首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Piñon (Pinus edulis)-juniper (Juniperus monosperma)-ecosystems increased substantially in the western USA during the 20th century. Sustainability of these ecosystems primarily depends on soil quality and water availability. This study was undertaken with the objective of assessing the effect of tree species on soil physical quality in a semi-arid region in the western part of Sugarite Canyon, northeast of Raton, Colfax County, NM (37°56′32″N and 104°23′00″W) USA. Three cores and three bulk soil samples were obtained from the site under the canopy of three juniper, Gambel oak (Quercus gambelii) and piñon trees for 0–10 and 10–20 cm depths. These samples were analyzed for particle size distribution, soil bulk density (ρb), water stable aggregation (WSA), mean weight diameter (MWD) of aggregates, pH, electrical conductivity (EC) and soil organic carbon (SOC) and total nitrogen (TN) concentrations and stocks. Sand content was greater under juniper (48%) than oak (32%), whereas clay content followed the opposite trend. The ρb, WSA, MWD, pH and EC were similar under juniper, piñon, oak canopies for both depths. Estimated (from Philip and Green and Ampt infiltration models) and measured water infiltration parameters did not vary among these sites and were in accord with the values for ρb, WSA and MWD. The SOC concentrations and stocks were greater under oak (43.1 Mg ha−1 for 0–10 and 37.5 Mg ha−1 for 10–20 cm depths) than piñon (23.3 Mg ha−1 for 0–10 and 18.5 Mg ha−1 for 10–20 cm depths). The TN concentrations were greater under oak (3.4 g kg−1) than piñon (1.7 g kg−1) for the 0–10 cm depth only. Accumulation of detritus material under tree canopies reduced soil compaction and crusting caused by raindrop impact and increased SOC, and TN concentrations, and water infiltration. Coefficients of variation ranged from low to moderate for most soil properties except infiltration rate at 2.5 h, which was highly variable. Overall, soil quality for each site was good and soil aggregation, water infiltration and SOC concentrations were high, and soil ρb was low.  相似文献   

2.
Despite more than 40 yr of research attributing temporal changes in streambank erosion rates to subaerial processes, little quantitative information is available on the relationships between streambank erodibility (kd) and critical shear stress (τc) and the environmental conditions and processes that enhance streambank erosion potential. The study goal was to evaluate temporal changes in kd and τc from soil desiccation and freeze–thaw cycling. Soil erodibility and τc were measured monthly in situ using a multiangle, submerged jet test device. Soil moisture, temperature, and bulk density as well as precipitation, air temperature, and stream stage were measured continuously to determine changes in soil moisture content and state. Pairwise Mann–Whitney tests indicted kd was 2.9 and 2.1 times higher (p < 0.0065) during the winter (December–March) than in the spring/fall (April–May, October–November) and the summer (June–September), respectively. Regression analysis showed 80% of the variability in kd was explained by freeze–thaw cycling alone. Study results also indicated soil bulk density was highly influenced by winter weather conditions (r2 = 0.86): bulk density was inversely related to both soil water content and freeze–thaw cycling. Results showed that significant changes in the resistance of streambank soils to fluvial erosion can be attributed to subaerial processes. Water resource professionals should consider the implications of increased soil erodibility during the winter in the development of channel erosion models and stream restoration designs.  相似文献   

3.
Earthworks of assumed age and their initial and current morphologies provide an ideal basis for developing and testing models for long-term landform erosion. Inca agricultural terraces abandoned at  1532 A.D in the drylands of southern Peru may be used to document morphological changes since the abandonment. The objective of this research is to determine the erosion pattern and process to estimate the erosion rate.The development of rills and channels on the Inca agricultural terraces is evidence for erosion by wash processes on slopes where the anchoring effect of vegetation is absent and loose material is available for removal. The pattern and amount of erosion from 1532–2005 A.D. is estimated by comparing elevation models of the observed morphology and reconstructed models of the original morphology of the Inca terraces. The results show that in areas of sediment accumulation surface elevation increased up to 0.5 m. Elevation lowering on the terrace treads was 0.7 m at maximum, and a temporally and spatially averaged lowering rate was 0.094 mm yr− 1. This gives insights about how the rate of erosion occurs on currently disturbed lands in arid environments where soil resources are scarce and lands are prone to desertification.  相似文献   

