首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The location of H  II regions, which indicates the locus of present star formation in galaxies, is analysed for a large collection of 110 irregular galaxies (Irr) imaged in Hα and nearby continuum. The analysis is primarily by visual inspection, although a two-dimensional quantitative measure is also employed. The two different analyses yield essentially identical results. H  II regions appear preferentially at the edges of the light distribution, predominantly on one side of the galaxy, contrary to what is expected from stochastic self-propagating star formation scenarios. This peculiar distribution of star-forming regions cannot be explained by a scenario of star formation triggered by an interaction with extragalactic gas, or by a strong one-armed spiral pattern.  相似文献   

2.
We have constructed a dynamo model for the magnetic field in spiral galaxies that takes into account the differences in star formation rates in different galaxies. The difficulty in constructing the model is that the star formation rate does not enter directly into the equations of magnetohydrodynamics, which include only the root-mean-square velocity of the interstellar gas, its density, and the half-thickness of the ionized gas disk. We propose a parametrization of these quantities that relates them to the star formation rate and investigate our model in terms of the so-called no-z approximation, which neglects the details of the magnetic field structure in a direction perpendicular to the galactic disk. The influence of the star formation rate on the galactic dynamo is a threshold one. This influence is small at moderate star formation rates and significant only at very high star formation rates. If the starburst intensity reaches some critical level (exceeding that in the Milky Way by an order of magnitude), then the large-scale magnetic field is destroyed and it is restored only after completion of the starburst. We provide a list of galaxies that exhibit a fairly high star formation rate and that can be interesting to study their magnetic fields.  相似文献   

3.
In this paper, perturbations of an accretion disk by a star orbiting around a black hole are studied. We report on a numerical experiment, which has been carried out by using a parallel-machine code originally developed by Dönmez (2004). An initially steady state accretion disk near a non-rotating (Schwarzschild) black hole interacts with a “star”, modeled as an initially circular region of increased density. Part of the disk is affected by the interaction. In some cases, a gap develops and shock wave propagates through the disk. We follow the evolution for order of one dynamical period and we show how the non-axisymetric density perturbation further evolves and moves downwards where the material of the disk and the star become eventually accreted onto the central body. When the star perturbs the steady state accretion disk, the disk around the black hole is destroyed by the effect of perturbation. The perturbed accretion disk creates a shock wave during the evolution and it loses angular momentum when the gas hits on the shock waves. Colliding gas with the shock wave is the one of the basic mechanism of emitting the X-rays in the accretion disk. The series of supernovae occurring in the inner disk could entirely destroy the disk in that region which leaves a more massive black hole behind, at the center of galaxies.  相似文献   

4.
Acounter-rotating gas disk has been detected in the SA0 galaxy IC 560 located at the periphery of a sparse group of six late-type galaxies. The pattern of gas excitation and mid-infrared colors are indicative of ongoing star formation within 1 kpc of the center. Outside the gas disk with star formation the large-scale stellar disk of the galaxy has an old age and a very low metallicity, [Z/H] ≈ ?1. The source of external gas accretion onto IC 560 is undetected; the only option is a single infall of a companion rich in high-metallicity gas.  相似文献   

5.
The major features of star complexes as “building blocks” of the large-scale structure of spiral galaxies are presented and a scenario for spiral formation is suggested on this basis.  相似文献   

6.
Assuming that a disk galaxy is composed of an ambient pervasive gas, small clouds, molecular clouds and stars, its evolution is studied through examining the interchange processes among them. Main results obtained are: (1) The star formation rate is directed by the formation process of molecular clouds. (2) Depending upon the parameters there may be three or four types of evolution of disk galaxies: the no star formation case, the active in the past and inactive at present star formation case, the burst-like star formation case and the very active in star formation case.Paper presented at the IAU Third Asian-Pacific Regional Meeting, held in Kyoto, Japan between 30 September–6 October, 1984.  相似文献   

7.
In order to study the state of gas in galaxies, diagrams of the relation of optical emission line fluxes are used allowing one to separate main ionization sources: young stars in the HII regions, active galactic nuclei, and shock waves. In the intermediate cases, for example, when the contributions of radiation from OB stars and from shock waves mix, identification becomes uncertain, and the issue remains unresolved on what determines the observed state of the diffuse ionized gas (DIG) including the one on large distances fromthe galactic plane. Adding of an extra parameter—the gas velocity dispersion in the line-of-sight—to classical diagnostic diagrams helps to find a solution. In the present paper, we analyze the observed data for several nearby galaxies: for UGC10043 with the galactic wind, for the dwarf galaxies VIIZw403 andMrk 35 with star formation, for the galaxy Arp 212 with a polar ring. The data on the velocity dispersion are obtained at the 6-m SAO RAS telescope with the Fabry-Perot scanning interferometer, the information on the relation of main emission-line fluxes–from the published results of the integral-field spectroscopy (the CALIFA survey and the MPFS spectrograph). A positive correlation between the radial velocity dispersion and the contribution of shock excitation to gas ionization are observed. In particular, in studying Arp 212, our approach allowed us to confirm the assumption on a direct collision of gaseous clouds on the inclined orbits with the main disk of the galaxy.  相似文献   

