首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper presents Cu–Zn–As geochemical data from stream sediment surveys carried out in the three main watersheds of the Coquimbo Region of Chile. This mountainous semiarid realm occupies an area of 40,656 km2 between 29° and 32°S. Given that the area has a long historical record of mining activities, important environmental disturbances were expected. However, despite the detection of three major geochemical anomalies for Cu, Zn, or As, only one can be unmistakably linked to the development of mining–metal recovery procedures (Andacollo–Panulcillo). An investigation of the other two anomalies (Elqui and Hurtado) reveals three major causes that fully or partially account for them: (1) the type of ore deposit and associated hydrothermal alteration; (2) the regional structural setting (intensity of fracturing); and (3) climate–landscape. Cu–Au–As epithermal deposits/prospects along the so-called El Indio belt are here regarded as the sources of both the Elqui and Hurtado anomalies. The strong advanced argillic alteration present in some of the epithermal deposits/prospects of the El Indio belt may have induced the loss of the buffering capacity of rocks, and therefore favoured metal dispersion during later oxidation–leaching of sulphides. This applies to the Elqui and Hurtado anomalies. Conversely, given that the potassic, propylitic and phyllic alterations do not affect the buffering capacity of rocks, only minor metal dispersion is observed in relation to the Los Pelambres porphyry copper deposit. Besides, the epithermal belt is located within a highly fractured Andean domain (3,000–4,000 m of altitude), which may have conditioned the fast unroofing of ore deposits, contributed to enhanced circulation of meteoric waters, and eventually, to strong oxidation, and leaching of metals. Metal dispersion is aggravated during rainy years in response to strong El Niño episodes.  相似文献   

2.
Geochemical analyses of intertidal sediments from the northern part of the Fowey Estuary, Cornwall, UK, reveal a clear pulse in Sn concentration in sediments which predate 1880. Sn concentrations at the base of the cores increase rapidly to peak values of 1200 ppm and then decrease to values of 200 ppm at the present-day sediment surface. The mineralogy of the sediments is consistent with an origin from the release of mine waste from tin streaming and smelt products into the estuary. Further to the south, the down-core geochemistry of the estuary sediments is uniform with values of typically 400 ppm. This is interpreted as due to the natural reworking of the recognised pulse in particulate mine waste seen to the north.  相似文献   

3.
Ninety-two surface sediment samples were collected in Guanabara Bay, one of the most prominent urban bays in SE Brazil, to investigate the spatial distribution of anthropogenic pollutants. The concentrations of heavy metals, organic carbon and particle size were examined in all samples. Large spatial variations of heavy metals and particle size were observed. The highest concentrations of heavy metals were found in the muddy sediments from the north western region of the bay near the main outlets of the most polluted rivers, municipal waste drainage systems and one of the major oil refineries. Another anomalous concentration of metals was found adjacent to Rio de Janeiro Harbour. The heavy metal concentrations decrease to the northeast, due to intact rivers and the mangrove systems in this area, and to the south where the sand fraction and open-marine processes dominate. The geochemical normalization of metal data to Li or Al has also demonstrated that the anthropogenic input of heavy metals have altered the natural sediment heavy metal distribution.  相似文献   

4.
In an attempt to delineate heavy metal contamination precincts and to evaluate the extent and degree of toxic levels, besides their possible sources, 38 water samples from Ankaleshwar Industrial Estate, south Gujarat, India were analyzed. By clutching geochemical analyses and GIS-based colour composites areas depicting anomalously high concentration of heavy metals (Mo, Zn, Pb, Ni, Co, Cd, etc.) in the groundwater were revealed. The multicomponent overlays in grey-scale facilitated in identifying situates of heavy metal ‘hot spots’, and lateral protuberances of the contamination plume around defile stretch of the main stream Amla Khadi flowing through the area. The multiple pollution plumes emerging from other parts of the area further coincide with effluent laden streams and small channels indicating industrial establishments as major sources of groundwater contamination. Influent nature of the streams, accelerated infiltration process, high mass influx and shallow groundwater table are the factors conducive for easy access of heavy metals to the phreatic aquifers affecting over 20 km2 area. On the basis of P/U ratios (concentration of metals in polluted water to unpolluted water), geogenic and anthropogenic sources have been identified. Very high levels of technogenic elements present in the ground water raise concerns about possible migration into food crops, as the area is an important horticultural locale and is highly cultivated.  相似文献   

