首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 125 毫秒
1.
A 21-d laboratory experiment was conducted to study, the phosphorus (P) utilization of two different diets by redlip mullet Liza haematocheila T. & S. Sand-filtered water in salinity 30 and temperatare 25℃ was used. Twenty-nine fish individuals were divided into three groups: 11 to group 1 (G1) fed on diet 1, 11 to group 2 (G2) fed on diet 2, and 7 to contrast group. Diet 1 was a commercial feed, more valuable in nutrition than diet 2 that similar to natural detritus. The results show the intake phosphorus (IP) of G1 was significantly higher than that of G2, and both increased linearly with body size at a certain amount of diet. The retention phosphorus (RP) in fish of G1 was lower than G2. The relationship between retention phosphorus and body size was positive and stronger in G2. Significant difference in faecal phosphorus (FP) was found between G1 and G2. Body size significantly impacted the excretion phosphorus (EP) in G1 but G2. The loss of intake phosphorus in G1 was 10.83-20.27 mg per g fish weight gain, higher than that in G2 for 6.63-9.56. Of the phosphorus, about 10% was allocated into growth, 50% in faeces, and the rest lost in excretion. The main part of phosphorus was lost in faeces but excretion. The phosphorus budget of the fish could be described as 100IP = 7.40RP + 47.39FP + 36.63EP (Diet 1) or 100IP = 11.93RP + 56.64FP + 21.76EP (Diet 2).  相似文献   

2.
Effects of water temperature (17, 21, 25, 30 and 35℃) and body size (14.75-281.41 g initial body weight) on food consumption, growth, feed conversion, and dry matter content in orange-spotted grouper fed to satiation were investigated. The combined effect of temperature (T, ℃) and body weight (W, g) on maximum food consumption (Cmax, g/day) was described as: InCmax=-7.411+0.828 InW+0.317T4).004 7T2, and the optimum feeding temperature was 33.9℃. The combined effect of temperature and body weight on growth (G) was described as: lnG=-4.461-0.2081nW+0.394T-0.006 3T^2. The optimum growth temperature was 31.4℃, whereas overall growth rates were high at 25, 30 and 35 ℃. Feed conversion efficiencies (FCE, %), increasing first and then decreasing with increasing temperature, averaged from 1.8 to 2.1 in terms of dry weight of food fish. The optimum temperature for FCE tended to be lower than that for growth or feeding. Dry matter content increased with both increasing water temperature (17, 25, 30 and 35℃) and body weight, and the combined effect of temperature and body weight on dry matter content (DM, %) was described as: lnDM =3.232+0.01 4 lnW-0.004 4T+0.001 2TInW.  相似文献   

3.
We evaluated the effect of ration level(RL) on the growth and energy budget of lenok Brachymystax lenok. Juvenile lenok(initial mean body weight 3.06±0.13 g) were fed for 21 d at five different ration levels: starvation,2%,3%,4% bwd(body weight per day,based on initial mean values),and apparent satiation. Feed consumption,apparent digestibility,and growth were directly measured. Specific growth rates in terms of wet weight,dry weight,protein,and energy increased logarithmically with an increase in ration levels. The relationship between specific growth rate in terms of wet weight(SGRw,%/d) and RL(%) was characterized by a decelerating curve: SGRw=-1.417+3.166ln(RL+1). The apparent digestibility coefficients of energy exhibited a decreasing pattern with increasing ration level,and there was a significant difference among different RLs. Body composition was significantly affected by ration size. The relationship between feed efficiency rate in terms of energy(FERe) and RL was: FERe=-14.167+23.793RL–3.367(RL)2,and the maximum FERe was observed at a 3.53% ration. The maintenance requirement for energy of juvenile lenok was 105.39 k J BW(kg)-0.80/d,the utilization efficiency of DE for growth was 0.496. The energy budget equation at satiation was: 100IE=29.03FE+5.78(ZE+UE)+39.56 HE+25.63 RE,where IE is feed energy,FE is fecal energy,ZE+UE is excretory energy,HE is heat production,and RE is recovered energy. Our results suggest that the most suitable feeding rate for juvenile lenok aquaculture for wet weight growth is 2.89% bwd,whereas for energy growth,the suggested rate is 3.53% bwd at this growth stage.  相似文献   