8.
Void regions of the Universe offer a special environment for studying cosmology and galaxy formation, which may expose weaknesses in our understanding of these phenomena. Although galaxies in voids are observed to be predominately gas rich, star forming and blue, a subpopulation of bright-red void galaxies can also be found, whose star formation was shutdown long ago. Are the same processes that quench star formation in denser regions of the Universe also at work in voids?
We compare the luminosity function of void galaxies in the 2dF Galaxy Redshift Survey, to those from a galaxy formation model built on the Millennium simulation. We show that a global star formation suppression mechanism in the form of low-luminosity 'radio-mode' active galactic nuclei (AGN) heating is sufficient to reproduce the observed population of void early types. Radio-mode heating is environment independent other than its dependence on dark matter halo mass, where, above a critical mass threshold of approximately   M vir∼ 1012.5 M  , gas cooling on to the galaxy is suppressed and star formation subsequently fades. In the Millennium simulation, the void halo mass function is shifted with respect to denser environments, but still maintains a high-mass tail above this critical threshold. In such void haloes, radio-mode heating remains efficient and red galaxies are found; collectively these galaxies match the observed space density without any modification to the model. Consequently, galaxies living in vastly different large-scale environments but hosted by haloes of similar mass are predicted to have similar properties, consistent with observations.  相似文献   

9.
N -body/hydrodynamical simulations of the formation and evolution of galaxy groups and clusters in a Λ cold dark matter (ΛCDM) cosmology are used in order to follow the building-up of the colour–magnitude relation in two clusters and in 12 groups. We have found that galaxies, starting from the more massive, move to the red sequence (RS) as they get aged over times and eventually set upon a 'dead sequence' (DS) once they have stopped their bulk star formation activity. Fainter galaxies keep having significant star formation out to very recent epochs and lie broader around the RS. Environment plays a role as galaxies in groups and cluster outskirts hold star formation activity longer than the central cluster regions. However, galaxies experiencing infall from the outskirts to the central parts keep star formation on until they settle on to the DS of the core galaxies. Merging contributes to mass assembly until z ∼ 1, after which major events only involve the brightest cluster galaxies.
The emerging scenario is that the evolution of the colour–magnitude properties of galaxies within the hierarchical framework is mainly driven by star formation activity during dark matter haloes assembly. Galaxies progressively quenching their star formation settle to a very sharp 'red and dead' sequence, which turns out to be universal, its slope and scatter being almost independent of the redshift (since at least z ∼ 1.5) and environment.
Differently from the DS, the operatively defined RS evolves more evidently with z , the epoch when it changes its slope being closely corresponding to that at which the passive galaxies population takes over the star-forming one: this goes from z ≃ 1 in clusters down to 0.4 in normal groups.  相似文献   

10.
A comparative analysis of the evolution of integrated photometric parameters for young star formation complexes in spiral and irregular galaxies and open star clusters in our Galaxy is performed. Extragalactic star formation complexes seen as giant H II regions and open star clusters in the Milky Way are shown to represent a single evolutionary sequence of objects at different stages of their evolution when the extinction is properly taken into account.  相似文献   

11.
The radial dependences of the star formation efficiency??SFE = ??SFR/??gas (per unit disk surface area) in normal surface brightness spiral galaxies and low surface brightness (LSB) galaxies are compared with the radial variations of the gas and stellar disk surface and volume densities. The volume density of the components in the disk midplane is found through a self-consistent solution of the disk equilibrium equations by taking into account the dark halo. The disk thickness variation with radius R is calculated within the model of a galaxy with a marginally stable disk by taking into account the increase of the stability parameter Q T,c along the radius. We show that the star formation efficiency depends weakly (for LSB galaxies, does not depend at all) on the gas density but correlates well with the disk surface and volume density, with the normal and LSB galaxies forming a single sequence. The dependence vanishes only at extremely low disk densities (?? disk ? (1?3) M ?? pc?2, ?? stars ?? (1?3) × 10?24 g cm?3), where star formation probably ceases to be related to disk properties. Estimations of the gas volume density allow us to check the expected form of the ??SFR-?? disk relationship that follows from the model by Ostriker et al., which relates the star formation rate to the pressure of the diffuse gas medium. For most of the galaxies considered, there is satisfactory agreement with the model, except for the densest (of the order of several hundred M ?? pc?2) and least dense (several M?? pc?2 or less) disk regions.  相似文献   