5.
Trace element concentrations in shallow marine sediments of the Buyat-Ratototok district of North Sulawesi, Indonesia, are affected by submarine disposal of industrial gold mine tailings and unregulated dumping of tailings and wastewater from small-scale gold mining using mercury amalgamation. Industrial mine tailings contained 590–690 ppm arsenic, 490–580 ppm antimony, and 0.8–5.8 ppm mercury. Tailings-affected sediment As and Sb concentrations were 20–30 times higher than in muddy sediments not contaminated with tailings, and 50–60 times higher than pre-mining average. Highest mercury concentrations were observed in sediments affected by small-scale mining using mercury amalgamation (5–29 ppm). Concentrations of most other trace elements were comparable in sediments affected by both types of mining and were slightly higher than regional averages for sediments collected before the onset of industrial mining. Elevated concentrations of both As and Sb in approximately equal proportions suggest tailings dispersal of at least 3.5 km. Mercury released from artisanal gold mining dispersed up to 4 km from river mouths. Slight increases in concentrations of non-mercury trace elements in areas affected by artisanal mining over pre-industrial mining concentrations were probably caused by increased rates of erosion. Electronic supplementary material Supplementary material is available in the online version of this article at and is accessible for authorized users.  相似文献   

6.
The distribution of selected heavy metals, including some radionuclides, metalloids and non-metals was determined in stream sediments in a region influenced by abandoned copper mining and ore processing activities. A considerable amount of the ore processing waste with a very complex composition and highly elevated concentrations of zinc, sulfur, lead, copper, arsenic, and a lot of other elements in the range between 100 and 1,000 mg/kg (Sb, Mn, Ni, Cr, Cd, Hg, and Ag) was piled up on mine dumps. The dispersion of the pollutants originating from this source and their environmental impact were investigated. Both, sediments and original waste material were studied to indicate the pathways and the mobilization behavior of different pollutants. For this purpose, the process of the elution of pollutants by application of different fractionation schemes was studied. The capabilities of different analytical techniques are shown for the analysis of solid samples (X-ray fluorescence spectrometry, Gamma-spectrometry) and liquid ones (ICP-atomic emission spectrometry, ICP-mass spectrometry and different techniques of atomic absorption). Additionally, the coupling of ion chromatography and ICP-MS detection was used to study the distribution of arsenic species in the sediment cores of a lake which acts as a natural sink for the region.  相似文献   

7.
Between 1995 and 2007, the concentrations of Pb and Zn in floodplain soils increased along a 60-km reach of the Lahn River, Germany, suggesting that the storage of some metals in the fluvial system is out of phase with recent declines in the release of metals to the environment. Re-sampling of surface soils to 5 cm along five transects perpendicular to the river indicated that the concentration of Pb increased between 1995 and 2007 along two transects and was statistically unchanged at the other three. The concentration of Zn increased at three of five transects and was statistically unchanged at two transects over the same time period. Between 1995 and 2007, concentrations of Cu were statistically equal along four of five transects and declined at the other transect. The increase in Pb and Zn was greater in a more rural than in a more urbanized reach of the Lahn River. Soil texture and organic matter content had virtually no impact on the concentration of metals. The increase in Pb concentration suggests a lag between the decline in Pb releases to the environment and its movement through the fluvial system. Increased Zn storage may result from the high solubility of the metal and the relative ease with which it moves through the environment. Environmental controls appear to have slowed Cu storage along the Lahn River, but are not yet reflected in Pb and Zn storage.  相似文献   

8.
This study reports the degree of heavy metal pollution (Cr, Cu, Ni, Pb, Zn and V) in 135 urban topsoil samples from the metropolitan area of Mexico City. Pollution indices (PI) were calculated to identify the metal accumulation with respect to the background values. The levels of heavy metals in the analyzed samples show a wide range of variation. Lead, Zn and Cu are the elements most enriched in the analyzed area, presenting pollution indexes of up to 23.8, 21.6 and 12.4, respectively. Geochemical maps were produced to assess the spatial distribution of pollution index. It is concluded that emissions from vehicles may be the major source of Pb urban contamination; furthermore, other small or large factories are possible sources for soil pollution (Cu, Zn). The concentration of Cr, Ni, and V in most of the analyzed samples do not appear to reach pollution levels. The assessment of the soil environmental quality in the metropolitan area Mexico City in terms of PI can be used as the basis for a regular monitoring program for implementing suitable pollution control measures.  相似文献   