4.
Prosopis L. pods have been proposed as a source of gum (galactomannans), with potential applications as a thickening agent in the food industry. The objective of this work was to compare, under field conditions, the production and mortality of reproductive structures in two sympatric shrub species of Prosopis: P. alpataco Phillipi and P. denudans Bentham. Our results indicate that fruit production in Prosopis denudans and P. alpataco is very low and erratic in non-irrigated lands. Although large quantities of flowers (15,000–25,000 flowers*0.40 m−2) can be found in one flowering season, 70–80% are shed before they reach anthesis and 20–28% are aborted between anthesis and fruit set. We conclude that the utilization of native populations of Prosopis denudans and P. alpataco for fruit production in Patagonian steppe, could not guarantee a consistent supply for the food industry.  相似文献   

5.
The objective of this study was to assess the contribution of the major soil/sediment surfaces in the Southern Aral Sea Basin to the dust generation potential of this region. Eight crusts and soils/sediments from seven sites, representative of these surfaces, were sampled in the field and their major characteristics (particle size distribution, organic carbon content, carbonate content, salt content and composition) that are related to dust generation, were determined. The PM10 and PM2·5 dust generation potential of the materials was determined in the laboratory using the Lubbock Dust Generation, Analysis and Sampling System (LDGASS). The highest amount of PM10 dust (579·3 mg.m−3) was generated from the Takyr crust material. The lowest by one Solonchak salt crust material (39·6 mg.m−3). Salt crusts from the desiccated Aral Sea bottom generated intermediate amounts of dust.The experimental results indicate that the Takyrs and Takyr-like soils, that occupy over 1 million ha in the Southern Aral Sea Basin, constitute the surfaces with the highest potential for being the source for the severe dust storms of the area. Second to the Takyr soils, the Solonchaks and Solonchak-like soils, also with an extent of over 1 million ha, contribute highly saline dust. To these must be added a large, as yet uncharted, proportion of the approximately 4 million ha of exposed sea bed, that exhibit Solonchak-like characteristics.  相似文献   

6.
Debris flows generated during rain storms on recently burned areas have destroyed lives and property throughout the Western U.S. Field evidence indicate that unlike landslide-triggered debris flows, these events have no identifiable initiation source and can occur with little or no antecedent moisture. Using rain gage and response data from five fires in Colorado and southern California, we document the rainfall conditions that have triggered post-fire debris flows and develop empirical rainfall intensity–duration thresholds for the occurrence of debris flows and floods following wildfires in these settings. This information can provide guidance for warning systems and planning for emergency response in similar settings.Debris flows were produced from 25 recently burned basins in Colorado in response to 13 short-duration, high-intensity convective storms. Debris flows were triggered after as little as six to 10 min of storm rainfall. About 80% of the storms that generated debris flows lasted less than 3 h, with most of the rain falling in less than 1 h. The storms triggering debris flows ranged in average intensity between 1.0 and 32.0 mm/h, and had recurrence intervals of two years or less. Threshold rainfall conditions for floods and debris flows sufficiently large to pose threats to life and property from recently burned areas in south-central, and southwestern, Colorado are defined by: I = 6.5D 0.7 and I = 9.5D 0.7, respectively, where I = rainfall intensity (in mm/h) and D = duration (in hours).Debris flows were generated from 68 recently burned areas in southern California in response to long-duration frontal storms. The flows occurred after as little as two hours, and up to 16 h, of low-intensity (2–10 mm/h) rainfall. The storms lasted between 5.5 and 33 h, with average intensities between 1.3 and 20.4 mm/h, and had recurrence intervals of two years or less. Threshold rainfall conditions for life- and property-threatening floods and debris flows during the first winter season following fires in Ventura County, and in the San Bernardino, San Gabriel and San Jacinto Mountains of southern California are defined by I = 12.5D0.4, and I = 7.2D0.4, respectively. A threshold defined for flood and debris-flow conditions following a year of vegetative recovery and sediment removal for the San Bernardino, San Gabriel and San Jacinto Mountains of I = 14.0D0.5 is approximately 25 mm/h higher than that developed for the first year following fires.The thresholds defined here are significantly lower than most identified for unburned settings, perhaps because of the difference between extremely rapid, runoff-dominated processes acting in burned areas and longer-term, infiltration-dominated processes on unburned hillslopes.  相似文献   