4.
The effect of dietary phosphorus on the growth and body components of juvenile Synechogobius hasta was determined. Different percentages of dietary phosphorus (0.63, 0.77, 0.93, 1.06, 1.22 and 1.36) were tested by feeding the fish (body weight, 15.81 g ± 0.32 g; 20 individuals each group; 3 groups each percentage) at a surplus of 5%–10% above satiation for 35 d. Dietary phosphorus did not significantly affect the specific growth rate, feed intake, feed conversion ratio and protein efficiency rate. Nitrogen ...  相似文献   

5.
Growth and energy budget of the polychaete, Neanthesjaponica, at various temperatures (17, 20, 23, 26 and 29℃) were investigated in this study. The growth, as indicated by final dry weight and specific growth rate (SGR), increased with increasing temperature, with the maximum level at 26℃, and then decreased significantly at 29℃. A similar trend was observed in feeding rate, food conversion efficiency (FCE) and apparent digestive rate (ADR). However, no significant differences were detected in ADR among all the temperature treatments. In the pattern of energy allocation, faeces energy was only a small component of energy budget and had little influence on the proportion of food energy allocated to growth. The metabolic energy accounted for a large portion of energy intake for each temperature treatment. The nitrogen excretion was appreciable with changing temperature. The two expenditure terms (respiration energy and excretion energy) in energy budget were the major factors influencing the proportion of food energy allocated to growth. These results revealed that temperature affected the growth of N. japonica mainly by influencing feeding rate and FCE. In addition, regression equations describing the relationship between feeding rate, faecal production, SGR, FCE and temperature were obtained. The optimum temperatures for feeding rate, FCE and SGR were estimated at 25.01 ℃, 24.24℃ and 24.73 ℃, respectively, from the regression equations.  相似文献   

6.
The effects of different feeds and feeding regimes on growth performance, flesh quality and fecal viscosity of Atlantic salmon(Salmo salar L.) in recirculating aquaculture systems(RAS) were investigated. Fish(initial body weight of 1677 g ± 157 g) were fed with four commercial feeds(Nosan salmon-NS, Aller gold-AG, Skretting salmon-SS and Han ye-HY) in two feeding regimes(80% and 100% satiation) for 78 d. The results showed that salmon specific growth ratio(SGR) and weight gain ratio(WGR) were significantly affected by feed type and feeding regime(P 0.05). Feed conversion ratio(FCR) varied between 0.93 and 3.40, which was significantly affected by feed type(P 0.05), and slightly improved with increased satiation degree. The activities of digestive enzymes including protease, lipase and amylase were also significantly affected by feed type and feeding regime(P 0.05), increasing with satiation degree. Flesh qualities for vitamin E, hydroxyproline(HYP), liquid loss and muscle p H among all groups showed significant differences(P 0.05), ranging from 26.67 to 29.67, while no obvious difference was found in flesh color. Fecal viscosity for different treatments showed no significant difference, though improvement was found in 100% satiation group. From present experiment, it was concluded that both feed type and feeding regime can affect the important quality attributes of Atlantic salmon.  相似文献   

7.
Growth and energy budget of the polychaete, Neanthesjaponica, at various temperatures (17, 20, 23, 26 and 29 ℃) were investigated in this study. The growth, as indicated by final dry weight and specific growth rate (SGR), increased with increasing temperature, with the maximum level at 26℃, and then decreased significantly at 29℃. A similar trend was observed in feeding rate, food conversion efficiency (FCE) and apparent digestive rate (ADR). However, no significant differences were detected in ADR among all the temperature treatments. In the pattern of energy allocation, faeces energy was only a small component of energy budget and had little influence on the proportion of food energy allocated to growth. The metabolic energy accounted for a large portion of energy intake for each temperature treatment. The nitrogen excretion was appreciable with changing temperature. The two expendi-ture terms (respiration energy and excretion energy) in energy budget were the major factors influencing the proportion of food en-ergy allocated to growth. These results revealed that temperature affected the growth of N. japonica mainly by influencing feeding rate and FCE. In addition, regression equations describing the relationship between feeding rate, faecal production, SGR, FCE and temperature were obtained. The optimum temperatures for feeding rate, FCE and SGR were estimated at 25.01 ℃, 24.24℃ and 24.73 ℃, respectively, from the regression equations.  相似文献   

