首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Investigations on the structure and intensity of the chromospheric network from quiet solar regions have been carried out with EUV data obtained from the Harvard spectroheliometer on the Apollo Telescope Mount of Skylab. The distribution of intensities within supergranulation cell interiors follows a near normal function, where the standard deviation exceeds the value expected from the counting rate, which indicates fine-scale structure below the 5 arc sec resolution of the data. The intensities from the centers of supergranulation cells appear to be the same in both quiet regions and coronal holes, although the network is significantly different in the two types of regions. The average halfwidth of the network elements was measured as 10 arc sec, and was independent of the temperature of formation of the observing line for 3.8 < log T e < 5.8. The contrast between the network and the centers of cells is greatest for lines with log T e 5.2, where the network contributes approximately 75% of the intensity of quiet solar regions. The contrast and fractional intensity contributions decrease to higher and lower temperatures characteristic of the corona and chromosphere.  相似文献   

2.
Extreme ultraviolet observations of a quiet region of the Sun on August 18, 1969, with the Harvard spectroheliometer on OSO 6 indicate that the chromospheric network can be observed in lines of the chromosphere and transition region (T = 8.4 × 105 K) with almost identical structure. At coronal heights, the network changes but some residual structure can still be discerned in Mgx and perhaps Sixii (T = 2.3 × 106 K), although there is little or no evidence remaining in Fexvi (T = = 3.5 × 106 K).  相似文献   

3.
Rogers  Ernest H. 《Solar physics》1970,13(1):57-77
Time-lapse photographs of the H chromospheric network were taken at 3-sec intervals with a -Å filter centered at H + 0.65 Å, where the network appears as a system of dark mottles. A nearly continuous sequence of 62 hr duration was made possible by summertime operation of the telescope at Thule Air Base, Greenland, 10° above the Arctic Circle. A quiet region was followed across the center of the disc. The life history of the network, as determined by measurement of the cross-correlation of selected photographs taken at intervals ranging between 3 sec and 29 hr, shows a rather complicated behavior. Initially the correlation falls off quite rapidly, dropping from 0.97 at 3 sec to 0.60 at about 7 min. Thereafter, the decline becomes increasingly more gradual, reaching a value of 0.24 at 4 hr. From this point the correlation falls off quite slowly. A least-squares fit to that portion of the cross-correlation curve for time differences greater than 4 hr yields a mean (1/e) life of 25.0 ± 1.6 hr and a value for twice the half-life of 38.8 ± 4.0 hr. This rate of decline is believed to be characteristic of the lifetime of the chromospheric network. The rapid initial loss of correlation appears to be due to a redistribution of the features, seen in the red wing of the H line, along the network.  相似文献   

4.
Frequent filtergrams of the quiet sun at H + 0.65 Å were taken from above the Arctic Circle during a period of 62 hr. Features observed in individual filtergrams or movies are described with the dynamic changes they undergo. Thirty filtergrams taken at 2-hr intervals are presented and the development of a typical supergranule is shown in some detail. A study of supergranules shows that they lose their identity in about 21 hr on the average.  相似文献   

5.
Centerline H filtergrams providing nearly full day coverage of the Sun are used to study the lifetimes of enhanced network features near active regions. In the two cases studied the fraction remaining of those features present at an original epoch remains near unity for 50 h, then drops exponentially with a 1/e decay time of 30 h. Histories of representative enhanced network features are discussed.  相似文献   

6.
From a large sample of the Kodaikanal spectroheliograms in the Call K line we have studied the variations in the intensity of the network elements over two solar cycles and have estimated their contribution to the overall variability seen in the disc-averaged K line profiles. The relative contribution of the network elements and the bright points to the K-emission are of the order of 25% and 15% respectively. We have shown that the area of the network elements is anti-correlated with the solar activity, and it increases by about 24% during the solar minimum compared to the maximum period.  相似文献   

7.
We investigate the physical processes occurring in the supergranule boundary cylinder layer (SBCL). Taking into account the Coriolis force, we obtain an expression for the component of the magnetic field and velocity in the SBCL. Within the framework of linear MHD, we consider the formation and coalescence of magnetic tubes, i.e. spicules, in the course of the reconnection of the SBCL magnetic field. The estimated number of spicules appearing on each supergranule cell is in agreement with observations. This number depends on the solar latitude : (1) if the normal component of the magnetic fieldB z is assumed to be independent of , then the maximum number of spicules should be at = 71°; (2) ifB z is assumed to be the component of the dipolar fieldB z sin , then the maximum number should be at the pole: = 90°. The timescale of the formation and the coalescence of the magnetic tubes is 10–20 min, which is of the order of the observed lifetime of the spicules.  相似文献   