12.
We explore the role of active galactic nuclei (AGN) in establishing and/or maintaining the bimodal colour distribution of galaxies by quenching their star formation and hence, causing their transition from the blue to the red cloud. Important tests for this scenario include (i) the X-ray properties of galaxies in the transition zone between the two clouds and (ii) the incidence of AGN in post-starbursts, i.e. systems observed shortly after (<1 Gyr) the termination of their star formation. We perform these tests by combining deep Chandra observations with multiwavelength data from the All-wavelength Extended Groth strip International Survey (AEGIS). Stacking the X-ray photons at the positions of galaxies  (0.4 < z < 0.9)  not individually detected at X-ray wavelengths suggests a population of obscured AGN among sources in the transition zone and in the red cloud. Their mean X-ray and mid-infrared (IR) properties are consistent with moderately obscured low-luminosity AGN, Compton thick sources or a mix of both. Morphologies show that major mergers are unlikely to drive the evolution of this population but minor interactions may play a role. The incidence of obscured AGN in the red cloud (both direct detections and stacking results) suggests that black hole (BH) accretion outlives the termination of the star formation. This is also supported by our finding that post-starburst galaxies at z ≈ 0.8 and AGN are associated, in agreement with recent results at low z . A large fraction of post-starbursts and red cloud galaxies show evidence for at least moderate levels of AGN obscuration. This implies that if AGN outflows cause the colour transformation of galaxies, then some nuclear gas and dust clouds either remain unaffected or relax to the central galaxy regions after quenching their star formation.  相似文献   

13.
Observations of turbulent velocity dispersions in the H  i component of galactic discs show a characteristic floor in galaxies with low star formation rates and within individual galaxies the dispersion profiles decline with radius. We carry out several high-resolution adaptive mesh simulations of gaseous discs embedded within dark matter haloes to explore the roles of cooling, star formation, feedback, shearing motions and baryon fraction in driving turbulent motions. In all simulations the disc slowly cools until gravitational and thermal instabilities give rise to a multiphase medium in which a large population of dense self-gravitating cold clouds are embedded within a warm gaseous phase that forms through shock heating. The diffuse gas is highly turbulent and is an outcome of large-scale driving of global non-axisymmetric modes as well as cloud–cloud tidal interactions and merging. At low star formation rates these processes alone can explain the observed H  i velocity dispersion profiles and the characteristic value of  ∼10 km s−1  observed within a wide range of disc galaxies. Supernovae feedback creates a significant hot gaseous phase and is an important driver of turbulence in galaxies with a star formation rate per unit area  ≳10−3 M yr−1 kpc−2  .  相似文献   

14.
By using the SDSS spectra, we have studied the star formation properties of the nearby spiral galaxies selected from the Revised Bright Galaxy Sample, and tried to find the effect of bar structure on the star formation activity in the nuclear regions of nearby galaxies. The stellar population composition and the intensity of star formation activities of each sample galaxy are acquired by using the stellar population synthesis code—STARLIGHT, and the star formation properties of nuclear regions are compared with those of integral sample galaxies. We find that the star formation in barred spiral galaxies is more active than that of unbarred spirals, and that barred spirals have younger stellar populations.  相似文献   

15.
王益萍 《天文学报》2000,41(4):410-423
在“等级式成团”(hierarchical clustering)宇宙学演化框架下,早型星系(E/SO)的形成和演化不是如经典的“整体塌缩”(monolithic collapse)演化模式所描述的是由高红移处的短时间剧烈恒星形成过程一次性完成的;相反,它们可能是在大尺度结构形成过程中由盘星系间的相互合并演化而来,特别是对于质量相当的盘星系间的剧烈合并过程。目前的数值模拟和高分辨成像观测都已证实了这种可能性,而且红移巡天的结果也更多地支持这种演化模式。在此提出一个星系合并过程中核区星暴和中心黑洞共生演化的模型,来解释由空间望远镜(HST)和地面CCD高分辨测光所得的早型星系“黑洞/核球”统计线性相关,也即中心黑洞质量约为其核球体质量的0.6%;同时,该演化模型还可以进一步合理地解释在类星体的近红外成像观测中统计得出的相似的线性相关性,即类星体中心亮度与其母星系质量成正比。并给出此模型计算的极限情况和模型的解析估计。  相似文献   

