首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The aim of the research was to investigate the diet of herring at different stages of its life cycle. For that purpose feeding of 0-group and immature herring in the Barents Sea, as well as of mature fish from the Norwegian Sea, was studied. 0-Group herring was sampled in the Barents Sea in August–September 2002–2005 during the international 0-group and trawl-acoustic survey of pelagic fish, as well as during the trawl-acoustic survey of demersal fish in November–December 2003–2004. Stomach samples of immature herring (1–3 years) were collected in late May and early of June 2001 and 2005 in the south-western part of the Barents Sea during the trawl-acoustic survey for young herring. Stomach samples of mature herring were collected in the Norwegian Sea in 1996, 1998, 1999, 2001, and 2002 in the course of the international trawl-acoustic survey of pelagic fish. Feeding intensity of herring of all age groups varied considerably between years and this was probably associated with availability and accessibility of their prey. The 0-group herring was found to have the most diverse diet, including 31 different taxa. In August–September, copepods, euphausiids, Cladocera, and larvae Bivalvia were most frequent in the diet of 0-group herring, but euphausiids and Calanus finmarchicus were the main prey taken. In November–December, euphausiids and tunicates were major prey groups. It was found that C. finmarchicus in the diet of 0-group herring was replaced by larval and adult euphausiids with increasing fish length. C. finmarchicus was the principal prey of immature herring and dominated in the diet of both small and large individuals and mainly older copepodites of C. finmarchicus were taken. Larval and adult euphausiids were found in stomachs of immature herring as well, but their share was not large. The importance of different prey for mature herring in the Norwegian Sea varied depending on the feeding area and length of the herring. On the whole C. finmarchicus and 0-group fish were the most important prey for mature herring diet, but fish prey were only important in a small sampling area. Hyperiids, euphausiids, tunicates, and pteropods were less important prey, and in 2002 herring actively consumed herring fry and redfish larvae.  相似文献   

2.
On the recent warming of the southeastern Bering Sea shelf   总被引:1,自引:0,他引:1  
During the last decade, the southeastern Bering Sea shelf has undergone a warming of 3 °C that is closely associated with a marked decrease of sea ice over the area. This shift in the physical environment of the shelf can be attributed to a combination of mechanisms, including the presence over the eastern Bering Sea shelf of a relatively mild air mass during the winter, especially from 2000 to 2005; a shorter ice season caused by a later fall transition and/or an earlier spring transition; increased flow through Unimak Pass during winter, which introduces warm Gulf of Alaska water onto the southeastern shelf; and the feedback mechanism whereby warmer ocean temperatures during the summer delay the southward advection of sea ice during winter. While the relative importance of these four mechanisms is difficult to quantify, it is evident that for sea ice to form, cold arctic winds must cool the water column. Sea ice is then formed in the polynyas during periods of cold north winds, and this ice is advected southward over the eastern shelf. The other three mechanisms can modify ice formation and melt, and hence its extent. In combination, these four mechanisms have served to temporally and spatially limit ice during the 5-year period (2001–2005). Warming of the eastern Bering Sea shelf could have profound influences on the ecosystem of the Bering Sea—from modification of the timing of the spring phytoplankton bloom to the northward advance of subarctic species and the northward retreat of arctic species.  相似文献   

3.
A plume of herring larvae dispersing from a spawning site at Clythness in the Moray Firth (northern Scotland) was surveyed during early September 1985. Several cohorts of larvae were evident from the length distributions, and these were arranged in order of increasing length (age) towards the south-west. The spacing of cohort centres indicated a drift rate of 1–2 km day−1.Calanoid copepod nauplii constituted the major proportion of the diet of larvae <10 mm sampled during the study. Cyclopoid copepod nauplii and gastropod veligers were not found in the diet although they were present in the water. The distribution of nauplii in the region was inversely correlated with the concentration of phytoplankton chlorophyll, and nauplii concentrations were above average in the vicinity of the herring spawning site. The drift trajectory of the herring larvae took them towards an area of high copepodite and adult copepod concentration—items which formed an increasing part of the diet of larger (older) larvae.  相似文献   