8.
We evaluated the dietary protein requirements of juvenile turbot (Scophthalmus maximus L.) and their effects on aquatic quality. Five experimental diets were formulated containing 450, 480, 500, 520, and 540 g/kg. Each diet was randomly assigned to triplicate groups of juvenile turbot (mean initial body weight 34.5 ± 5.5 g) for 88 d. Both the weight gain ratio and feed efficiency increased with increasing dietary protein up to 500 g/kg, but no further improvement was detected when dietary protein levels were >500 g/kg. Protein intake and digestion increased with protein levels, while fecal nitrogen and nitrogen content in seawater increased only when dietary protein exceeded 500 g/kg. Protein digestibility was highest at intermediate dietary protein levels. Chemical oxygen demand, nitrite-nitrogen (NO2--N) and phosphatic-phosphor (PO43--P) levels increased in the rearing water as dietary protein levels increased. The optimum eco-nutrition level of dietary protein for juvenile turbot was 500 g/kg under the current experimental conditions. The diets containing 540 and 500 g/kg protein had similar growth rates and feed conversion ratios, but levels of ammonia (NH4+) and nitrogen were considerably higher in the water and feces, respectively, at the higher level of dietary protein. The difference in the pattern of change between body weight gain and ammonia concentration in water with increasing dietary protein is described by rhomb characteristics.  相似文献   

9.
We investigated the growth and body composition of Nile tilapia under five different feeding regimes. A control group was fed to satiation twice daily for 185 days; four treatment groups were fed at intervals of 2, 3, 4 or 7 days(dietary ‘restricted' period, days 0–80) and then fed to satiation(‘refeeding' period, days 80–185). Compensatory growth in weight and length of the feed-restricted groups was observed during the refeeding period. However, the growth of none of the restricted groups caught up with that of the control group over the experimental period. Feed intake upon refeeding increased with the duration of deprivation. There were no significant differences in feed efficiency between the restricted and control groups during the refeeding stage, suggesting that hyperphagia was the mechanism responsible for the increased growth rates during this period. Tilapia preferentially used n-3 polyunsaturated fatty acids and nonessential amino acids during the restricted-feeding period. Higher production was achieved by higher feed consumption. We suggest that if attainment of market size in minimum time is required, fish should be consistently fed to satiation, while taking care to avoid the possible negative consequences of overfeeding.  相似文献   

10.
The effects of body weight and temperature on the carbon budget of the juvenile bastard halibut ,Paralichthys olivaceus ,were studied at temperature 13.5,18,21.5 and 24℃,respectively.The carbon intake,faecal and growth carbon were measured ,and the carbon respiration was calculated using the carbon budget equation (Cc=Gc Fc Rc),The combined relationship between different components of the carbon budgent,body weight and temperature could be described by regression equations:Cc=1.0206 W^0.8126E^0.1483T;Gc=0.0042w^1.4096(-5.11 T^3 285.90T^2-5173.72T 30314.03);Fc=0.0485W^0.7711e^0.1624T;Uc=1.4333W^0.6715e^0.1487t,Body weight had no significant effect on the carbon absorption efficiency and the conversion efficiency.  相似文献   

11.
INTRODUCTIONThemetabolisminfishincludesstandardmetabolism(RS)routinemetabolism(RR),specificdynamicaction(SDA)andactivemetabolism(RA),relatedas:  RT=RS RR SDA RAwhereRSisthemetabolismofthefishatrest;RRthemetabolismoftheroutinelyactivefish;SDAthemetabolismofth…  相似文献   

