首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 796 毫秒
1.
赵克明  黄艳  于碧馨 《气象科技》2017,45(1):122-130
应用南疆西部(35°~42°N,73°~80°E)15个气象站及200个区域自动气象站2013年逐日降水量资料和NCEP/NCAR每日4次1°×1°再分析资料,分析2013年南疆西部4次典型暴雨天气过程的水汽源地、水汽输送及水汽收支特征。结果表明,2013年4场暴雨天气水汽主源地主要分布在阿拉伯海和孟加拉湾,其次是波斯湾,低层东风急流(LLEJ)在南疆西部暴雨过程中作用显著。过程Ⅰ水汽输送路径主要为偏东和西南气流,在南疆西部沿山及偏东平原强烈辐合引发暴雨,偏东路径水汽输送明显大于西南路径,水汽输送的大值区域持续时间为24 h。过程Ⅱ水汽输送有西方、西南和偏东路径,3支水汽输送在南疆西部东—西、南—北产生剧烈的辐合造成大范围、强度强的暴雨天气,东边界水汽输入量接近南边界,水汽输送的大值区域持续时间为60 h。 过程Ⅲ水汽输送为西方、偏南和偏东路径,LLEJ引导的水汽在西风、东风气流的交汇下沿山堆积产生强的辐合,造成暴雨天气。水汽输送的大值区域持续时间为24 h。过程水汽输送主要有西方、偏南和偏东路径,西方路径的输送量远远大于偏东和偏南水汽,水汽输送出现2次高低空大值区域叠置现象,暴雨过程中大值区域持续时间48 h。  相似文献   

2.
本文利用常规观测资料、逐小时区域自动站观测资料、NCEP1°× 1°逐6小时再分析资料等对安顺2019年6月5-11日和9月5-10日的持续性暴雨天气进行分析,结果表明:(1)6月5-11日天气过程主要是由于两高之间不断有短波槽东移造成的,9月5-10日天气过程主要是由于副高稳定少动,西南涡在副高外围稳定维持较造成的;(2)垂直螺旋度垂直积分越大越有利于产生强的短时强降雨,垂直螺旋度强中心发展高度越高越有利于短时强降雨持续不断的产生;(3)水汽垂直螺旋度在这2次持续性暴雨天气过程中对短时强降雨的发生和降雨强度有很好的指示,水汽垂直螺旋度在短时强降雨出现前6小时出现增大,且中心值越大短时强降雨强度越强,在短时强降雨发生期间迅速减小;(4)6月5-11日天气过程中,质量垂直螺旋度值增大-减小得越多,出现的短时强降雨强度越强。  相似文献   

3.
利用NCEP1°×1°的6 h再分析资料、常规观测资料和逐小时加密雨量资料,对2005年6月18-22日浙江省中南部地区出现的一次持续性梅雨锋暴雨过程进行诊断分析。结果表明:此次持续性梅雨锋暴雨过程是在两槽一脊的大环流形势下,由中低层切变、西南涡和冷空气共同影响造成的;过程具有明显的中尺度特征,12个中尺度雨团的持续生成东移导致了暴雨的发生。正涡度大值中心值的强度和中尺度雨团的强弱以及暴雨落区有较好的对应关系;垂直速度以及垂直螺旋度的强弱和中尺度雨团的强度变化一致。急流核的出现导致水汽辐合明显加强。从暴雨区和急流核的位置配置来看,暴雨区出现在急流核的左侧。  相似文献   

4.
利用NCEP1°×1°的6 h再分析资料、常规观测资料和逐小时加密雨量资料,对2005年6月18-22日浙江省中南部地区出现的一次持续性梅雨锋暴雨过程进行诊断分析。结果表明:此次持续性梅雨锋暴雨过程是在两槽一脊的大环流形势下,由中低层切变、西南涡和冷空气共同影响造成的;过程具有明显的中尺度特征,12个中尺度雨团的持续生成东移导致了暴雨的发生。正涡度大值中心值的强度和中尺度雨团的强弱以及暴雨落区有较好的对应关系;垂直速度以及垂直螺旋度的强弱和中尺度雨团的强度变化一致。急流核的出现导致水汽辐合明显加强。从暴雨区和急流核的位置配置来看,暴雨区出现在急流核的左侧。  相似文献   