16.
We propose a possible scenario of large-scale magnetic field evolution for galaxies with star formation. An important point affecting the results of our calculations is a parametrization of dynamo-governing quantities. In comparison with previous works, we have reconsidered the views of how star formation affects the stationary magnetic field strength, viscosity, and other parameters important for galactic dynamos. The calculations have been performed by taking into account the magnetic helicity fluxes, which introduce an additional nonlinearity into the model and change the regime of galactic dynamo action. We have confirmed the previously suggested idea that for weak star formation its influence on the magnetic field strength is minor and the relationship between them clearly manifests itself only when the star formation rate reaches a certain threshold value. In this case, on the one hand, the threshold lowers-this effect manifests itself at a star formation surface density greater than that in the Milky Way by a factor of 5. On the other hand, intense star formation can cause both a monotonic decay of the large-scale magnetic field and its oscillations near some value.  相似文献   

17.
A hypothesis is being put forward that the formation of jets in the nuclei of radio galaxies is due to a high-speed energy excretion (explosion) in the accretion disk around a massive black hole. The explosion can be induced, for example, by a fall of the star into the black hole. For the accretion disk featuring an exponential high-density distribution, an asymmetrical explosion can be obtained: the shock front moves in the direction of decreasing the density accelerately and achieves the relativistic velocity swiftly, carrying away the most fraction of the explosion energy. Radio emission of the jet involves synchrotron radiation of relativistic electrons which are accelerated by such shock wave in the magnetic field driven up by the shock front.  相似文献   

18.
Periodic explosions in the nucleus of a galaxy generate strong shock waves. The shock waves, in moving outwards, produce highly compressed thin layers of gas at distances much larger than the thickness of the layer. When the gas in this layer undergoes fragmentation, the Jeans mass is found to be much less than that if the fragmentation proceeded under normal gravitational pull. It is, therefore, concluded that the explosive events in the galactic centres make the process of star formation highly efficient in the central region of galaxies.  相似文献   

19.
We present an analysis of the metallicity and star formation activities of H II regions in the interacting system Arp 86, based on the first scientific observations using multi-object spectroscopy with the 2.16 m telescope at the Xinglong Observing Station. We find that the oxygen abundance gradient in Arp 86 is flatter than that in normal disk galaxies, which confirms that gas inflows caused by tidal forces during encounters can flatten the metallicity distributions in galaxies. The companion galaxy NGC 7752 is currently experiencing a galaxy-wide starburst with a higher star formation rate surface density than the main galaxy NGC 7753, which can be explained in that the companion galaxy is more susceptible to the effects of interaction than the primary. We also find that the galaxy 2MASX J23470758+2926531 has similar abundance and star formation properties to NGC 7753, and may be a part of the Arp 86 system.  相似文献   

20.
Future radio observations with the Square Kilometre Array (SKA) and its precursors will be sensitive to trace spiral galaxies and their magnetic field configurations up to redshift z ≈ 3. We suggest an evolutionary model for the magnetic configuration in star‐forming disk galaxies and simulate the magnetic field distribution, the total and polarized synchrotron emission, and the Faraday rotation measures for disk galaxies at z ≲ 3. Since details of dynamo action in young galaxies are quite uncertain, we model the dynamo action heuristically relying only on well‐established ideas of the form and evolution of magnetic fields produced by the mean‐field dynamo in a thin disk. We assume a small‐scale seed field which is then amplified by the small‐scale turbulent dynamo up to energy equipartition with kinetic energy of turbulence. The large‐scale galactic dynamo starts from seed fields of 100 pc and an averaged regular field strength of 0.02 μG, which then evolves to a “spotty” magnetic field configuration in about 0.8 Gyr with scales of about one kpc and an averaged regular field strength of 0.6 μG. The evolution of these magnetic spots is simulated under the influence of star formation, dynamo action, stretching by differential rotation of the disk, and turbulent diffusion. The evolution of the regular magnetic field in a disk of a spiral galaxy, as well as the expected total intensity, linear polarization and Faraday rotation are simulated in the rest frame of a galaxy at 5GHz and 150 MHz and in the rest frame of the observer at 150 MHz. We present the corresponding maps for several epochs after disk formation. Dynamo theory predicts the generation of large‐scale coherent field patterns (“modes”). The timescale of this process is comparable to that of the galaxy age. Many galaxies are expected not to host fully coherent fields at the present epoch, especially those which suffered from major mergers or interactions with other galaxies. A comparison of our predictions with existing observations of spiral galaxies is given and discussed (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号