9.
The concentrations of heavy metals (As, Ba, Co, Cr, Cu, Ni, Mo, Pb, Sr, V and Zn) were studied in soils to understand metal contamination due to industrialization and urbanization around Manali industrial area in Chennai, Southern India. This area is affected by the industrial activity and saturated by industries like petrochemicals, refineries, and fertilizers generating hazardous wastes. The contamination of the soils was assessed on the basis of geoaccumulation index, enrichment factor (EF), contamination factor and degree of contamination. Soil samples were collected from the industrial area of Manali from the top 10-cm-layer of the soil. Soil samples were analyzed for heavy metals by using Philips MagiX PRO-2440 Wavelength dispersive X-ray fluorescence spectrometry. The data revealed elevated concentrations of Chromium (149.8–418.0 mg/kg), Copper (22.4–372.0 mg/kg), Nickel (11.8–78.8 mg/kg), Zinc (63.5–213.6 mg/kg) and Molybdenum (2.3–15.3 mg/kg). The concentrations of other elements were similar to the levels in the earth’s crust or pointed to metal depletion in the soil (EF < 1). The high-EFs for some heavy metals obtained in the soil samples show that there is a considerable heavy metal pollution, which could be correlated with the industries in the area. Contamination sites pose significant environmental hazards for terrestrial and aquatic ecosystems. They are important sources of pollution and may result in ecotoxicological effects on terrestrial, groundwater and aquatic ecosystems. In this perspective there is need for a safe dumping of waste disposal in order to minimize environmental pollution.  相似文献   

10.
Heavy metal concentrations were studied in the scales of recent and subrecent (2–25 years old) fish buried in the oxbow lake sediments of the Morava River. The samples were taken from two cores up to 4-m deep and analysed using laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) and an electron microprobe analysis (EMPA). The results were compared with heavy metal concentrations of bulk samples of the embedding sediment. The study has revealed substantial differences in heavy metal contents existing between the recent and subrecent fish scales documenting an extreme rapidity of the diagenesis/fossilization processes. The most apparent features of the early fossilization include the quick loss of the mucous envelope, collagen and magnesium and an enormous increase in the heavy metal concentrations in particular iron, which is connected with a colour change. The variations in heavy metal contents in fish scales within a sample are attributed to variations in heavy metal content in the environment and variable amounts of organic matter in the embedding sediment. In contrast to the contamination of the embedding sediment, no general increase in heavy metal concentrations in fish scales was observed down to the cores. It is inferred that the rapid sorption stabilizes the biologic hydroxyapatite of the fish scales, which thus rapidly attain a thermodynamic equilibrium with the embedding water-saturated sediment. The results show that the processes of sorption, fossilization and stabilization of hydroxyapatite can act very quickly over a time scale of several years and represent thus a great advantage in the preservation of the original signals of the ancient environments.  相似文献   

11.
Heavy metals in sediments of the Tecate River, Mexico   总被引:1,自引:0,他引:1  
Ten sites along the Tecate River, Mexico were sampled to evaluate the cadmium, lead, nickel and chromium concentrations in sediments. The result shows contamination for cadmium in most of the sites, where two sites were class 4 (polluted to strongly polluted) according to geoaccumulation index proposed by Muller. Two sites were found polluted for all the heavy metals analyzed (Cr, Cd, Pb and Ni), indicating the effect of anthropogenic activities. A correlation between Ni and Cd concentration had been found indicating a common source. These metals are usually used in electroplating industry. The results of this study can be used for decision makers to prioritize measures to control the pollution for these metals.  相似文献   

12.
Oysters and sediment have been collected from most major US Gulf of Mexico bays and estuaries each year since 1986. Selected samples of oyster soft tissue, shell and sediments were analyzed for Cd, Cr, Cu, Fe, Mn, Pb, and Zn for this study. Concentrations varied considerably from place to place but ratios of metals remained relatively constant. Cu and Zn are greatly enriched in oyster tissues, which is related to their physiological function. Cd is enriched in oyster shell because of the easy substitution between Cd and Ca. The concentrations of Pb and Cr in oysters are significantly lower than that in sediment, suggesting a good discrimination against these metals by oysters. Metal variations are a result of both nature and human activity. Received: 13 September 1999 · Accepted: 8 December 1999  相似文献   