7.
Profile change in a lacustrine multiple-barred nearshore was investigated over the ice-free season of 2001/2002 at Burley Beach on the southeastern shore of Lake Huron in order to identify the feedback mechanisms between the pre-existing morphology and the wave forcing and the consequence of those feedbacks to the behaviour of the nearshore environment. The characteristics of the offshore wave field were monitored using a Falmouth Scientific combined 3D-ACM wave recorder and pressure transducer. Supplemental wave data were downloaded from a 3-m discus buoy operated by the National Data Buoy Center, 75 km to the NW of the study site. The three nearshore bars were in a quasi-equilibrium state through a large part of the ice-free season, with dramatic changes occurring during relatively moderate storm events that followed much larger storms in late October. A comparison of the incident wave field with changes in the nearshore profile through canonical correlation analysis indicates that the morphology responds to the distribution of the significant, root-mean-square (rms) and average wave heights between surveys. The threshold between bar decay and onshore bar migration and growth is associated with the onset of breaking of the rms wave at the bar crest (Hrms hcr−1 ≈0.3–0.4). The threshold between onshore and offshore migration is associated with the onset of breaking of the average wave at the bar crest (Havg hcr−1 ≈0.3–0.4), coincident with complete dissipation of the significant wave over the lakeward slope of the bar (Hs hcr−1 >0.6). Inshore wave data collected during an instrumented study at the same site revealed that the middle and inner bars remained at the threshold of onshore and offshore migration over a wide range of offshore significant wave heights (0.8 to 2.4 m) prior to the October storms. This self-organised equilibrium is a result of changes to the incident wave distribution through breaking on the outer bar. It is concluded that the prediction of bar response requires an understanding of the feedback between the bar and the local wave distribution in addition to an understanding of the feedback associated with the profile as a whole.  相似文献   

8.
As an approach to understand how diurnal and seasonal plant water potentials (Ψ) are related to soil water-content and evaporative demand components, the responses of six thornscrub shrubs species (Havardia pallens, Acacia rigidula, Eysenhardtia texana, Diospyros texana, Randia rhagocarpa, and Bernardia myricaefolia) of the north-eastern region of Mexico to drought stress were investigated during the course of 1 year. All study species showed the typical diurnal pattern of variation in Ψ. That is, Ψ decreased gradually from predawn (Ψpd) maximal values to reach minima at midday (Ψmd) and began to recover in the late afternoon. On a diurnal basis and with adequate soil water-content (>0.20 kg kg−1), diurnal Ψ values differed among shrub species and were negatively and significantly (p<0.001) correlated with air temperature (r=−0.741 to −0.883) and vapor pressure deficit (r=−0.750 to −0.817); in contrast, a positive and significant (p<0.001) relationship was found to exist with relative humidity (r=0.758–0.842). On a seasonal basis, during the wettest period (soil water-content>0.20 kg kg−1), higher Ψpd (−0.10 MPa) and Ψmd (−1.16 MPa) values were observed in R. rhagocarpa, whereas lower figures (−0.26 and −2.73 MPa, respectively) were detected in A. rigidula. On the other hand, during the driest period (soil water-content<0.15 kg kg−1), Ψpd and Ψmd values were below −7.3 MPa; i.e. when shrubs species faced severe water deficit. Soil water-content at different soil layers, monthly mean relative humidity and monthly precipitation were significantly correlated with both Ψpd (r=0.538–0.953; p<0.01) and Ψmd (r=0.431–0.906; p<0.05). Average soil water-content in the 0–50 cm soil depth profile explained between 70% and 87% of the variation in Ψpd. Results have shown that when gravimetric soil water-content values were above 0.15 kg kg−1, Ψpd values were high and constant; below this threshold value, Ψ declined gradually. Among all shrub species, A. rigidula appeared to be the most drought tolerant of the six species since during dry periods it tends to sustain significantly higher Ψpd in relation to B. myricaefolia. The remaining species showed an intermediate pattern. It is concluded that the ability of shrub species to cope with drought stress depends on the pattern of water uptake and the extent to control water loss through the transpirational flux.  相似文献   