4.
Vertical distributions of coccolithophores were observed in the depth range 0–50 m in the western subarctic Pacific and western Bering Sea in summer, 1997. Thirty-five species of coccolithophores were collected. Overall, Emiliania huxleyi var. huxleyi was the most abundant taxon, accounting for 82.8% of all coccolithophores, although it was less abundant in the western Bering Sea. Maximum abundance of this species was found in an area south of 41°N and east of 175°E (Transition Zone) reaching >10,000 cells L−1 in the water column. In addition to this species, Coccolithus pelagicus f. pelagicus, which accounted for 4.2% of the assemblage, was representative of the coccolithophore standing crop in the western part of the subarctic Pacific. Coccolithus pelagicus f. hyalinus was relatively abundant in the Bering Sea, accounting for 2.6% of the assemblage. Coccolithophore standing crops in the top 50 m were high south of 41°N (>241 × 106 cells m−2) and east of 170°E (542 × 106 cells m−2) where temperatures were higher than 12°C and salinities were greater than 34.2. The lowest standing crop was observed in the Bering Sea and Oyashio areas where temperatures were lower than 6–10°C and salinities were less than 33.0. From the coccolithophore volumes, the calcite stocks in the Transition, Subarctic, and the Bering Sea regions were estimated to be 73.0, 9.7, and 6.9 mg m−2, respectively, corresponding to calcite fluxes of 3.6, 0.5, and 0.3 mg m−2d−1 using Stoke's Law. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

5.
白令海是冬季北极海冰变化最明显的区域之一,该区域海冰的季节和长期变化与局地的气候、水文环境和生态系统密切相关,并会影响我国的天气气候过程。为了识别该区冬季海冰的长期变化,基于Hadley中心数据,采用滑动t检验和线性回归分析方法对白令海1960–2020年海冰范围的变化趋势及其空间差异进行分析,并分析了海冰变化对大气环流等大气强迫的影响。结果表明:白令海冬季海冰范围在1960–2020年显著减小,20世纪70年代和2000年前后白令海海冰范围存在显著的均值突变。其过程中伴随着阿留申低压中心低压加强、核心位置向白令海西部偏移以及对应风场分布的变化,这个过程存在一个近20 a周期的振荡。同时,太平洋年代际震荡的相位变化可以通过改变海平面气压来调节经向风,改变进入白令海的热平流,进而影响白令海冬季海冰范围。因此,阿留申低压系统和北太平洋年代际振荡对冬季白令海海冰的变化起到重要的调节作用。  相似文献   

6.
Ciliates are important components in planktonic food webs,but our understanding of their community structures in different oceanic water masses is limited.We report pelagic ciliate community characteristics in three seas:the tropical West Pacific,the Bering Sea and the Arctic Ocean.Planktonic ciliate abundance had"bimodal-peak","surface-peak"and"DCM(deep chlorophyll a maximum layer)-peak"vertical distribution patterns in the tropical West Pacific,the Bering Sea and the Arctic Ocean,respectively.The abundance proportion of tintinnid to total ciliate in the Bering Sea(42.6%)was higher than both the tropical West Pacific(7.8%)and the Arctic Ocean(2.0%).The abundance proportion of small aloricate ciliates(10–20μm size-fraction)in the tropical West Pacific was highest in these three seas.The Arctic Ocean had higher abundance proportion of tintinnids in larger LOD(lorica oral diameter)size-class.Proportion of redundant species increased from the Arctic Ocean to the tropical West Pacific.Our result provided useful data to further understand ecology roles of planktonic ciliates in different marine habitats.  相似文献   

7.
Consumption of silicate and nitrate (Si:N molar ratio) in the upper layer of the pelagic subarctic Pacific in summer was evaluated by a regression analysis of silicate vs. nitrate concentrations at the upper 100 m depth. Based on data of three cruises, the pelagic subarctic Pacific can be classified into two groups. First group is characterized by roughly 1:1 consumption of silicate and nitrate, and occupies rather larger area of subarcfic Pacific, i.e., the Gulf of Alaska and the Western Subarctic gyre (averaged slope of Si:N linear regression: 1.21, n = 10 and 1.45, n = 9, respectively). Second group is the regions of the Bering Sea basin and the Oyashio region, and showed higher silicate consumption compared to that of nitrate (averaged slope of Si:N linear regression: 2.14, n = 9 and 2.36, n = 3, respectively). The Si:N difference observed is possibly attributed to relative contribution of diatoms production among the phytoplankton assemblages in the regions, i.e., dominance of diatoms production in the regions of the second group. Higher accumulation of ammonium at the bottom of euphotic layer in the summer Bering Sea basin would also contribute to increase consumption ratio of Si:N amounts.  相似文献   