5.
四川省持续性暴雨定义及时空分布特征   总被引:2,自引:0,他引:2  
采用1961—2014年四川省158个气象站的逐日降水量资料,定义了四川省单站和区域持续性暴雨的标准,分析了近54年四川省持续性暴雨的时空分布特征。结果表明,盆地单站持续性暴雨多发生在9月,主要出现在盆地西北部、西南部和东北部,一般持续3天,一次持续性暴雨事件降水量一般可达150~200mm。而攀西地区单站持续性暴雨发生的次数一般为1~3次,6月发生范围最大,最长持续时间为4天,主要发生在攀西地区东部。区域持续性暴雨多发生在7月,降水中心主要分布在盆地西部沿山一带及盆地东北部,这与单站持续性暴雨频次高值区的分布基本一致。区域持续性暴雨在2001年后发生频次较前期频繁,特别是持续3天的持续性暴雨事件发生频率较高,但是强度略有减弱。  相似文献   

6.
利用NOAA的外逸长波辐射资料(OLR)和NCEP/NCAR再分析资料以及华南地区台站降水资料诊断分析了热带西太平洋对流活动在2005年和2006年华南地区持续性暴雨发生的大尺度环流背景上的物理作用.分析表明:2005年6月17~24日华南持续性暴雨过程与热带西太平洋对流的10~25天低频振荡从150 °E附近西传有关,持续性暴雨期间西太平洋副热带高压持续西伸的Gill型环流响应对应于传播到120 °E附近强对流的低频间歇期;2006年5月下旬~6月中旬华南的持续性暴雨可能与热带西太平洋的双热带辐合带(ITCZ)南支对流带异常强盛有关,持续强盛的南支ITCZ使得115~135 °E平均的局地Hadley环流最大上升中心位于0~5 °S,菲律宾海附近区域上升运动的减弱有利于西太平洋副热带高压持续西伸加强.通过比较这两例典型的华南持续性暴雨过程发现,副热带高压在华南地区持续西伸是两次持续性暴雨发生的共同的大尺度环流背景,而热带西太平洋对流活动则通过不同的物理过程影响副热带高压的持续西伸.  相似文献   

7.
利用NCEP1°×1°6 h再分析资料,对副热带高压与西风槽典型环流形势配合下发生的一次四川区域性暴雨过程的不同阶段进行对比分析。结果表明,前期暴雨天气过程,其动力条件占到了主导地位,具有明显的经向垂直环流圈和垂直上升运动支,而在副高断裂后较强冷空气作用下,在副高边缘发生的区域性暴雨过程受西风带槽前的能量锋区影响,动力强迫作用和热力强迫作用激发的次级环流,进一步加强了四川盆地垂直运动的发展;冷空气作用前期的暴雨过程和冷空气进入后副高边缘发生的区域性暴雨过程中暴雨区域内的假相当位温均强于高层,大气处于对流性不稳定层结状态,对四川盆地暴雨的增强也起了不可忽视的作用,但由副高控制到副高逐渐断裂,湿位涡的斜压扰动是逐渐增强的过程,导致倾斜垂直涡度发展,激发更为强烈的上升运动;副高与西风槽环流形势相配合的暖区暴雨过程水汽主要来自中低层孟加拉湾;而副高断裂后发生在副高边缘的区域性暴雨过程,水汽主要来自850hPa层南海和孟加拉湾,从对流层中到低层,四川盆地东部恰恰是冷暖气流的交汇处,偏南气流将海上充沛的水汽输送到盆地东部,为暴雨的发生提供充足的水汽条件,并与对流层低层秦岭附近的东北冷气流交汇。   相似文献   