9.
Soil beneath shrubs form ‘fertile islands’ in fallow sites and millet fields in semi-arid Niger. To gain more information about this phenomena different shrub species in fallow sites following a gradient from 350–650 mm precipitation were examined. For each shrub two different areas were distinguished: an area under the canopy of the shrubs and an area in the nearby open land. Soil samples were taken from a depth of 0–10 cm and analysed for Corg, Ntotal, PBray, pH(H2O), exchangeable cations, effective cation exchange capacity (ECEC) and soil texture. Significantly higher concentrations between 38–51% for C, N, P and 22% on ECEC for K+were found in the soil under the shrubs. The pH showed only slight but significant differences, whereas Al3+and H+rates on ECEC under the shrubs were increased by 44–55%. For Guiera senegalensis, the most common shrub of the studied area, enrichment ratios of most soil properties increased relatively more with increasing aridity. In general, enrichment ratios decreased with the age of the fallows, whereas concentrations showed no clear evolution. The chemical composition of the shrub litter seems to influence the degree of soil enrichment. The main step of fertile island formation takes place during the cultivation period by trapping wind-blown sediment. This work shows that shrubs are of vital importance for the accumulation of nutrients and maintenance of soil fertility within agro-ecosystems of Niger.  相似文献   

10.
Pinyon and juniper have been expanding into sagebrush (Artemisia tridentata) ecosystems since settlement of the Great Basin around 1860. Herbaceous understory vegetation is eliminated as stand densities increase and the potential for catastrophic fires increases. Prescribed fire is increasingly used to remove trees and promote recovery of sagebrush ecosystems. We quantified the effects of prescribed fire, vegetation type, and time following fire on soil KCl extractable nitrogen and NaHCO3 extractable phosphorus in a pinyon–juniper woodland and its associated sagebrush ecosystem immediately before and for 4 years after a spring prescribed burn. Potassium chloride extractable NH4+ and total inorganic-N increased immediately following prescribed fire, and extractable NO3 decreased immediately after the burn. In the surface layer (top 8 cm), extractable NH4+ remained elevated compared to the control through year 2 after the burn. By the first fall post-burn extractable NO3 and total extractable inorganic-N increased and remained elevated over the control through year 3 after the burn in the surface layer. For the entire soil profile (52 cm), the burn had no effect on NH4+, and the effects on total extractable inorganic-N were no longer significant after year 1. However, NO3 remained elevated over the control through year 2 post-fire for the soil profile. Near surface NaHCO3 extractable ortho-P increased immediately following fire, and remained elevated through year 2 post-fire. No fire effects were observed for extractable ortho-P in deeper horizons. Our data show that plant available nitrogen can remain elevated for extended periods following prescribed fire. This can influence regrowth and seedling establishment of native plant species, invasion of exotic plant species and, ultimately, site recovery potential.  相似文献   