8.
Previous studies have found inconsistent results regarding how wintertime conditions in the Bering Sea relate to variations in the North Pacific climate system. This problem is addressed through analysis of data from the NCEP/NCAR Reanalysis for the period 1950–2003. Composite patterns of sea-level pressure, 500 hPa geopotential heights, storm tracks and surface air temperature are presented for four situations: periods of strong Aleutian Low, weak Aleutian Low, warm Bering Sea air temperatures, and cold Bering Sea air temperatures. Winter temperatures in the Bering Sea are only marginally related to the strength of the Aleutian Low, and are much more sensitive to the position of the Aleutian Low and to variations in storm tracks. In particular, relatively warm temperatures are associated with either an enhanced storm track off the coast of Siberia, and hence anomalous southerly low-level flow, or an enhanced storm track entering the eastern Bering Sea from the southeast. These latter storms do not systematically affect the mean meridional winds, but rather serve to transport mild air of maritime origin over the Bering Sea. The leading indices for the North Pacific, such as the NP and PNA, are more representative of the patterns of tropospheric circulation and storm track anomalies associated with the strength of the Aleutian Low than patterns associated with warm and cold wintertime conditions in the Bering Sea.  相似文献   

9.
殷嘉晗  张林 《海洋预报》2020,37(3):72-81
利用我国第六次—第九次北极科学考察雪龙船走航探空数据,计算北极太平洋扇区和白令海的夏季对流层高度,分析对流层内的风速、温度、水汽廓线,从而确定对流层结构,并分析各要素的垂直分布和经向分布特征。结果表明:夏季北极太平洋扇区和白令海的递减率对流层顶、冷点对流层顶平均值分别为10 003 m、10 116 m,对流层高度随纬度增加而降低。夏季北极大气对流层低层和对流层顶存在逆温,对流层顶的逆温高度和厚度随纬度增加而降低。大气可降水量与纬度呈负相关,且集中于对流层中低层。近地面的风速受地表摩擦力的影响较明显,对流层内的风速随高度增加而增大,高空急流的强度和高度随纬度增加而减小,风廓线和急流易受天气尺度过程的影响。研究结果揭示了夏季北极太平洋扇区和白令海的对流层结构,并可用于检验数值预报模式对北极大气垂直结构的预报效果、评估再分析资料描述北极大气垂直结构的能力。  相似文献   

10.
对白令海表层沉积物样品进行硅藻分析,共鉴定硅藻30属56种(含变种),并确定17种硅藻新记录,其中包括Kisseieviella carina等3种化石种。白令海表层沉积物中的硅藻优势种为Neodenticula seminae,Fragilariopsis cylindrusFragilariopsis oceanica,在白令海北部陆坡深水区附近以Neodenticula seminae为主,而在白令海北部陆架以Fragilariopsis cylindrusFragilariopsis oceanica为主。对硅藻结果进行聚类分析,可以划分出3个硅藻组合,硅藻组合Ⅰ代表海冰种硅藻组合,组合Ⅱ代表受阿拉斯加流影响的大洋浮游硅藻组合,组合Ⅲ代表上述两个硅藻组合之间的过渡组合。Fossula arctica是17种硅藻新记录之一,首次记录于白令海表层沉积物中,其百分含量分布趋势与Fragilariopsis cylindrusFragilariopsis oceanica的相近,在白令海北部陆架为11.7%~17.1%,而在陆坡深水区附近明显减少,是继Fragilariopsis cylindrusFragilariopsis oceanica之后白令海又一海冰指示种,并有望成为一种有效的海冰变化替代物运用于晚第四纪以来白令海海冰进退历史研究。  相似文献   