13.
 The Yamuna River sediments, collected from Delhi and Agra urban centres, were analysed for concentration and distribution of nine heavy metals by means of atomic adsorption spectrometry. Total metal contents varied in the following ranges (in mg/kg): Cr (157–817), Mn (515–1015), Fe (28,700–45,300), Co(11.7–28.4), Ni (40–538), Cu (40–1204), Zn (107–1974), Pb (22–856) and Cd (0.50–114.8). The degree of metal enrichment was compared with the average shale concentration and shows exceptionally high values for Cr, Ni, Cu, Zn, Pb and Cd in both urban centres. In the total heavy metal concentration, anthropogenic input contains 70% Cr, 74% Cu, 59% Zn, 46% Pb, 90% Cd in Delhi and 61% Cr, 23% Ni, 71% Cu, 72% Zn, 63% Pb, 94% Cd in Agra. A significant correlation was observed between increasing Cr, Ni, Zn, and Cu concentrations with increasing total sediment carbon and total sediment sulfur content. Based on the Müller's geoaccumulation index, the quality of the river sediments can be regarded as being moderately polluted to very highly polluted with Cr, Ni, Cu, Zn, Pb and Cd in the Delhi and Agra urban centres. The present sediment analysis, therefore, plays an important role in environmental measures for the Yamuna River and the planning of these city centres. Received: 21 June 1999 · Accepted: 1 October 1999  相似文献   

14.
Present concentrations and distributions of heavy metals through profiles, surface soil, and stream sediment samples in the Hunchun area, north-eastern China, were investigated to determine the elemental background values. This study also aims to characterize potentially toxic materials such as pulverized fly ash (PFA) from power stations or ash and slag from coal used domestically in urban areas, agrochemicals applied inappropriately, and urban sewage sludges from Hunchun City, as well as to ascertain the possibility of natural enrichment through site characterization by mineralogical and geochemical investigation. The distribution of contaminants in the alluvial soils (fluvisol) of this area has been influenced by several interacting factors. The parent alluvial materials from weathered products of amphiboles have made coatings such as ferrihydrite, goethite, and hematite. This natural inheritance factor is supported by the fact that the concentrations of weak acid-extractable (plant-available) heavy metals are very low, except for Fe and Mn. However, in agricultural soils and adjacent stream sediments, an anthropogenic input of Cd, Pb, Ni and Cr by agrochemicals is strongly suggested. Also, F contamination by coal combustion and the dissolution of F-bearing minerals could cause some future problems. Wide distribution and significantly high concentrations of Cd, Fe, Mn, and F in soils throughout the combination of pollutants originating from lithogenic and the anthropogenic sources pose potential problems in utilizing water resources. Received: 14 June 1999 · Accepted: 27 December 1999  相似文献   

15.
Heavy metal sources in Sultan Marsh and its neighborhood,Kayseri, Turkey   总被引:2,自引:0,他引:2  
Sultan Marsh (Turkey) is one of the largest wet lands of the Middle East and Europe. The aim of this study was to determine average concentrations of heavy metals, variations of the obtained values in a large scale, geogenic and anthropogenic sources of the pollution and effects of the pollution on the environment in Sultan Marsh. To these aims, a total of 176 surface soil samples (0–10 cm depth) were collected from 80 ha land in Sultan Marsh. Using a bench-top Spectro-Xepos X-ray fluorescence spectrometer, we analyzed all samples to determine the near-total concentrations of 26 chemical elements. Basic and multivariate statistics were used for statistical analyses. GIS mapping, a powerful tool for identifying possible sources of pollutants, was used to classify and identify the elements. Relatively high concentrations of the elements Fe, Pb, Zn, Sb, W, Mo, Co, Cu, Hg, Ni, Cr, Mn and Cd were found in Sultan Marsh, surrounding rocks (geogenic sources), mines of Fe and Pb/Zn, industrial facilities, residential and agricultural areas and major traffic routes (anthropogenic sources).  相似文献   

16.
Surface samples are used to determine onshore-offshore variations in heavy metal concentrations on tidal flats on Chongming and Hengsha Islands in the Yangtze Estuary, China. The Mann-Whitney U-Test suggests that proximity to the estuarine turbidity maximum does not result in significantly higher metal concentrations on tidal flats. Principal Components Analysis shows that grain-size is the primary control on metal concentrations, reflecting the occurrence of salt marsh and mud and sand flats. Sediment quality is comparable to that of pristine estuaries because of dilution by high river sediment loads.  相似文献   