11.
A sedimentary record of human disturbance from Lake Miragoane,Haiti   总被引:1,自引:0,他引:1  
Lake Miragoane, Haiti is one of the largest, natural freshwater lakes in the Caribbean (A=7.06 km2, zmax=41.0 m, conductivity = 350 S cm–1). Lake waters are dominated by calcium and bicarbonate ions. The lake was thermally stratified, and oxygen profiles were clinograde during summer visits in 1983 and 1985. A 72-cm mud-water interface core was taken near the center of the lake and dated with 210Pb. The local 210Pb fallout rate is low (0.09 pCi cm–2 yr–1), about 20% of the global average. Bulk sedimentation rates ranged from 0.008 to 0.030 g cm–2 yr–1 during the past 130 years (0–8 cm depth). Sediment geochemistry and pollen have been analyzed in the topmost 58 cm of the section. Tentative ages were assigned to the core by extrapolation of 210Pb dates. According to this preliminary chronology, the bottom part of the core (58–30 cm) records pre-Columbian sedimentation (1000–500 B.P.) and contains pollen evidence of intact, dry and mesic forest. Pre-Columbian deposits are rich in organic matter (x = 30%) and relatively poor in carbonates (x = 15% as CO2). The top 30 cm of the core preserve the record since European contact (500 B.P. to present). Pollen data reveal two episodes of deforestation following European arrival. Consequent soil erosion is documented by a decrease in organic matter content (x = 15%) and an increase in carbonates (x = 27% as CO2). Surficial sediments reflect the widespread deforestation and soil loss that characterize the watershed today.  相似文献   

12.
Landslides triggered by rainfall are the cause of thousands of deaths worldwide every year. One possible approach to limit the socioeconomic consequences of such events is the development of climatic thresholds for landslide initiation. In this paper, we propose a method that incorporates antecedent rainfall and streamflow data to develop a landslide initiation threshold for the North Shore Mountains of Vancouver, British Columbia. Hydroclimatic data were gathered for 18 storms that triggered landslides and 18 storms that did not. Discriminant function analysis separated the landslide-triggering storms from those storms that did not trigger landslides and selected the most meaningful variables that allow this separation. Discriminant functions were also developed for the landslide-triggering and nonlandslide-triggering storms. The difference of the discriminant scores, ΔCS, for both groups is a measure of landslide susceptibility during a storm. The variables identified that optimize the separation of the two storm groups are 4-week rainfall prior to a significant storm, 6-h rainfall during a storm, and the number of hours 1 m3/s discharge was exceeded at Mackay Creek during a storm. Three thresholds were identified. The Landslide Warning Threshold (LWT) is reached when ΔCS is −1. The Conditional Landslide Initiation Threshold (CTLI) is reached when ΔCS is zero, and it implies that landslides are likely if 4 mm/h rainfall intensity is exceeded at which point the Imminent Landslide Initiation Threshold (ITLI) is reached. The LWT allows time for the issuance of a landslide advisory and to move personnel out of hazardous areas. The methodology proposed in this paper can be transferred to other regions worldwide where type and quality of data are appropriate for this type of analysis.  相似文献   