11.
12.
Seasonal and interannual variability of surface chlorophyll concentration in the Bering Sea was examined using Empirical Orthogonal Function (EOF) analysis of data obtained by the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) from 1998 to 2002. The analysis of normalized monthly fields (removing temporal and spatial monthly means) shows that different temporal and spatial patterns are evident in the eastern and western Bering Sea during the spring bloom period. The first EOF mode explains 30% of the variability and shows how the eastern shelf break region and the western Bering Sea are out of phase during the spring bloom. The second EOF mode (17.6%) indicates a pattern involving the eastern shelf break region and the Kamchatka Basin. This strong east–west signal is linked by both surface winds and light. EOF modes of wind-speed anomalies, derived from Special Sensor Microwave Imager (SSM/I), and photosynthetically active radiance (PAR) from SeaWiFS, show a similar dipole feature where the east–west pattern is related to the position and strength of the Aleutian Low pressure system. In years when the Aleutian Low shifts from west to east, weaker wind stress facilitates the development of stratification resulting in a strong spring bloom in the western Bering Sea. The variability of spring chlorophyll has a strong connection with variability in atmospheric forcing in the Bering Sea.  相似文献   

13.
利用2008年夏季我国第3次北极科学考察资料,基于流式细胞技术,对白令海北部陆架区的微微型浮游植物丰度、细胞大小(碳含量)、色素浓度的分布特征进行了分析,并对该类群的环境适应性进行了研究.结果表明,微微型浮游植物中仅含聚球藻和真核藻,其丰度范围分别为0.14×106~2.69×106和0.23×106-12.49×10...  相似文献   

14.
The biomass, abundance, and vertical distribution of micronekton, including enidarians, mysids, euphausiids, decapods, thaliaceans, and fishes, were studied on the basis of samples collected with an 8-m2 opening-closing rectangular midwater trawl (RMT-8, mesh size: 4.5 mm) at three stations in the subarctic Pacific (the western subarctic gyre, the central Subarctic, and the Gulf of Alaska) and one station in the oceanic Bering Sea. The total biomass in the 0–1000 m water column ranged from 2.9 to 5.1 gDW m–2. Except for primary consumers that showed highly variable biomass (thaliaceans and euphausiids), biomass was highest in the oceanic Bering Sea followed by the central (boundary between eastern and western gyres), western gyre, and eastern Gulf of Alaska. The biomass compositions by higher taxa were basically similar between regions: fishes were most dominant, followed by enidarians at all stations, except for the marked predominance of thaliaceans in the Gulf of Alaska. High biomasses of gelatinous animals (31% of overall dry weight), occasionally comparable to those of fishes and crustaceans, suggest their potential importance in the subarctic Pacific. Characteristics in vertical patterns of micronekton biomass common in all stations were: (1) a mesopelagic peak around 500–600 m both day and night, (2) a layer of low biomass in the cold intermediate water and/or in the upper mesopelagic zone, (3) a nighttime shift of biomass to upper layers, and (4) an highly variable biomass of epipelagic/interzonal migrants (euphausiids and thaliaceans).  相似文献   

15.
Data from three annual surveys, covering inshore and offshore waters of the southeastern North Sea, were analysed to study recruitment variability in dab (Limanda limanda) over the period 1978–1997. Geometric mean abundance of 0- to 5-group dab was estimated using general linear models. Juvenile dab (0- and 1-group) were found over the entire area, from inside the estuaries to 50 m depth offshore. Environmental conditions (water temperature, wind stress, turbidity) affected the catch rates. The potential errors in the estimates of year-class strength, caused by differences in catchability, are discussed. The inter-annual pattern of year-class strength appeared to be established between ages 1 and 2, suggesting that factors determining recruitment are not restricted to the pelagic early life phase only, but also operate during the demersal juvenile phase. Recruitment variability at age 2 was in the order of 50–60% and appears to be equal to, or lower than, recruitment variability in plaice and sole. These results contradict expectations based on the concentration hypothesis, which states that the degree of variation in recruitment is inversely related to the degree of concentration during early life phases.  相似文献   