8.
青藏高原周边地区持续性暴雨特征分析   总被引:3,自引:0,他引:3  
长江上游的暴雨是造成该区域和长江中下游洪涝的主要因子,研究长江上游的青藏高原周边地区持续性暴雨特征对防灾减灾有着重要意义。应用历史天气图资料、NCEP 1°×1°再分析资料和国家气象信息中心提供的气候整编降水资料,采用统计和天气学方法,分析了1961 2011年青藏高原周边地区持续性暴雨特征。研究表明,青藏高原周边地区局地持续性暴雨通常持续3~4天,持续时间最长的暴雨发生在湖北武汉,为10天。整体上,高原地区较周边地区暴雨发生率相对低,局地持续性暴雨有4个降水高频中心,西藏东南部降水高频中心的波密发生频次最高,为15次;四川西部至中东部暴雨高频区持续性暴雨发生范围最广;另2个高频区为云南南端及湖北中东部地区。青藏高原东侧的西南地区区域持续性暴雨以持续3天为主,7月发生频率最高,21世纪以来,暴雨中心有向东移动的趋势。通常持续性暴雨过程伴随高原低值系统活动,其中西南低涡是最主要的影响系统。  相似文献   

9.
2013年重庆秋季连阴雨期间暴雨过程对比分析   总被引:1,自引:0,他引:1  
2013年8月29日9月11日,重庆各地出现不同程度的连续降水天气,持续614天,降水日数多、日雨量大,连阴雨期间重庆出现两次区域性暴雨天气过程,为较严重连阴雨天气。利用NCEP 1°×1°的再分析资料及重庆地区逐日、逐时降水资料及雷达回波资料,对连阴雨天气期间两次暴雨过程进行对比分析。结果表明:此次连阴雨过程中欧亚地区中高纬500 hPa呈“两脊一槽”型,连阴雨过程中两次暴雨过程的500 hPa中高纬形势有所不同,但影响系统均为短波槽;两次过程都存在强大的水汽输送带,因副热带高压位置不同,暴雨区水汽来源也不同,一次来源于南海,一次来源于南海与孟加拉湾。近地层弱冷空气及中层暖湿气流的持续影响使连阴雨天气得以维持,两次暴雨过程产生前或产生时都伴有低层冷空气和中层暖湿气流的加强。由于“9·10”暴雨过程在暴雨区附近有明显的θse锋区,而“9·2”暴雨却不存在θse锋区,因此连阴雨过程中两次暴雨的降水性质不同。在对流并不特别强的暴雨过程中,雷达资料对影响系统强度的判断同样有指导意义。  相似文献   

10.
利用常规气象观测资料、NCEP FNL1°×1°间隔6 h再分析资料,对2017年7—8月榆林市相继出现的两场区域性暴雨过程(7月26日暴雨过程,简称“7·26暴雨”;8月22日暴雨过程,简称“8·22暴雨”)的热力、动力机制进行对比分析。结果表明:两次暴雨与高低空急流关系密切,当高低空急流加强,出现强动力抬升时出现强降水,暴雨落区位于低空急流左前侧的强水汽辐合区。“7·26暴雨”低空急流和水汽辐合更强,大暴雨出现在高低空急流耦合的强上升区。两次降水过程热力机制有所不同,“7·26暴雨”过程中层有冷空气卷入,中低层存在强对流不稳定,低层切变线触发不稳定能量释放,产生强降水;“8·22暴雨”过程大气整层饱和,锋面作用显著,暖湿空气被冷空气抬升,低层存在对流不稳定,大尺度稳定降水系统伴随中小尺度对流发展,降水加强。对流层低层VMP1(湿正压项)负高值中心对暴雨落区有较好的预报指示意义。  相似文献   

11.
利用2009-2019年安顺市6个国家站和77个区域站的逐日和逐小时降水资料、 Micaps资料,对安顺市大暴雨的时空分布特征及物理量进行分析,结果表明:安顺市年平均大暴雨日数为10.1d,年平均影响范围为54.1站次,5-9月是大暴雨出现的集中期,6月大暴雨出现频次最高,影响范围最广,大暴雨的主要发生时段和最强影响时段出现在夜间到早晨;区域性大暴雨比局地性大暴雨出现时间晚,结束时间早,6月是区域性大暴雨和局地性大暴雨出现最多的月份,5-7月局地性大暴雨出现的频率最高;安顺主要出现单日大暴雨,持续2d以上的大暴雨只出现过16次;大暴雨总日数的空间分布有两个高频区和两个低频区,总量的空间分布与总日数基本一致,强度的空间分布呈南强北弱,总站次的空间分布呈南多北少;在5月预报大暴雨天气时要更注重分析T85和T75,6-7月产生大暴雨时对能量和中低层的水汽含量的要求高于其它月份。  相似文献   