13.
The arctic islands of the Lofoten-Vesterålen archipelago in northern Norway have a wide distribution of weathered land surfaces commonly located above 250 m with several apparent similarities. In order to investigate the characteristics of (deep) weathering in this region, northern Langøya and Hadseløya were chosen for in-depth analyses. Eight weathering profiles were excavated from various surfaces, and the stratigraphies were logged in detail. Material was collected throughout the weathering horizons, and all samples were subsequently analysed for clay mineralogy (< 63 μm fraction) and grain size distribution. The sampling strategy was complemented by samples from additional saprolites and other landforms such as moraines and rock glaciers. The XRD results indicate that the presence of secondary minerals, such as gibbsite (Al(OH)3) and kaolinite (Al2Si2O5(OH)4), are very common throughout the profiles. Gibbsite is an extreme end product of silicate weathering and usually associated with a warmer and more humid climate, as found in Scandinavia during the Tertiary. The grain size analyses (< 63 μm) show that the finer silt fractions (< 8 μm) tend to be high in the profiles (20–40%), with significant amounts of clay (5–15%) demonstrating that the regolith itself is susceptible to frost sorting mechanisms.10Be exposure dates from in situ quartz knobs on tors and boulders of local origin suggest > 40,000 years of subaerial conditions. Considering the steady surface erosion, this figure should be viewed as an absolute minimum age estimate. Mapping of the superficial sediments and geomorphological features of the study areas has revealed several common morphological features, which indicate dominance of glacial and periglacial processes in the areas lying below the lower boundary of blockfields (c. 250 m). The weathering mantles are not a periglacial end product, but rather a relict tertiary landform that were modulated by permafrost processes as well as biological processes at later stages. The regolith cover constrain the vertical extension of warm-based Quaternary ice sheets challenging the notion of a parabolic ice mass consuming every mountain top of Lofoten and Vesterålen.  相似文献   

14.
Cultivation, overgrazing, and overharvesting are seriously degrading forest and grassland ecosystems in the Taurus Mountains of the southern Mediterranean region of Turkey. This study investigated the effects of changes on soil organic carbon (SOC) content and other physical soil properties over a 12-year period in three adjacent ecosystems in a Mediterranean plateau. The ecosystems were cropland (converted from grasslands in 1990), open forest, and grassland. Soil samples from two depths, 0–10 and 10–20 cm, were collected for chemical and physical analyses at each of cropland, open forest, and grassland ecosystems. SOC pools at the 0–20 cm depth of cropland, forest, and grassland ecosystems were estimated at 32,636, 56,480, and 57,317 kg ha−1, respectively. Conversion of grassland into cropland during the 12-year period increased the bulk density by 10.5% and soil erodibility by 46.2%; it decreased SOM by 48.8%, SOC content by 43%, available water capacity (AWC) by 30.5%, and total porosity by 9.1% for the 0–20 cm soil depth (p<0.001). The correlation matrix revealed that SOC content was positively correlated with AWC, total porosity, mean weight diameter (MWD), forest, and grassland, and negatively with bulk density, pH, soil erodibility factor, and cropland. The multiple regression (MLR) models indicated that any two of the three ecosystems and one of the two soil depths accounted for 86.5% of variation in mean SOC values ((p<0.001).  相似文献   

15.
The Kunlun fault is one of the largest strike-slip faults in northern Tibet, China. In this paper, we focus upon the Kusai Lake–Kunlun Pass segment of the fault to understand the geomorphic development of offset streams caused by repeated large seismic events, based on tectono-geomorphic analysis of high-resolution satellite remote sensing images combined with field studies. The results indicate that systematic left-lateral stream offsets appear at various scales across the fault zone: Lateral offsets of small gullies caused by the 2001 Mw 7.8 Kunlun earthquake vary typically from 3 m to 6 m, meanwhile streams with cumulative offsets of 10 m, 25–30 m, 50–70 m, 250–300 m and 750–1400 m have resulted from repeated large seismic events during the late Quaternary. An average slip rate of 10 ± 1 mm/year has been estimated from the lateral stream offsets and 14C ages of alluvial fan surfaces incised by the streams. A three-dimensional model showing tectono-geomorphic features along a left-lateral strike-slip fault is also presented. The Kusai Lake–Kunlun Pass segment provides an opportunity to understand the relationship between geomorphic features produced by individual large seismic events and long-term geomorphic development caused by repeated large seismic events along a major strike-slip fault.  相似文献   