16.
A column concentration-high resolution inductively coupled plasma mass spectrometry (ICP-MS) determination was applied to measure the total dissolved concentrations of Fe, Co, Ni, Cu and Zn in seawater collected from the subarctic North Pacific (~45°N) and the Bering Sea in July–September 1997. Total adsorbable Mn was determined on board by column electrolysis preconcentration and chemiluminescence detection. The vertical profiles for Fe, Ni and Zn were nutrient-like. The deep water concentration of Fe was ~0.5 nM in the northeast Pacific (18°-140°W) and increased to ~1 nM in the northwest Pacific (161°E) and ~2 nM in the Bering Sea (57°N, 180°E). The deep water concentrations for Ni and Zn in the Bering Sea were also 1.3–2 times higher than in the North Pacific. The profiles for Co and Cu were examined in the subarctic North Pacific, and results obtained were consistent with previous reports. There was a significant correlation between the concentrations of Co and Mn except for surface mixed layer. The profiles for total adsorbable Mn were similar to the reported profiles for total dissolvable Mn. The deep water concentration of Mn in the Bering Sea was also 4 times higher than in the North Pacific. Iron and zinc were depleted in surface water of the subarctic North Pacific. The relationship between these trace elements and nutrients suggests that these elements could be a limiting factor of phytoplankton productivity. In the Bering Sea, surface water contained ~0.3 nM of Fe. The Zn concentration, which was less than the detection limit in surface water, increased at shallower depths (~30 m) compared with the subarctic North Pacific. These results imply a higher flux of Fe and Zn to surface water in the Bering Sea. This in turn may cause the ecosystem in the Bering Sea characterized by a dominance of diatoms and high regenerated production.  相似文献   

17.
The Bering Sea shelf and Chukchi Sea shelf are believed to hold enormous oil and gas reserves which have attracted a lot of geophysical surveys. For the interpretation of acoustic geophysical survey results, sediment sound velocity is one of the main parameters. On seven sediment cores collected from the Bering Sea and Chukchi Sea during the 5th Chinese National Arctic Research Expedition, sound velocity measurements were made at 35, 50, 100, 135, 150, 174, 200, and 250 k Hz using eight separate pairs of ultrasonic transducers. The measured sound velocities range from 1 425.1 m/s to 1 606.4 m/s and are dispersive with the degrees of dispersion from 2.2% to 4.0% over a frequency range of 35–250 k Hz. After the sound velocity measurements, the measurements of selected geotechnical properties and the Scanning Electron Microscopic observation of microstructure were also made on the sediment cores. The results show that the seafloor sediments are composed of silty sand, sandy silt, coarse silt, clayey silt, sand-silt-clay and silty clay. Aggregate and diatom debris is found in the seafloor sediments. Through comparative analysis of microphotographs and geotechnical properties, it is assumed that the large pore spaces between aggregates and the intraparticulate porosity of diatom debris increase the porosity of the seafloor sediments, and affect other geotechnical properties. The correlation analysis of sound velocity and geotechnical properties shows that the correlation of sound velocity with porosity and wet bulk density is extreme significant, while the correlation of sound velocity with clay content, mean grain size and organic content is not significant. The regression equations between porosity, wet bulk density and sound velocity based on best-fit polynomial are given.  相似文献   