8.
R. Born 《Solar physics》1974,38(1):127-131
An analysis of 63 young active regions shows that they originate exclusively on the borders of the chromospheric cells. In most cases they do not produce pores or spots, but always arch filament systems and chromospheric faculae. The arch filament systems evolve along the cell border, they are rooted on the network and not in the interior of the chromospheric cells. The sub-photospheric magnetic flux seems to reach the photosphere in units of 1019 Mx. About 3 hr after the first arch filaments appear pores evolve on the cell border. The pores and spots are probably formed by local aggregations of the emerging flux tubes.Mitteilungen aus dem Fraunhofer-Institut Nr. 132.  相似文献   

9.
We study the time evolution of a layer of the middle or lower chromosphere being heated by a stream of energetic particles during a solar flare. The region, which is not in LTE, is allowed to cool by the transfer of Lyman continuum radiation, with collisional as well as radiative processes being considered. The resulting time dependence of the electron density and the effective thickness of the layer are in good agreement with values derived from observations. We assume the supply of energetic particles to be cut off when the central electron density of our model layer reaches the peak value of n e = 4.4 × 1013 cm–3 derived from observations of an importance 3 flare. Depending on the total hydrogen density assumed, the central electron temperature reaches a value ranging from 8000 to 10000 K. These quantities decrease by 20% during the following minute and at a slower rate thereafter.  相似文献   

10.
We consider the plasma mechanism of sub-terahertz emission from solar flares and determine the conditions for its realization in the solar atmosphere. The source is assumed to be localized at the chromospheric footpoints of coronal magnetic loops, where the electron density should reach n ≈ 1015 cm?3. This requires chromospheric heating at heights h ? 500 km to coronal temperatures, which provides a high degree of ionization needed for Langmuir frequencies ν p ≈ 200–400 GHz and reduces the bremsstrahlung absorption of the sub-THz emission as it escapes from the source. The plasma wave excitation threshold for electron-ion collisions imposes a constraint on the lower density limit for energetic electrons in the source, n 1 > 4 × 109 cm?3. The generation of emission at the plasma frequency harmonic ν ≈ 2ν p rather than the fundamental tone turns out to be preferred. We show that the electron acceleration and plasma heating in the sub-THz emission source can be realized when the ballooning mode of the flute instability develops at the chromospheric footpoints of a flare loop. The flute instability leads to the penetration of external chromospheric plasma into the loop and causes the generation of an inductive electric field that efficiently accelerates the electrons and heats the chromosphere in situ. We show that the ultraviolet radiation from the heated chromosphere emerging in this case does not exceed the level observed during flares.  相似文献   

11.
12.
Heating of the deep chromosphere by a vertically descending beam of non-thermal electrons with power-law energy spectrum, in flares, is analysed. In lower regions of the flare, radiative losses can balance the energy input and the flare structure is described in terms of instantaneous quasi-steady temperature/depth profiles. Motion of the optical flare material is at constant pressure and is constrained to be purely vertical by a vertical magnetic field. The ionisation of hydrogen is determined by the same non-LTE processes as in the quiet chromosphere. Temperature profiles are obtained for a wide range of electron beam intensities and spectral indices and are discussed in terms of optical flare observations. Due to the steepness of the electron spectra, typical densities in the optical flare vary only over a narrow range, despite the diversity of beam intensities, in agreement with observation.Above a certain region, the flare material cannot attain a radiatively steady state against the electron input but evaluation of the level at which this occurs leads to an estimate of the mass of material involved in the high temperature flare plasma in this model. Results, which are again insensitive to the electron beam parameters, are found to be in satisfactory agreement with observations of the mass of flare ejecta and of soft X-ray flare emission measures.  相似文献   

13.
14.
Vanlommel  P.  Goossens  M. 《Solar physics》1999,187(2):357-387
This paper studies the effect of a magnetic atmosphere on the global solar acoustic oscillations in a simple Cartesian model. First, the influence of the ratio of the coronal and the photospheric temperature τ and the strength of the magnetic field at the base of the corona Bc on the oscillation modes is studied for a convection zone-corona model with a true discontinuity. The ratio τ seems to be an important parameter. Subsequently, the discontinuity is replaced by an intermediate chromospheric layer of thickness L and the effect of the thickness on the frequencies of the acoustic waves is studied. In addition, nonuniformity in the magnetic field, plasma density and temperature in the transition layer gives rise to continuous Alfvén and slow spectra. Modes with characteristic frequencies lying within the range of the continuum may resonantly couple to Alfvén and/or slow waves.  相似文献   