12.
利用2006~2015年成都地区国家站及区域站20时~20时24小时地面实况降雨量资料、常规观测资料、NCEP1°×1°再分析资料对成都市区域性暴雨进行统计分析,得出:这一时期成都地区共有43例区域性暴雨发生,次数最多的是在2013年,发生季节以7月为最多(占总次数的49%)。根据区域性暴雨影响系统的不同,将其简单分为3种类型,分别是:低涡型、高空槽和切变线型、副热带高压边缘型。3种类型暴雨的发生次数、持续时间均有不同,暴雨次数所占比例分别为40%、46%、14%,持续时间大多为1天。同时选取3个历史个例分析了不同类型区域性暴雨的大尺度环流背景特征。  相似文献   

13.
利用常规观测资料及NCEP 1°×1° 6h再分析资料,对2007年7月上旬四川东北部连续出现的3场大暴雨过程的环流形势及动力结构、水汽输送和热力不稳定条件进行了诊断分析。结果表明:(1)前2场区域性大暴雨出现在副热带高压和巴尔喀什湖冷涡两个长波系统稳定少动的阻塞环流形势下.第3场局地性大暴雨发生在环流调整过程中,副热带高压快速东撤导致对流云团在东移过程中迅速减弱消亡;(2)暴雨的水汽主要来自南海,低空偏南风急流的维持为连续暴雨提供了源源不断的水汽输送和持续的能量供应,3场暴雨的中心均出现在位于低空急流出口区左侧水汽辐合中心的巴中地区;(3)造成严重洪涝灾害的前2场区域性大暴雨过程期间,从地面到高层形成了“辐合-辐散-辐合-辐散”接力式上下大气运动的动力结构,大气层结处于高能和对流不稳定状态,且有冷空气触发,大暴雨发生在能量锋区偏向暖区一侧。  相似文献   

14.
对商丘国家观象台1954-2005年月报表中挑取的符合暴雨日条件的142个样本分析,结果表明:商丘暴雨日具有明显的季节性,频发于7、8月份;暴雨日年平均2.73个;日暴雨量最大(193.3 mm)不超过200 mm;最长连续暴雨日数不超过2日;连续暴雨日降水量累计(223.9 mm)不超过250 mm;1 h最大降水量不超过70 mm。暴雨日的年代际变化特征明显,20世纪80年代后暴雨日出现较晚,60-90年代的暴雨日数递减,90年代后有增加趋势;大暴雨日数自60年代起有逐步增加趋势。暴雨日对月、年降水量有显著贡献,4-9月暴雨日对月降水量的贡献很大,且从4月到7月暴雨日的贡献呈递增趋势。一年内暴雨日出现5次时,当年的年雨量为偏多年份。  相似文献   

15.
王蕊  贺哲 《河南气象》2002,(2):18-19
通过对河南省2001年汛期两场区域性暴雨过程对比分析结果表明:发生同一环流背景之下的两次区域性过程具有一定相似之处和不同特征;北方低涡的稳定维持对我省降雨过程具有重大影响;中尺度辐合的产生对于区域暴雨过程的产生具有重要作用;物理量场数值分析对暴雨落区具有较好的指标意义。  相似文献   

16.
采用区域自动站逐小时降水观测数据、GPS/MET大气可降水量观测数据和NCEP/NCAR提供的FNL0.25°×0.25°分析数据,通过对比塔克拉玛干沙漠南缘和田地区2次落区接近、强度不同暴雨过程的环流和水汽特征,分析了影响极端暴雨产生的急流和水汽因子特征,结果表明:沙漠南缘暴雨时环流配置符合“三支气流”模型,高空急流、中层偏南风、低层辐合切变的强度与降水量正相关,当高层有极涡直接南伸至中亚发展而成的副热带大槽、中层有气旋前部的强偏南或西南气流、低层有偏东风急流明显西伸与西风急流形成强辐合时有利于出现极端暴雨。沙漠南缘暴雨的水汽源地、输送路径、水汽含量、饱和层厚度与降水量相关,暴雨的水汽源地一般为欧洲和北冰洋,降水区水汽输入以中低层为主,低层比湿大于6 g?kg-1,饱和层位于700 hPa以上;当中高层有来自阿拉伯海、孟加拉湾的由偏南风输送水汽的加入,低层比湿达8 g?kg-1以上、饱和层扩展至750 hPa以下时,可出现极端暴雨。  相似文献   