16.
The Late Glacial and Holocene geomorphology of the Manx uplands has received scant attention in previous researches. Solifluction deposits and terraces provide the earliest evidence for geomorphic activity after deglaciation. Fluvial incision into drift-choked valleys is correlated with the formation of the large mountain front alluvial fans that flank the Manx uplands. Formation of these alluvial fans is constrained to 15,000–10,500 cal. years BP by 14C dates on organic deposits beneath and above the alluvial fan gravels. Alluvial fan and river terraces along four valleys postdate this incision. Optically Stimulated Luminescence (OSL) and 14C dating provide a tentative chronology for these landforms. The higher terraces are Late Glacial fluvial surfaces that were probably occupied by rivers into the Holocene. Incision during the Late Holocene led to the abandonment of the higher surfaces, producing a suite of younger river terraces and alluvial fan surfaces. Independent dating constrains this fluvial activity to post-Bronze Age (3500–2800 cal. years BP). Increased human activity and climatic change during the Late Holocene are possible causes for this increased geomorphic activity.  相似文献   

17.
Wind erodibility of major soils in the farming-pastoral ecotone of China   总被引:2,自引:0,他引:2  
Wind erosion and desertification are severe problems in China's farming-pastoral ecotone. In this study, wind erodibility of five major soils in both uncultivated and simulated cultivated conditions, were determined through wind tunnel tests at nine wind speeds ranging from 10 to 26 m s−1. The average wind erosion rate (g m−2 min−1) under the uncultivated condition (q0) for the five soils could be set in the order: chestnut soil (28.5)>brown soil (24.8)>sierozem (21.8)>chernozem (19.9)>fixed sandy soil (11.4). The highest natural wind erosion might take place in the semi-arid steppe zone where the Chestnut soils predominate. Cultivation can significantly accelerate wind erosion, the mean wind erosion rate under the cultivated condition (qc) for all five soils was 743.7 g m−2 min−1 in the following order: sandy soil (3313.2)>brown soil (227.2)>chernozem (221.8)>sierozem (85.1)>chestnut soil (81.2). For both the uncultivated and cultivated soil samples, the relationship between wind erosion rate (q) and wind speed (U) could be expressed in general as q=A eBU (A and B are constant coefficients). There was a critical wind speed for each soil type except for the sandy soil. Below the critical wind speed, cultivation reduced wind erosion rate possibly due to soil clodiness and roughness effects. Above the critical speed, cultivation greatly intensified wind erosion rates due to the break down of the original soil structure. The critical wind speed measured at 20 cm above the soil surface was 20 m s−1 for the brown soil, 14 m s−1 for chernozem and the chestnut soils, and 10 m s−1 for the sierozem. Among the five tested soils, the high wind erosion rate of the cultivated sandy soil showed its extreme sensitivity to cultivation, possibly because of the structureless nature of the loose sand. The “effect of cultivation on wind erosion” index, η (=qc/q0), increased exponentially with the increase of wind speed, indicating that under higher wind speed conditions, cultivation could result in more severe wind erosion.  相似文献   

18.
Great interest has recently been focused on dating and interpreting alluvial-fan surfaces. As a complement to the radiometric methods often used for surface-exposure dating, this paper illustrates a rapid method for correlating and dating fan surfaces using the cross-sectional shape of gullies incised into fan surfaces. The method applies a linear hillslope-diffusion model to invert for the diffusivity age, κt (m2), using an elevation profile or gradient (slope) profile. Gullies near the distal end of fan surfaces are assumed to form quickly following fan entrenchment. Scarps adjacent to these gullies provide a measure of age. The method is illustrated on fan surfaces with ages of approximately 10 ka to 1.2 Ma in the arid southwestern United States. Two areas of focus are Death Valley, California, and the Ajo Mountains piedmont, Arizona. Gully-profile morphology is measured in two ways: by photometrically derived gradient (slope) profiles and by ground-surveyed elevation profiles. The κt values determined using ground-surveyed profiles are more consistent than those determined using photo-derived κt values. However, the mean κt values of both methods are comparable. The photometric method provides an efficient way to quantitatively and objectively correlate and relatively-date alluvial-fan surfaces. The κt values for each surface are determined to approximately 30–50% accuracy.  相似文献   