18.
Control of walleye pollock (Theragra chalcogramma) recruitment in the Eastern Bering Sea involves complex interactions between bottom-up and top-down processes, although the mechanisms are poorly understood. We used statistical models to test the leading hypotheses linking recruitment variability to biotic and abiotic factors. Consistent with a “cold-pool hypothesis”, recruitment of pollock was significantly stronger if winters preceding the larval (age-0) and juvenile stages (age-1) were mild. However, our results did not support the proposed top-down mechanism (cannibalism) underlying this hypothesis. Several empirical relationships support an “oscillating control hypothesis”. As predicted by it, the effect of ice conditions on survival during the larval and early juvenile stages was modified by the abundance of adult pollock, implying stronger bottom-up control when adult abundance (hence cannibalism) was low. The proposed bottom-up mechanism predicts that the survival of pelagic-feeding walleye pollock (benthic-feeding yellowfin sole), should be higher during years with an early (late) ice retreat, which was confirmed by our analysis. Our results also provide additional evidence for a “larval transport hypothesis”, which states that cannibalism of larval and juvenile pollock is reduced in years when strong northward advection separates juveniles from cannibalistic adults.In addition to testing existing hypotheses, we identified new relationships between spawner-to-recruit survival rates of walleye pollock and several indicators of mixed layer dynamics during the spring and summer. Survival rates and recruitment were significantly reduced when larval or early juvenile stages experienced a delay in the (non-ice-associated) spring bloom as a result of stormy spring conditions, suggesting that the timing of the spring bloom is critical to both first-feeding larvae and age-1 juveniles. Furthermore, a dome-shaped relationship between pollock survival and summer wind mixing at the early juvenile stage is consistent with modeling and laboratory studies showing an increase in survival at low to moderate levels of wind mixing, but a decrease in feeding success at high levels of wind mixing.Top-down controls also regulate recruitment of walleye pollock. At least one-third of the variability in spawner-to-recruit survival could be accounted for by predation mortality at the early juvenile stage (age-1). Predation of juvenile pollock can be attributed largely to cannibalism, which varies with the abundance of adult pollock and with the availability of juveniles to adult predators. A simple index reflecting the spatial overlap between juvenile and adult pollock explained 30–50% of the overall variability in recruitment, similar to the variability explained by the best environmental predictors. Although environmental effects are difficult to separate from the effects of predation, we conclude that bottom-up and top-down processes are equally important in controlling the survival of pollock from spawning to recruitment at age 2. However, the magnitude of top-down control is itself modified by environmental factors that control the availability of juvenile pollock to adults (through impacts on spatial distribution) and the abundance of adult predators (through effects on productivity and carrying capacity).  相似文献   

19.
Walleye pollock (Theragra chalcogramma) is an ecologically and economically important groundfish in the eastern Bering Sea. Its population size fluctuates widely, driving and being driven by changes in other components of the ecosystem. It is becoming apparent that dramatic shifts in climate occur on a decadal scale, and these “regime shifts” strongly affect the biota. This paper examines quantitative collections of planktonic eggs and larvae of pollock from the southeastern Bering Sea during 1976–1979. Mortality, advection, and growth rates were estimated, and compared among the years encompassing the 1970s’ regime shift. These data indicate that pollock spawning starts in late February over the basin north of Bogoslof Island. Over the shelf, most spawning occurs north of Unimak Island near the 100 m isobath in early or mid April. Pollock eggs are advected to the northwest from the main spawning area at 5–10 cm/sec. Larvae are found over the basin north of Bogoslof Island in April, and over the shelf between Unimak Island and the Priblof Islands in May. Compared to 1977, the spawning period appeared to be later in 1976 (a cold year) and earlier in 1978 (a warm year) in the study area. At the lower temperatures in 1976, egg duration would be longer and thus egg mortality would operate over a longer period than in the other years. Mean larval growth appeared to be lower in 1976 than in 1977 and 1979. Estimated egg mortality rate in 1977 was 0.6 in April and 0.3 in early May.  相似文献   

20.
Field investigations of marine macrobenthos were conducted at ten sites in the Bering Sea in July 2010. Altogether 90 species of macrobenthos belonging to 59 families and 78 genera were identified. Among them, 41 polychaetes, 16 mollusks, 23 crustaceans, three echinoderms, two cnidarians, one nemertean, one priapulid, two sipunculids, and one echiuran were identified. The average density and biomass of total macrobenthos were 984 ind./m2 and 1 207.1 g/m2 of wet weight, respectively. The predominant species in the study area were Scoloplos armiger, Eudorella pacifica, Ophiura sarsii, Heteromastus filiformis, Ennucula tenuis, and Harpiniopsis vadiculus by abundance, while the predominant species in this area was Echinarachnius parma by biomass. Hierarchical cluster analysis(Bray–Curtis similarity measure) revealed that two important benthic assemblages in the study area were Community A and Community B. Community A was stable and Community B was unstable, as shown by the Abundance/Biomass Comparisons(ABC) approach. The macrobenthic community structure in the shelf of the Bering Sea was characterized by its high abundance and biomass, high productivity but great heterogeneity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号