12.
An experiment was performed to determine the dietary phosphorus requirement of the young abalone,Haliotis discus hannai. Five semi-purified diets were formulated to provide a series of graded levels of dietary total phosphorus (0.23%–1.98) from monobasic potassium phosphate (KH2P04). The brown alga,Laminaria japonica, was used as a control diet. Similar size abalone were distributed in a single-pass, flow-through system using a completely randomized design with six treatments and three replicates each treatment. The abalone were hand-fed to satiation with appropriate diets in excess, once daily at 17:00. The feeding trial was run for 120-d. Survival rate and soft-body to shell ratio (SB/S) were constantly maintained regardless of dietary treatment. However, the weight gain rate (WGR), daily increment in shell length (DISL), muscle RNA to DNA ratio (RNA/DNA), carcass levels of lipid and protein, soft-body alkaline phosphatase (SBAKP), and phosphorus concentrations of whole body (WB) and soft body (SB) were significantly (ANOVA, P<0.05) affected by the dietary phosphorus level. The dietary phosphorus requirements of the abalone were evaluated from the WGR, DISL, and RNA/DNA ratio respectively, by using second-order polynomial regression analysis. Based on these criteria, about 1.0%–1.2% total dietary phosphorus, i.e. 0.9%–1.1% dietary available phosphorus is recommended for the maximum growth of the abalone. Project 39670572 supported by the NSFC.  相似文献   

13.
This study deals with contribution of artificial food pellet and natural food to Chinese prawn (Penaeus orientalis) growth in a semiintensive culture pond. The prawn carbon consumption, budget, and the effects of some factors on the budget were investigated. The results showed that 26.2% of P. orientalis growth carbon came from formulated feed at the initial culture stage (when the prawns were 0.06±0.01 g in wet weight), and was 62.5% when the prawns were 9.56±1.04 g. The remaining part of the growth carbon was derived from organic fertilizer and natural food. The highest growth rate occurred at 20×10-3 salinity. Suitable salinity for culturing Chinese prawn was (20-28)×10-3.  相似文献   

14.
Dilution incubations and Calanus sinicus addition incubations were simultaneously conducted at five stations in the Yellow Sea in June of 2004 to evaluate the impact of microzooplankton and Calanus sinicus on phytoplankton based on the Chlorophyll a (Chl-a) levels. The Chl-a growth rates (k) ranged from 0.60–1.67 d−1, while microzooplankton grazed the Chl-a at rates (g) of 0.29–0.62 dt-1. The addition of C. sinicus enhanced the Chl-a growth rate (Z) by 0.004–0.037 d−1 ind.−1 L. C. sinicus abundance ranged from 84.1–160.9 ind. m−3, which occupied 90.7%–99.1% of the copepod (>500 μm) population. The in-situ increase in phytoplankton by C. sinicus community was estimated to be 0.000 4–0.005 9 d−1. These results showed that microzooplankton were the main grazers of phytoplankton, while C. sinicus induced a slight increase in the levels of phytoplankton.  相似文献   

15.
Effects of salinity, pH, nitrogenous and phosphate nutrients on the growth rate of four species of benthic diatoms were studied by using the method of in situ optical density measurement. The optimal culture conditions for the four species of diatoms are as follows: forAmphora coffeaeformis, s 35; pH 8.5; NO3 −N 1.54, NH4 +−N, 7.0; CO (NH2)2−N, 2.5 (mg/L); PO4 3−−P 1.13 (mg/L); forCocconeis scutellum varparva, s 30; pH 8.5; NO 3 −N 3.08, NH 4 + −N 3.5, CO(NH2)2−N 5.0 (mg/L); pO 4 3− −P 0.283 (mg/L); forNavicula corymbosa s 25; pH 8.0; NO 3 −N 1.54, NH 4 + −N 3.5 CO(NH2)2−N 5.0 (mg/L); PO 4 3− −P 0.565 (mg/L); forNavicula mollis. s 25; pH 8.0; NO 3 −N 1.54, NH 4 + −N 1.75, CO(NH2)2−N 1.25 (mg/L); PO 4 3− −P 0.141 (mg/L). Part of the results of this paper were exchanged in the Fourth Asian Aquaculture Forum. Oct. 16–20. 1995. Beijing, P. R. China.  相似文献   

16.
The temporal dynamics of the biomass, as well as the carbon (C), nitrogen (N), phosphorus (P) concentrations and accumulation contents, in aboveand below-ground vegetation components were determined in the alpine steppe vegetation of Northern Tibet during the growing season of 2010. The highest levels of total biomass (311.68 g m−2), total C (115.95 g m−2), total N (2.60 g m−2), and total P (0.90 g m−2) accumulation contents were obtained in August in 2010. Further, biomass and nutrient stocks in the below-ground components were higher than those of the above-ground components. The dominant species viz., Stipa purpurea and Carex moorcrofti had lower biomass and C, N, P accumulations than the companion species which including Oxytropis. spp., Artemisia capillaris Thunb., Aster tataricus L., and so on.  相似文献   