17.
 Trace element geochemistry of humus (<0.425 mm) and till (<0.002 mm) collected in the Flin Flon-Snow Lake area, northern Manitoba and Saskatchewan, provides a regional context for assessing smelter contamination in the environment. The area includes a Cu-Zn smelter known to discharge As, Cd, Cu, Fe, Hg, Pb, and Zn. In this study, sequential extraction analyses, scanning electron microscopy and x-ray diffraction analyses were used on a suite of samples to determine: (1) the chemical and physical characteristics of heavy metals in surficial sediments related to distance from the smelter, (2) criteria for assessing the relative contribution of these metals from natural and anthropogenic sources, and (3) the potential of these metals for remobilization in the environment. Humus geochemistry reflects the anthropogenic and natural component of heavy metal concentrations. Smelter-related elements show anomalously high values adjacent to the smelter, decreasing with distance until background values are reached at 70–104 km, depending on the element. In humus, Zn is associated primarily with labile phases; Hg with non-labile phases. Adjacent to the smelter, high proportions and concentrations of Zn and Hg in non-labile phases, indicative of smelter-derived particulates, are confirmed by SEM examination. The particles occur as spheres, irregular grains, and with organics. With increasing distance from the smelter, the geochemical response to bedrock composition is more obvious than the anthropogenic input. Till geochemistry reflects the natural variation imposed by bedrock composition. At highly contaminated sites (<3 km from the smelter), increased percentages of smelter-related elements in labile phases suggests heavy metals are leached from humus to the underlying sediment. Received: 5 November 1996 · Accepted: 31 March 1997  相似文献   

18.
The competitive adsorption and the release of selected heavy metals and their speciation distribution before and after adsorption in the Yellow River sediments are discussed. The adsorption of metals onto sediments increases with increasing pH value and decreases with increasing ionic strength. The competitive coefficient K c and the distribution coefficient K d are obtained to analyze the competitive abilities of selected heavy metals, which are ranked as Pb > Cu >> Zn > Cd. The competition among selected heavy metals becomes more impetuous with increasing ion concentration in water. Speciation analysis was done by an improved analytical procedure involving five steps of sequential extraction. Cu, Pb and Zn were mainly transformed into the carbonate-bound form (50.8–87.7%) in adsorption. Most of (60.7–77.3%) Cd was transformed into the exchangeable form, and the percentage of carbonate-bound Cd was 19.7–30.4%. The release reaction was so quick that the release capacity of selected heavy metals from sediments to aqueous solution reached half of the maximum value only in 30 s. As opposed to adsorption, the release capacities of selected heavy metals were ranked as Cd > Zn >> Cu > Pb. In this study, Cd produces the most severe environmental hazards, because its concentration in the release solution is 85.8 times more than the human health criteria of US EPA.  相似文献   

19.
In this study, heavy metal contents of samples from Gumusler creek in Turkey were studied and the metal contamination characteristics were investigated. In this respect, considering the pollutant sites in the area, systematic sediment samples were collected in a zone starting from the manifestation part of the water to the entrance of the Karasu creek in Gumusler town. Samples were taken from lower section of the river bed at 30 stations along Gumusler creek, 13 km in length and their heavy metal contents were analyzed with XRF Spectrometer. Correlation coefficients, element coefitic coefficient correlation, dendogram hierarchical cluster, model summary and Annova analysis statistical methods were applied to data. Strong positive correlations were determined for some elements which are believed to have possibly the same origin. In addition, mineralizations in the area are thought to cause variation in metal contents. Results of chemical analysis show that soil limit values and clark values were exceeded. The heavy metal accumulation in the creek is believed to be derived from non-operated Sb-Hg-W and Fe quarries.  相似文献   

20.
土壤中重金属形态分析方法研究   总被引:1,自引:0,他引:1  
介绍了一种重金属形态分析连续多级提取新方法,用国家一级标样进行试验研究,并用国际标样做对比研究,表明该方法具有分组合理、更接近自然状态、操作简便易行、数据稳定可靠的特点,可为土壤环境中的重金属形态的研究及其环境危险评价提供更精确的元素信息。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号