15.
Slow-mode shocks produced by reconnection in the corona can provide the thermal energy necessary to sustain flare loops for many hours. These slow shocks have a complex structure because strong thermal conduction along field lines dissociates the shocks into conduction fronts and isothermal subshocks. Heat conducted along field lines mapping from the subshocks to the chromosphere ablates chromospheric plasma and thereby creates the hot flare loops and associated flare ribbons. Here we combine a non-coplanar compressible reconnection theory with simple scaling arguments for ablation and radiative cooling, and predict average properties of hot and cool flare loops as a function of the coronal vector magnetic field. For a coronal field strength of 100 G the temperature of the hot flare loops decreases from 1.2 × 107 K to 4.0 × 106 K as the component of the coronal magnetic field perpendicular to the plane of the loops increases from 0% to 86% of the total field. When the perpendicular component exceeds 86% of the total field or when the altitude of the reconnection site exceeds 106km, flare loops no longer occur. Shock enhanced radiative cooling triggers the formation of cool H flare loops with predicted densities of 1013 cm–3, and a small gap of 103 km is predicted to exist between the footpoints of the cool flare loops and the inner edges of the flare ribbons.  相似文献   

16.
17.
The chromospherically-active binary, V711 Tau, had been observed by using the American Very Large Array (VLA) at five bands from 1.4 to 15 GHz. During the observation, the source was undergoing an intense flare, its radio luminosity up to 1.8 × 1018 erg s–1 Hz–1. The degree of circular polarization in the phase of the most intense flare was very small. With the decaying of the flare the flux density decreased, spectral index became smaller, spectra steeper and reversal frequency lower; the degree of circular polarization increased and its direction was dependent on frequency. These observational facts support the conclusion that the emission during intense flare is synchrotron (or synchro-cyclotron) mechanism. The magnetic intensity is about 10 G near = 1, the average electron energy, 4 MeV, the electron density with larger than 10 keV, 3 × 104–9 × 104 cm–3 and the electronic energy spectrum index in power-law distribution 1.3.  相似文献   

18.
The asymmetry of Hα line profiles is an important characteristic in the spectral observations of chromospheric flares, as well as one of the important observational facts of the dynamical process in solar flares. Based on the observed data of the solar spectrograph of Purple Mountain Observatory, some typical asymmetric Hα line profiles are presented. Taking the effects of the nonthermal excitation and ionization of hydrogen atoms into consideration, the asymmetry characteristics of Hα line profiles under different atmospheric models are calculated, and a semi-empirical study on the observed line profiles is thereby made. The results indicate that the downward motion of the chromospheric condensation region can cause the red and blue asymmetries of Hα spectra. We have tried to reproduce the observed asymmetry characteristics in specific flares. It is found that, besides the energy flux of nonthermal particles, the magnitude of spectral index and the height of the velocity field affect the line profile, the flare's atmospheric background model also has some influence on the line profile.  相似文献   

19.
R. J. Bray 《Solar physics》1973,30(2):335-344
The photographic subtraction formula expressing the Doppler signal in terms of line-of-sight velocity is rederived and the conditions governing its validity are carefully stated. By appealing to the observed profiles of individual bright and dark mottles it is shown that, in the case of H observations of the quiet chromosphere, two essential conditions are violated.An analysis based on Beckers' (1964) theoretical mottle profiles shows that, assuming the correctness of his model, the photographic subtraction method correctly maps regions of zero velocity and, provided the original photographs are taken sufficiently far from the centre of H, gives the correct signs of any line-of-sight velocities present. However, at H ± 0.25 Å the method gives inconsistent signs. Moreover, at all wavelengths in the line the magnitude of the Doppler signal depends not only on velocity but also on the source function S, optical thickness t 0, and line broadening parameter 0. Accordingly, there is no one-to-one correspondence between velocity and the Doppler signal since S, in particular, shows considerable variation from place to place over the quiet chromosphere.An alternative procedure which obviates these difficulties is suggested. It is also based on Beckers' model and yields a calibrated measure of the velocity in terms of 0 (assumed constant) which is independent of spatial variations in S and t 0.  相似文献   

20.
A detailed study has been made of the lifetimes and evolution of fibrils in McMath 12417, using high resolution filtergrams in H and Ca ii K made at Big Bear Solar Observatory. It was found that when viewed near disk centre, the lifetime of a fibril is a monotonically increasing function of its maximum apparent length. This relationship, together with the form of the variation of fibril lengths as a function of time, suggests that fibrils result from material being impulsively injected into magnetic field lines at approximately 30 km s, and returning under gravity. The lifetimes and apparent lengths of fibrils are then a function of the inclination of the field lines only. A study of wavelength scans through the H line confirms that the apparent extension and retraction of fibrils represents true mass motion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号