,促进对流发展、强降水发生。(4)预报业务中,关键在于对副高、500 hPa冷槽、台风等外强迫系统强弱的预估,一方面需关注上下层系统作用对比的强弱,找出占主导地位的天气系统,另一方面应注意低层扰动环境的改变。  相似文献   

16.
利用常规气象观测资料、NCEP1°×1°逐6h全球格点资料以及区域自动站降水资料、FY-2E卫星云图与多普勒天气雷达拼图资料,分析2013年第6号热带气旋(TC)"温比亚"在广西造成的非对称降水的环境场特征。结果表明,受副热带高压西南侧稳定而深厚的东南气流引导,"温比亚"西北行深入到广西中部,有利于广西出现较大范围暴雨。200hPa上TC流出气流的中心偏于其中心的南侧,为降水不对称分布提供了动力背景;TC风场分布明显不对称,导致涡度、散度动力场结构呈不对称分布;低层辐合区主要分布在TC中心南侧,整层水汽通量辐合中心位于TC中心南侧,从而使暴雨集中在TC中心南侧。环境风垂直切变矢量指向TC移动路径的左侧,有利于TC移动路径左侧出现强的对流及降水,结合水汽辐合条件,可将其作为TC暴雨落区预报的一个判据。相对湿度(RH)呈均匀分布,假相当位温(θse)呈准对称分布,表明TC降水的非对称分布主要由动力因子而非热力因子引起。  相似文献   

17.
利用常规气象观测资料和NCEP 1°×1°再分析资料,对比分析了2011年影响山东半岛的两次台风暴雨过程。结果表明,台风影响产生的强降水除与台风本身的强弱、移动速度、登陆后减弱快慢有关外,还与副高的强弱、位置有关。台风"米雷"影响时,副热带高压中心呈纬向分布,并与东北高压脊同位相叠加形成高压坝,造成"米雷"在荣成市成山镇登陆并缓慢西进;台风"梅花"影响时,副热带高压中心呈经向分布,华北地区有弱槽活动,造成"梅花"在朝鲜半岛北部海岸登陆。两个台风产生的暴雨多发生在台风中心路径左侧2个经度内,暴雨区与水汽辐合中心基本吻合,但"米雷"产生的暴雨基本是自身的能量产生的,"梅花"产生的暴雨是由台风和西风带弱的系统相互作用造成的。两次台风均给山东半岛带来了暴雨,降水中心均出现在台风中心左侧2个经度内和500h Pa上θse大于72℃的高能区内,"梅花"较"米雷"的能量场中高能区的水平范围要大得多。"米雷"强度明显弱于"梅花",但两者强降水强度和落区却相似,主要是因"米雷"在荣成市登陆后西行缓慢,有利于降水的增加和持续;山东半岛东部的山地地形对暴雨起到了增幅作用。  相似文献   

18.
0801号台风“浣熊”的路径和强度特征分析   总被引:3,自引:11,他引:3  
利用一天四次的NECP格点再分析资料对台风的移动路径、强度突变进行分析。结果表明:台风"浣熊"的移动路径与副高位置的演变有关,而西风槽、脊的进退直接影响副高的演变。因此,副热带高压与西风槽、脊的相互作用是台风"浣熊"路径在北纬20度从西北偏北转向东北的原因;弱冷空气、东亚大槽槽前正涡度平流所产生的强辐散场是强度突变的重要原因;除此之外,越赤道气流与副热带高压的共同作用,不仅对台风"浣熊"强度突变有作用,同时也是其路径在南海从西北偏西转向西北偏北的原因。  相似文献   

19.
两次西行热带气旋影响云南的诊断分析   总被引:1,自引:0,他引:1  
钟爱华  周泓  赵付竹  杨素雨  严直慧 《气象》2015,41(4):409-417
运用中央气象台台风实时业务定位数据、云南省124个国家气象站降水实况和NCEP再分析资料(水平分辨率1°×1°,时间分辨率逐6 h),对比分析了1213号台风启德和1309号强热带风暴飞燕影响云南的路径、环流场、云图、水汽条件、动力条件等特征。结果表明:“启德”影响云南期间青藏高压位置偏西,副热带高压呈带状,热带气旋(TC)位于副热带高压西南侧的东南风到偏东风中,引导气流有利于台风取偏西路径影响云南。而“飞燕”影响时青藏高压位置偏东,副热带高压呈块状,TC位于副热带高压西侧的偏南风中,引导气流有利于热带低压取西北路径影响云南,从而使得“飞燕”影响时云南中部处于气旋性风场中,西南气流和副热带高压外围偏南气流两支气流汇集在此,在云南中部也产生了较强降水。两个TC影响云南时对流层中低层保持了较大的水汽输送。水汽主要来自于其本身、南海洋面和孟加拉湾。水汽辐合中心处于低压倒槽的槽前,随着系统自东向西影响云南的中部及以南地区。强降水区低层辐合、高层辐散,强上升运动为降水提供了有利的动力机制,释放了不稳定能量。因此,做好青藏高压和副热带高压的形态、位置的预报有利于把握登陆后热带低压的移动路径,从而准确预报降水强度和落区。  相似文献   

20.
利用地面自动站降雨量资料和NCEP 1°×1°的每6小时再分析资料,从能量、南风脉动、温度平流和地形作用,分析了登陆台风"灿都"减弱后其外围偏东南气流向北输送造成四川盆地西部持续暴雨天气过程.结果表明:蒙古高压加强发展,然后与西伸加强的西太平洋副热带高压合并,形成阻塞形势、高空副散流场和西南季风的活跃都有利于南海源源不...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号