19.
Wind tunnel experiments for ‘Raindrop Detachment and Wind-Driven Transport’ (RD–WDT) process were conducted under improved lateral jetting induced by wind velocities of 6.4, 10, and 12 m s− 1 at nozzle operating pressures of 75, 100, and 150 kPa. Wind-driven rainfalls were also incident on the windward and leeward slopes of 4° and 9° to have a broad variation in the angle of incidence. The objective of this experimental set-up was to distinguish the roles of both impact components of obliquely striking wind-driven raindrops on RD and wind on WDT. Raindrop impact components and reference horizontal wind were quantified by normal (Etz) and horizontal (Etx) kinetic energy fluxes and wind shear velocity (u), respectively, to physically model the process of RD–WDT. The results showed, at each level of u, differential sand transport rates by RD–WDT (qm(RD–WDT)) occurred depending on the magnitude of raindrop impact components, and qm(RD–WDT) increased as the relative contribution of Etz increased. Although Etx was more correlated with qm(RD–WDT) than Etz, the extreme increases in Etx at the expense of Etz brought about no increases but decreases in qm(RD–WDT). An RD–WDT model was built under the process of examining the discrete effects of Etz and Etx on RD together with u and resulted in a better coefficient of determination (R2 = 0.89) than only total kinetic energy (Et) did alone with u (R2 = 0.84). In this study, Etx was strongly related to u and not to Etz, which was the principal difference from the previous rainsplash studies, which relied on the compensatory lateral jet development by the compressive pressure build-up at the raindrop–soil interface. Including Etx in the RD–WDT model both separated the distinct role of each raindrop impact component in RD and improved the performance of u in WDT by better distinguishing its interaction with Etx, which was not explicitly separated in previous models of RD–WDT.  相似文献   

20.
We have monitored initiation conditions for six debris flows between May 2004 and July 2006 in a 0.3 km2 drainage basin at Chalk Cliffs; a band of hydrothermally-altered quartz monzonite in central Colorado. Debris flows were initiated by water runoff from colluvium and bedrock that entrained sediment from rills and channels with slopes ranging from about 14° to 45°. The availability of channel material is essentially unlimited because of thick channel fill and refilling following debris flows by rock fall and dry ravel processes. Rainfall exceeding I = 6.61(D)− 0.77, where I is rainfall intensity (mm/h), and D is duration (h), was required for the initiation of debris flows in the drainage basin. The approximate minimum runoff discharge from the surface of bedrock required to initiate debris flows in the channels was 0.15 m3/s. Colluvium in the basin was unsaturated immediately prior to (antecedent) and during debris flows. Antecedent, volumetric moisture levels in colluvium at depths of 1 cm and 29 cm ranged from 4–9%, and 4–7%, respectively. During debris flows, peak moisture levels in colluvium at depths of 1 cm and 29 cm ranged from 10–20%, and 4–12%, respectively. Channel sediment at a depth of 45 cm was unsaturated before and during debris flows; antecedent moisture ranged from 20–22%, and peak moisture ranged from 24–38%. Although we have no measurements from shallow rill or channel sediment, we infer that it was unsaturated before debris flows, and saturated by surface-water runoff during debris flows.Our results allow us to make the following general statements with regard to debris flows generated by runoff in semi-arid to arid mountainous regions: 1) high antecedent moisture levels in hillslope and channel sediment are not required for the initiation of debris flows by runoff, 2) locations of entrainment of sediment by successive runoff events can vary within a basin as a function of variations in the thickness of existing channel fill and the rate of replenishment of channel fill by rock fall and dry ravel processes following debris flows, and 3) rainfall and simulated surface-water discharge thresholds can be useful in understanding and predicting debris flows generated by runoff and sediment entrainment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号