17.
项瑛  巩庆  艾文文  蒋薇  程婷 《气象科学》2020,40(2):180-190
利用1961—2016年江苏省70个站点的逐日降水资料和暴雨定义,分析了江苏省半个世纪以来暴雨发生的年代际时空变化特征,并分析了不同分布型El Nino发展年份对江苏省夏季降水和暴雨的影响特征。结果表明江苏省暴雨主要集中在6—8月,暴雨日数占全年的73.6%,尤其又以7月为最多;暴雨总的分布特点为苏北多于苏南,淮北西北部及苏南东部最少;江苏暴雨发生频次具有明显的年代际变化,且各地区暴雨的年代际变化有一定差异,频发期为1960s、1990s至今,尤其是1990s以来,全省暴雨增多趋势明显,且2011年之后雨带明显南移;东部型El Nino发展年份较中部型El Nino年份的环流形势更有利于导致江苏夏季降水偏多,尤其是沿江苏南地区与常年同期均值有显著性差异。  相似文献   

18.
1960-2011年辽宁省大暴雨时空分布特征   总被引:2,自引:0,他引:2  
利用1960-2011年辽宁省61个国家气象站地面20-20时降水及逐小时降水观测资料,统计分析辽宁大暴雨时空分布特征。结果表明:辽宁省年平均大暴雨日数为6.5 d,年平均影响范围为17.5站次,两个大暴雨多发区分别位于辽宁东南部和南至西南沿海地区。辽宁东南部大暴雨多发区由于受台风、江淮气旋、华北气旋和蒙古气旋等多种系统及地形影响,易出现区域性和局地性大暴雨,大暴雨发生次数较多,降水量变化较大;降水量和降雨强度极值均较大,大暴雨中心出现在凤城,降雨强度最大达212 mm/h-1。南至西南沿海大暴雨多发区易受台风和华北气旋及地形影响,以区域性大暴雨为主,降水量和降雨强度极值也较大,但最大降水量和降雨强度极值均与大暴雨日数的中心不一致。区域性大暴雨的降水量极值对大暴雨降水量极值的贡献最大。大暴雨平均降雨强度的逐时变化呈单峰型分布,08时降雨强度达最强,20时降雨强度最弱。辽宁省大暴雨日集中出现在7月下旬至8月上旬,8月大暴雨日略多于7 月。最早和最晚区域性大暴雨均是受江淮气旋影响,并出现在辽宁省南部地区。大暴雨日数具有明显的周期变化,主要年代际变化周期为10 a。区域性和局地性大暴雨主要周期分别为36 a和10 a。预计未来6 a辽宁省仍处于大暴雨较多的阶段,并可能多以局地性大暴雨的形式出现。  相似文献   

19.
利用1981—2020年5—9月天山南坡16个气象站逐日降水资料和NCEP/NCAR GDAS再分析资料,分析天山南坡暖季暴雨过程的环流形势,并采用HYSPLIT模式,模拟追踪水汽源地及输送特征。结果表明:天山南坡暖季暴雨主要发生在南亚高压双体型、500 hPa以上西南急流(气流)、700 hPa切变辐合以及天山地形辐合抬升的重叠区域。水汽主要源自中亚、大西洋及其沿岸、地中海和黑海及其附近,经TKAP(塔吉克斯坦、吉尔吉斯坦、阿富汗东北部、巴基斯坦北部和印度西北部)、南疆、北疆关键区,分别从偏西、偏南、偏北通道输入暴雨区,700 hPa以上偏西通道、以下偏北通道占主导地位,且贡献最大的是南疆关键区。源自中亚的水汽主要输送至暴雨区700 hPa及以下,对暴雨的贡献较大,且沿途损失较大;源自大西洋及其沿岸、地中海和黑海及其附近的水汽主要输送至暴雨区700 hPa以上,对暴雨的贡献较小。另外,中低层还存在源自北疆、南疆、北美洲东部、蒙古的水汽。基于上述特征,建立了天山南坡暖季暴雨过程水汽三维精细化结构模型。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号