17.
The effect of dietary phosphorus on the growth and body components of juvenile Synechogobius hasta was determined. Different percentages of dietary phosphorus (0.63, 0.77, 0.93, 1.06, 1.22 and 1.36) were tested by feeding the fish (body weight, 15.81 g ± 0.32 g; 20 individuals each group; 3 groups each percentage) at a surplus of 5%–10% above satiation for 35 d. Dietary phosphorus did not significantly affect the specific growth rate, feed intake, feed conversion ratio and protein efficiency rate. Nitrogen retention was found to be the highest in fish fed the diet containing 1.06% of phosphorus; however, this was not significantly different from other diets. Fish fed the diet containing 0.93% of phosphorus showed the highest phosphorus retention; similar phosphorus retention rates were found in fish fed the diets containing 0.77% and 1.06% of phosphorus. Fish fed the diet containing the highest percentage of dietary phosphorus were found to contain the least whole body lipid, lower than fish fed other diets (P<0.05). The protein content increased from 18.59% to 19.55% (although not significant) with the decrease of body lipid content (P>0.05). The contents of the whole body ash, whole body phosphorus and vertebrae phosphorus increased with dietary phosphorus percentage up to 1.06 (P<0.05), reaching a plateau after that. Dietary phosphorus did not significantly influence the muscle components (protein, lipid and moisture). Condition factor and hepatosomatic index were the highest in fish fed the diet containing 0.63% of dietary phosphorus; however, this was not significantly different from those of other diets. The second-order polynomial regression of phosphorus retention against dietary phosphorus identified a breakpoint at 0.88% of dietary phosphorus. However, the dietary requirement of phosphorus for maintaining maximum phosphorus storage determined by broken-line analysis of the contents of whole body phosphorus, and ash and vertebrae phosphorus was 1.06% of the diet.  相似文献   

18.
In Wuxi Wastewater Treatment Plant, the Anaerobic, anoxic and oxic (A2/O) process was employed to remove the nitrogen and phosphorus, which exhibited the positive results of the high removal efficiency for phosphorus with a range of 67.7% to 89.9% and an average value of 78.0. The effluent of phosphorus met the national discharge standard. The removal of TN was effected by both BOD variation of influent and wastewater temperature. TN removal was in the range of 28.5% to 55.8% with an average value of 39.4%. The energy cost was 0.15 kWh(m3d)-1 or 1.35 kWh(kgBOD·d)-1. The annual average sludge production was 46.3 m3d-1, the annual average dosage for the dewatering was 40 kgd-1.  相似文献   

19.
This study on dynamic changes of culture color,astaxanthin and chlorophylls,inorganic N including N-NO3^-,N-NO2^- and N-NH4^ in batch culture of Haematococcus pluvialis exposed to different additive nitrate concentration showed(1)ast/chl ratio was over 0.8 for brown and red algae,but was usually less than 0.5 for green and yellow algae;(2)N-NO3^-,in general,was unstable and decreased,except for a small unexpected increase in nitrate enriched treatment groups;(3)measurable amounts of N-NO2^- and N-NH4^ were observed respectively with three change modes although no extemal nitrite and ammonia were added into the culture;(4)a non-linear correlation between ast/chl ratio(or color)changes and the levels of N-NO3^-,N-NO2^-,N-NH4^ in H.pluvialis culture;(5)up and down variation of the ast/chl ratio occurred simultaneously with a perceptible color change from yellow to brown(or red)when N-NO3^-,N-NO2^- and N-NH4^ fluctuated around 30,5,5μmol/L respectively;(6)existence of three dynamic modes of N-NO3^-,N-NO2^- and N-NH4^ changes,obviously associated with initial extemal nitrate;(7)the key level of total inorganic N concentration regulating the above physiological changes during indoor cultivation was about 50 μmol/L;and(8)0.5-10mmol/L of nitrate was theoretically conducive to cell growth in batch culture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号